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Abstract

It is a truth universally acknowledged that an observed association without known
mechanism must be in want of a causal estimate. However, Causal estimates
from observational data will be biased in the presence of ‘unobserved confound-
ing’. Nevertheless, we might hope that the influence of unobserved confounders is
weak relative to a ‘large’ estimated effect. The purpose of this paper is to develop
Austen plots, a sensitivity analysis tool to aid such judgments by making it easier
to reason about potential bias induced by unobserved confounding. We formalize
confounding strength in terms of how strongly the unobserved confounding in-
fluences treatment assignment and outcome. For a target level of bias, an Austen
plot shows the minimum values of treatment and outcome influence required to
induce that level of bias. Austen plots generalize the classic sensitivity analy-
sis approach of Imbens [Imb03]. Critically, Austen plots allow any approach for
modeling the observed data. We illustrate the tool by assessing biases for several
real causal inference problems, using a variety of machine learning approaches
for the initial data analysis. Code, demo data, and a tutorial are available at at
github.com/anishazaveri/austen_plots.

1 Introduction

The high costs of randomized controlled trials coupled with the relative availability of (large scale)
observational data motivate attempts to infer causal relationships from observational data. For ex-
ample, we may wish to use a database of electronic health records to estimate the effect of a treat-
ment. Causal inference from observational data must account for possible confounders that influ-
ence both treatment assignment and the outcome; e.g., wealth may be a common cause influenc-
ing whether a patient takes an expensive drug and whether they recover. Often, causal inference is
based on the assumption of ‘no unobserved confounding’; i.e., the assumption that the observed co-
variates include all common causes of the treatment assignment and outcome. This assumption is
fundamentally untestable from observed data, but its violation can induce bias in the estimation of
the treatment effect—the unobserved confounding may completely or in part explain the observed
association. Our aim in this paper is to develop a sensitivity analysis tool to aid in reasoning about
potential bias induced by unobserved confounding.

Intuitively, if we estimate a large positive effect then we might expect the real effect is also posi-
tive, even in the presence of mild unobserved confounding. For example, consider the association
between smoking and lung cancer. One could argue that this association arises from a genetic mu-
tation that predisposes carriers to both an increased desire to smoke and to a greater risk of lung
cancer. However, the association between smoking and lung cancer is large—is it plausible that
some unknown genetic association could have a strong enough influence to explain the association?
Answering such questions requires a domain expert to make a judgment about whether plausible
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confounding is “mild” relative to the “large” effect. In particular, the domain expert must trans-
late judgments about the strength of the unobserved confounding into judgments about the bias
induced in the estimate of the effect. Accordingly, we must formalize what is meant by strength of
unobserved confounding, and to show how to translate judgments about confounding strength into
judgments about bias.

Bias = 2.0
e age ® sex
o bloodwork e socioeconomic

A prototypical example, due to Imbens [Imb03]
(building on [RR83]), illustrates the broad ap-
proach. The observed data consists of a treat-
ment 7, an outcome Y, and covariates X that
may causally affect the treatment and outcome.
Imbens [Imb03] then posits an additional un-
observed binary confounder U for each patient,
and supposes that the observed data and un-
observed confounder were generated according
to:
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where sig is the sigmoid function. If we had ob- Influence on treatment (a)

served U;, we could estimate (7,4, 3, &, 8, 62)
from the data and report 7 as the estimate of

Figure 1: Austen plot showing how strong an unob-
served confounder would need to be to induce a bias of

the average treatment effect. Since U; is not
observed, it is not possible to identify the pa-
rameters from the data. Instead, we make
(subjective) judgments about plausible values
of a—how strongly U, affects the treatment
assignment—and é—how strongly U; affects
the outcome. Contingent on plausible a = o
and § = ¢*, the other parameters can be esti-
mated. This yields an estimate of the treatment
effect 7(a*, d*) under the presumed values of

2 in an observational study of the effect of combination
blood pressure medications on diastolic blood pressure
[Dor+16]. We chose this bias to equal the nominal aver-
age treatment effect estimated from the data. We model
the outcome with Bayesian Additive Regression Trees
and the treatment assignment with logistic regression—
Austen plots accommodate any choice of models. The
curve shows all values treatment and outcome influence
that would induce a bias of 2. The colored dots show the
influence strength of (groups of) observed covariates,
given all other covariates. For example, an unobserved

confounder with as much influence as the patient’s age

the sensitivity parameters. ntou i
might induce a bias of about 2.

The approach just outlined has a major draw-

back: it relies on a parametric model for the full

data generating process. The assumed model is equivalent to assuming that, had U been observed, it
would have been appropriate to use logistic regression to model treatment assignment, and linear re-
gression to model the outcome. This assumption also implies a simple, parametric model for the re-
lationships governing the observed data. This restriction is out of step with modern practice, where
we use flexible machine-learning methods to model these relationships. For example, the assump-
tion forbids the use of neural networks or random forests, though such methods are often state-of-
the-art for causal effect estimation.

Austen plots The purpose of this paper is to introduce Austen plots, an adaptation of Imbens’ ap-
proach that fully decouples sensitivity analysis and modeling of the observed data. An example
Austen plot is shown in Figure 1. The high-level idea is to posit a generative model that uses a sim-
ple, interpretable parametric form for the influence of the unobserved confounder, but that puts no
constraints on the model for the observed data. We then use the parametric part of the model to for-
malize “confounding strength” and to compute the induced bias as a function of the confounding.

We further adapt two innovations pioneered by Imbens [Imb03]. First, we find a parameterization of
the model so that the sensitivity parameters, measuring strength of confounding, are on a standard-
ized, unitless scale. This allows us to compare the strength of hypothetical unobserved confounding
to the strength of observed covariates, measured from data. Second, we plot the curve of all values
of the sensitivity parameter that would yield given level of bias. This moves the analyst judgment
from “what are plausible values of the sensitivity parameters?” to “are sensitivity parameters this
extreme plausible?”



Figure 1, an Austen plot for an observational study of the effect of combination medications on di-
astolic blood pressure, illustrates the idea. A bias of 2 would suffice to undermine the qualitative
conclusion that the blood-pressure treatment is effective. Examining the plot, an unobserved con-
founder as strong as age could induce this amount of confounding, but no other (group of) observed
confounders has so much influence. Accordingly, if a domain expert thinks an unobserved con-
founder as strong as age is unlikely then they may conclude that the treatment is likely effective. Or,
if such a confounder is plausible, they may conclude that the study fails to establish efficacy.

The purpose of this paper is adapting Imbens’ sensitivity analysis approach to allow for arbitrary
models for observed data. The contributions are: 1. Positing a generative model that is both eas-
ily interpretable and where the required bias calculations are tractable. 2. Deriving a reparameter-
ization that standardizes the scale of influence strength, and showing how to estimate the influence
strength of observed covariates for reference. And, 3. illustrative examples showing that Austen
plots preserve the key elements of Imbens’ approach and are informative about sensitivity to unob-
served confounding in real-world data.

The key advantages of Austen plots as a sensitivity analysis method are' 1. Plausibility judgments
are made on directly interpretable quantities, the total confounding influence on Y and 7'. Addition-
ally, the Austen plot model does not rely on the detailed nature of the unobserved confounding—
there may be one or many unobserved confounders, with any sort of distribution—all that matters
is the total confounding influence. 2. The unobserved strength of confounding can be directly com-
pared to the strength of observed covariates. 3. The method is entirely post-hoc. That is, the analyst
does not need to consider any aspect of the sensitivity analysis when modeling the observed data. In
particular, producing Austen plots requires only predictions from the data models. We provide soft-
ware and a tutorial for producing the plots.’

Notation For concreteness, we focus on the estimation of the average effect of a binary treatment.
. . . iid .

The data are generated independently and identically (Y;,T;, X;, U;) ~ P, where U; is not ob-

served and P is some unknown probability distribution. The average treatment affect (ATE) is

ATE = E[Y | do(T =1)] — E[Y | do(T = 0)].
The use of Pearl’s do notation indicates that the effect of interest is causal. The results that follow
can also be simply adapted to the average treatment effect on the treated, see appendix A.

The traditional approach to causal estimation assumes that the observed covariates X contain all
common causes of Y and T'. If this ‘no unobserved confounding’ assumption holds, then the ATE
is equal to parameter, 7, of the observed data distribution, where

r=E[E[Y|X,T=1-E[Y|X,T=0]. (1.1)

The parameter 7 can be estimated from a finite data sample. The general approach proceeds in two

steps. First, we produce estimates ¢ and Q for the propensity score g and the conditional expected
outcome (), where

Definition 1. The propensity score g is g(x) = P(T = 1| X = x) and the conditional expected
outcome Qis Q(t,z) =E[Y | T =t,X = z].

In modern practice, ) and g are often estimated by fitting flexible machine learning models. The

second step is to plug the estimated @ and § in to some downstream estimator 7. For example,
following 1.1, the estimator

20 _ % > QM) ~ QO.x).

is a natural choice. Other estimators incorporate g.

We are interested in the case of possible unobserved confounding. That is, where U causally affects
Y and T'. If there is unobserved confounding then the parameter 7 is not equal to the ATE, so 7 is
a biased estimate. Inference about the ATE then divides into two tasks. First, the statistical task:

ISee section 5 for a more detailed comparison with related work.
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estimating 7 as accurately as possible from the observed data. And, second, the causal (domain-
specific) problem of assessing bias = ATE — 7. We emphasize that our focus here is bias due to
causal misidentification, not the statistical bias of the estimator. Our aim is to reason about the bias
induced by unobserved confounding—the second task—in a way that imposes no constraints on the

modeling choices for @), § and 7 used in the initial analysis.

2 Sensitivity Model

Our sensitivity analysis should impose no constraints on how the observed data is modeled. How-
ever, sensitivity analysis demands some assumption on the relationship between the observed data
and the unobserved confounder. It is convenient to formalize such assumptions by specifying a
probabilistic model for how the data is generated. The strength of confounding is then formalized
in terms of the parameters of the model (the sensitivity parameters). Then, the bias induced by the
confounding can be derived from the assumed model. Our task is to posit a generative model that
both yields a useful and easily interpretable sensitivity analysis, and that avoids imposing any as-
sumptions about the observed data.

To begin, consider the functional form of the sensitivity model used by Imbens [Imb03].
logitP(T'=1|z,u) = h(z) + au 2.1)
ElY | t,z,u] = I(t, ) + du, (2.2)

for some functions h and [. That is, the propensity score is logit-linear in the unobserved confounder,
and the conditional expected outcome is linear.

By rearranging (2.1) to solve for v and plugging in to (2.2), we see that it’s equivalent to assume
E[Y | t,z,u] = I(t,z) + dlogit P(T = 1 | ,u). That is, the unobserved confounder u only
influences the outcome through the propensity score. Accordingly, by positing a distribution on
P(T = 1| x,u) directly, we can circumvent the need to explicitly articulate U (and h).

Definition 2. Let g(z,u) = P(T = 1| z, u) denote the propensity score given observed covariates
2 and the unobserved confounder .

The insight is that we can posit a sensitivity model by defining a distribution on g directly. The logit-
linear model does not directly lead to a tractable sensitivity analysis. Instead, we choose:

9(X,U) [ X ~ Beta(g(X)(/a—1), (1-9g(X))(Y/a—1)).

The sensitivity parameter « plays the same role as in Imbens’ model: it controls the influence of
the unobserved confounder U on treatment assignment. When « is close to 0 then (X, U) | X is
tightly concentrated around ¢g(X), and the unobserved confounder has little influence. That is, U
minimally affects our belief about who is likely to receive treatment. Conversely, when « is close
to 1 then g concentrates near 0 and 1; i.e., knowing U would let us accurately predict treatment
assignment. Indeed, it can be shown that « is the change in our belief about how likely a unit was to
have gotten the treatment, given that they were actually observed to be treated (or not):

a=E[gX,U0)|T =1]-E[g(X,U) [T = 0]. 2.3)
With the ¢ model in hand, we define our sensitivity model:

Assumption 1 (Sensitivity Model).
9(X,U) | X ~ Beta(g(X)(/a—1),(1—-g(X))(Ya—1))
T|X,U ~ Bern(g(X,U))
ElY |T,X, Ul =Q(T,X) + §(logit§(X, U) —E[logit (X, U) | X,T]).
This model has been constructed to satisfy the requirement that the propensity score and conditional
expected outcome are the g and () actually present in the observed data:

P(I'=1[X) =E[E[T | X,U] | X] = E[g(X,U) | X] = g(X)
E[Y | T,X] =E[E[Y | T,X,U] | T, X] = Q(T, X).



The sensitivity parameters are «, controlling the dependence between the unobserved confounder the
treatment assignment, and ¢, controlling the relationship with the outcome. In effect, by making an
assumption about the propensity score directly, we have sidestepped the need to explicitly articulate
the parts of the observed/unobserved relationship that are not actually relevant for the treatment
effect estimation.

Bias We now turn to calculating the bias induced by unobserved confounding. By assumption, X
and U together suffice to render the average treatment effect identifiable as:

ATE=EE[Y |T=1,X, U -E[Y |T=0,X,U]].
Plugging in our sensitivity model yields,
ATE =E[Q(1,X) — Q(0, X)] + §(E[logit g(X,U) | X,T = 1] — E[logit (X, U) | X, T = 0]).
The first term is the observed-data estimate 7, so
bias = §(E[logit g(X,U) | X, T = 1] — E[logit g(X,U) | X, T = 0]).
Then, by invoking Beta-Bernoulli conjugacy and standard Beta identities, we arrive at,

Theorem 3. Under our sensitivity model, Assumption 1, an unobserved confounder with influence
« and § induces bias in the estimated treatment effect equal to

bias = JE[(g(X)(1/a — 1) + 1) — (1 — g(X))(Ya — 1)
—P(g(X)(a — 1)) + (L - g(X)(fa — 1) + 1)],

where \ is the digamma function

Reparameterization The model in the previous section provides a formalization of confounding
strength and tells us how much bias is induced by a given strength of confounding. This lets us
translate judgments about confounding strength to judgments about bias. However, § may be diffi-
cult to interpret. Following Imbens [Imb03], we will reexpress the outcome-confounder strength in
terms of the partial coefficient of determination:

9 _ E(Y - Q(T, X)) —E(Y —E[Y | T, X,U])?
Mrpa(2:0) = EY QX))

This parameterization has two advantages over d. First, Rf,. ar has a familiar interpretation—the
proportion of previously unexplained variation in Y that is explained by the unobserved covariate
U. Second, R%,.par has a fixed, unitless scale—enabling easy comparisons with reference values.

The key to computing the reparameterization is the following result (proof in appendix):
Theorem 4. Under our sensitivity model, Assumption 1, the outcome influence is

21: E[P1(g(X) (1 = g(X)' (Yo = 1) + 1[T = 1]) ]

2 _ g2
R} (0, 0) = 6 E[(Y — Q(T, X))?] ’

t=0
where Dy is the trigamma function.

We do not reparameterize the strength of confounding on treatment assignment because, by design,
« is already interpretable and on a fixed, unitless scale.

Estimating bias In combination, Theorems 3 and 4 yield an expression for the bias in terms of «
and R%,’par. In practice, we can estimate the bias induced by confounding by fitting models for )
and ¢ and replacing the expectations by means over the data. To avoid problems associated with

overfitting, we recommend a data splitting approach. Namely, split the data into &k folds and, for
each fold, estimate Q(t;, z;) and g(x;) by fitting the Q) and g models on the other & — 1 folds.

3 Calibration using observed data

The analyst must make judgments about the influence a hypothetical unobserved confounder might
have on treatment assignment and outcome. To calibrate such judgments, we’d like to have a refer-
ence point for how much the observed covariates influence the treatment assignment and outcome.



In the sensitivity model, the degree of influence is measured by partial R2- and . We want to mea-
sure the degree of influence of an observed covariate Z given the other observed covariates X'\ Z.

For the outcome, this can be measured as:

R2 _ EY -E[Y|T,X\Z])* -E(Y - Q(T, X))*
Y-Z|IT.X\Z E(Y —E[Y | T, X\Z])? :

In practice, estimate the quantity by fitting a new regression model Q z that predicts Y from T and
X\Z. Then we compute

LSy — Qz(ts, 1?7:\21:)?2 — =3 — Q(ti, z;))?
LN i — Qz(ti, 2\ z:))?

2 —

Ry z1r.x\z =

It is less clear how to produce the analogous estimate for the influence on treatment assignment. To
facilitate the estimation, we reexpress « in a more convenient form (proof in appendix):

Theorem 5. Under our sensitivity model, Assumption I,

Elg(X,U)(1 - (X, U))]
E[g(X)(1 = g(X))]

Then, we can measure influence of observed covariate Z on treatment assignment given X\ Z in an
analogous fashion to the outcome. We define gx\ 7 (X\Z) = P(T' = 1| X\ Z), then fit a model for
gx\z by predicting 7' from X'\ Z, and estimate

=22 9(x) (1 = g(ay))
Ly iaxz(@\z) (1 — gx\z(z:\z))

azix\z=1-

Grouping covariates The estimated
values ¢ x\z and Rf/ x\z Measure N ‘ Bias = 1000 _

. 1) o Individual covariates o Pre-program earnings e Recent earnings
the influence of Z conditioned on all
the other confounders. In some cases,
this can be misleading. For example,
if some piece of information is impor-
tant but there are multiple covariates
providing redundant measurements,
then the estimated influence of each
covariate will be small. To avoid this, 0
we suggest grouping together related ’ nfuence on treatment (@) * nfluance on treatment @)
or strongly dependent covariates and C. Nonexperimental Gain Sample D. Restricted Sample
computing the influence of the en- !
tire group in aggregate. For example,
grouping income, location, and race
as ‘socioeconomic variables’.
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We now examine several examples

of Austen plots for sensitivity anal- Figure 2: Austen plots preserve the qualitative conclusions of Im-

ysiS, shpwmg: (1) We preservc: the bens’ analysis without imposing any restriction on the modeling of
qualitative usefulness of Imbens’ ap- e gbserved data. In each plot, the black solid line indicates the
proach, without any modeling re- partial R? and « values that would induce a bias of at least $1000.
strictions. (2) Austen plots are in- Each plot also includes estimates for the strength of confounding
formative about bias due to unob- for each of the nine covariates (red circles) as well as recent lag in
served confounding in real observa- earnings (RE75 and pos75, yellow circles), and the all preprogram
tional studies. (3) The bias estimates earnings (RE74, pos74, RE75, pos75, green circles).

tend to be conservative.



Imbens’ analysis To demonstrate the use of Austen plots, we replicate Imbens [Imb03] example
and produce sensitivity plots for variations on the Lal.onde job training data [Lal.86]. We use
exactly the same data splitting and adjustment sets as Imbens [Imb03]. We find that the conclusions
about the effects of unobserved confounding are substantively the same as Imbens [Imb03]. That is,
we arrive at sensible sensitivity conclusions while liberating ourselves from the need for parametric
assumptions on the observed data. We report bias for the average treatment effect on the treated.

The original purpose of the Lal.onde job training data was to analyze the effect of a job training
program on the annual earnings of a participant. The data consists of both an experimental (ran-
domly assigned) part, and an observational sample from the Panel Study of Income Dynamics
(PSID). We test on (1) the experimental sample, (2) the experimental treated with observational
controls, (3) the same as 2, except with outcome defined as change in earnings since 1974, and (4)
the same as 2, except individuals with high earnings pretreatment (>$5000) are dropped. We ad-
just for: married, age, education, race, and earnings in 1974 and 1975. There are large differences
in these background covariates between the experimental sample and the PSID controls—this is a
main challenge for the Lal.onde setup.

Deviating from Imbens, we fit random forests for Q and g. This demonstrates the sensitivity analysis
in the case where the observed data model does not have a simple parametric specification.

Austen plots for these analyses are displayed in Figure 2. Following Imbens, we choose a bias of
$1000 (for context, the effect estimate from the RCT is about $1800). The experimental sample
(panel A) is robust to unobserved confounding: inducing a bias of $1000 would require an unob-
served confounder with a much stronger effect than any of the measured covariates or earning vari-
ables. By contrast, the non-experimental samples (panels B and C) are much more sensitive to un-
observed confounding. Several of the covariates, if unobserved, would suffice to bias the estimate
by $1000. Note that the sensitivity curves are the same for both B and C, since the outcome is just
a linear transformation. Finally, the restricted sample (panel D) is both significantly more robust to
bias than the full non-experimental samples, and the influence of the observed covariates is much
reduced. Imposing the restriction mitigates the treatment-control population mismatch.

Practical relevance Figure 3 shows Austen plots for two effects estimated from observational
data. The first study is based on data from the Infant Health and Development Program (IHDP)
[BG+92], an experiment targeted at low-birth-weight, premature infants that provided child care and
home visits. We look at a study mea-
suring the effect of the level of par-
ticipation in IHDP child development
centers in the two years preceding
an IQ test on the outcome of the IQ
test [Hilll, §6.1]. Level of partici-
pation is not randomly assigned, so
Hill [Hilll] estimates the effect by
using Bayesian Additive Regression 025
Trees (BART) [Chi+10] to control for , é{,, o

arange of covariates. [ 025 050 075 1 [ 025 050 075 1
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The second plot corresponds to the
estimate of the effect of combina-
tion blood pressure medications on
diastolic blood pressure described in
[Dor+16]. The data is derived from

Figure 3: Austen plots are informative when applied to real data
analysis. The left-hand plot is for the estimated effect of I[HDP
participation level on child IQ. The conclusions of this study seem
robust to unobserved confounding—even the observed covariate
groups do not have sufficient influence to undo the qualitative con-

an American survey that includes a
variety of socioeconomic and health
factors. We again use BART.

The Austen plots are informative for
these examples. In the first case, the
Austen plot increases our confidence
in the qualitative result. In the second

clusion of the model. The right-hand plot is for the estimated effect
of combination treatment on diastolic blood pressure. In this case,
whether the study conclusions are reliable depends on whether
an unobserved confounder as influential as age is credible—we
should consult with an expert. In both cases, we model the out-
come with Bayesian Additive Regression Trees, and the propen-
sity score with logistic regression.

case, it suggests we should be cautious about the conclusions unless unobserved confounders as

strong as age are deemed unlikely.



Table 1: The sensitivity model tends to be conservative in its bias estimates. Bias estimates for leaving out
a confounding covariate are computed according to the sensitivity model (using the left-out covariate data)
and by comparing non-parametric effect estimates from the full data (7), and the left-out covariate data
(Tz\2)- In all cases, the sensitivity model estimate is larger.

Study: LalLonde Restricted Blood Pressure IHDP

Omitted covariate: Education Age Socioeconomic
Ta 2508.63 —2.33 12.72
To\z 1982.54 —2.86 13.35
Nonparametric bias 526.09 0.53 —0.63
Sensitivity Model |bias| 986.90 1.91 0.75

Sensitivity model conservatism Any sensitivity analysis must be predicated on some assumption
about the influence of the unobserved confounder. The bias curves and influence estimates in Austen
plots are contingent on the assumed sensitivity model, Assumption 1. We motivated our particular
choice by simplicity and tractibility. We also expect that our associated sensitivity model will often
yield conservative values for bias; i.e., the bias anticipated by the sensitivity model is higher than
the true bias induced by the real, physical, mechanism of confounding. The reason is that bias is
monotonically increasing in both treatment and outcome influence. In reality, hidden confounders
can have more complicated relationships that ‘cancel out’. For example, the effect of age in the
blood pressure example might be: blood pressure increases with age, but young patients don’t take
their medication (preferring diet and exercise), middle age patients take it at a base rate, and old
patients don’t take the medication (fatalism). These effects cancel out somewhat, reducing the bias
induced by failing to adjust for age. Assumption | does not allow for such cancellations.

To test conservativism, we create deliberately confounded datasets by removing an ob-
served confounder from our baseline data. We compute the bias anticipated by our model,
bias(R%,’ X\2> X\ z), using the measured influence strength of the covariate. We compute a non-

parametric estimate of the bias by estimating the effect with the full data, estimating the effect with
the deliberately confounded data, and taking the difference. The results are shown in table 1, and
confirm the conservatism-in-practice. This increases our confidence that when an Austen plot sug-
gests robustness to unobserved confounding we do indeed have such robustness.

5 Related Work

We survey a few approaches to sensitivity analysis; for reviews, see [Liu+13; Ric+14].

Austen plots build on sensitivity analysis based on parametric models in the style of Imbens [Imb03].
These typically assume some relatively simple parametric latent variable model, where the latent
variable is the unobserved confounder. Dorie et al. [Dor+16] extends an Imbens-like approach to
accomodate BART as the outcome model. Cinelli and Hazlett [CH20] allow for arbitrary kinds
of confounders and propensity score models, but require that the outcome is modeled with linear
regression. Cinelli et al. [Cin+19] assume a causal DAG where all relationships are linear. They
make further assumptions about the DAG and use identification tools to derive effect (hence, bias)
estimates from the assumptions.

An alternative is to relax parametric assumptions at the price of requiring the analyst to make judg-
ments about more abstract sensitivity parameters [e.g., Fra+19; She+11; HS13; BK19]. Franks et al.
[Fra+19] allow arbitrary models for the initial analysis. Their sensitivity model is adapted from the
missing data literature, and requires the analyst to specify P(T = ¢ | Y/(1 — t), X )—the posterior
belief about probability of treatment assignment had the counterfactual outcome under no-treatment
been observed. Shen et al. [She+11] give an inverse-propensity-weighted specific approach where
the sensitivity parameters are varg/g and the correlation between §/g and the counterfactual out-
comes. Bonvini and Kennedy [BK19] assume each unit is confounded or not, and take the propor-
tion of confounding as the sensitivity parameter.

Another approach estimates the range of effects consistent with a bound on confounding [e.g.,
Ros10; Zha+19; Yad+18]. For instance, Rosenbaum [Ros10] and Yadlowsky et al. [Yad+18] as-
sume g is logit-linear in an unobserved confounder U with U €g [—1, 1] and derive effect bounds



from assumed bounds on the coefficient of U. This avoids parametric assumptions on observed data
and on the relationship between U and Y. However, specifying the coefficient a priori can be chal-
lenging. This approach is analogous to considering only partial R? equal 1 point on the bias curve.

There is also substantial work on calibrating sensitivity analyses using observed data [e.g., Fra+19;
HS13; CH20], including some concerns raised in [CH20, §6.2] (discussed below).

6 Limitations and Future Directions

We have developed Austen plots as a tool for assessing sensitivity to unobserved confounding.
Austen plots are most useful in situations where the conclusion from the plot would be ‘obvious’
to a domain expert. For instance, the LalLonde RCT plot shows that a confounder would have to
be much stronger than the observed covariates to induce substantial bias. Similarly, the Lal.onde
observational plot shows that confounders similar to the observed covariates could induce substan-
tial bias. Such conclusions would not be affected by mild perturbations of the dots or the line. By
contrast, Austen plots should not be used to draw conclusions such as, “I think a latent confounder
could only be 90% as strong as ‘age’, so there is evidence of a small non-zero effect”. Such nuanced
conclusions might depend on issues such as the particular sensitivity model we use, or finite-sample
variation of our bias and influence estimates, or on incautious interpretation of the calibration dots.
Drawing precise quantitative (rather than qualitative) conclusions about induced bias from Austen
plots would require careful consideration of these issues, and expert statistical guidance. Hence,
Austen plots should be used mainly with domain experts to guide qualitative conclusions (“this job
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program likely works”, “this study doesn’t establish drug efficacy”).

Inference In practice, producing Austen plots requires estimating the parameters of the curves and
dots using a finite data sample. However, the plots may be misleading if there is significant finite-
sample estimation error. In this paper, we use a simple plug-in estimator that substitutes Q, g for the
true () and g. There are two main limitations: the simple estimator may be statistically inefficient,
and uncertainty quantification is difficult. The plots in this paper used bootstrap confidence intervals
(100 samples). This is computationally burdensome for the machine-learning models that motivate
the paper. Further, the bootstrapping for the influence statistics is finnicky—e.g., care must be taken
to group replicated samples together in the k-folding. It would be very useful to develop (non-
parametric) efficient estimators for the key quantities that also admit explicit variance estimators.

Calibration using observed data The interpretation of the observed-data calibration requires
some care. The sensitivity analysis requires the analyst to make judgements about the strength of
influence of the unobserved confounder U, conditional on the observed covariates T, X . However,
we report the strength of influence of observed covariate(s) Z, conditional on the other observed co-
variates T, X\ Z. The difference in conditioning sets can have subtle effects.

Cinelli and Hazlett [CH20] give an example where Z and U are identical variables in the true model,
but where influence of U given T', X is larger than the influence of Z given T, X\ Z. (The influence
of Z given T, X\ Z, U would be the same as the influence of U given T', X). Accordingly, an analyst
is not justified in a judgement such as, “I know that U and Z are very similar. I see Z has substantial
influence, but the dot is below the line. Thus, U will not undo the study conclusions.” In essence, if
the domain expert suspects a strong interaction between U and Z then naively eyeballing the dot-vs-
line position may be misleading. A particular subtle case is when U and Z are independent variables
that both strongly influence 7" and Y. The joint influence on 71" creates an interaction effect between
them when 7 is conditioned on (the treatment is a collider). This affects the interpretation of R2.
Indeed, we should generally be skeptical of sensitivity analysis interpretation when it is expected
that a strong confounder has been omitted. In such cases, our conclusions may depend substantively
on the particular form of our sensitivity model, or other unjustifiable assumptions.

Although the interaction problem is conceptually important, its practical significance is unclear. We
often expect the opposite effect: if U and Z are dependent (e.g., race and wealth) then omitting U
should increase the apparent importance of Z—Ileading to a conservative judgement. It would be
useful for future work to articulate specific situations where Austen plots cannot be trusted, beyond
“we expect a strong U is missing”. As part of this, it could be useful to derive a bias formula in terms
of R%AU‘  instead of R%,_Ul X1 This would eliminate the need to consider the collider naunce.



7 Societal Consequences

This paper addressed sensitivity analysis for causal inference. We have extended Imbens’ approach
to allow the use of arbitrary machine-learning methods for the data modeling. Austen plots provide
an entirely post-hoc and blackbox manner of conducting sensitivity analysis. In particular, they make
it substantially simpler to perform sensitivity analysis. This is because the initial analysis can be
performed without have a sensitivty analysis already in mind, and because producing the sensitivity
plots only requires predictions from models that the practitioner has fit anyways.

The ideal positive consequence is that routine use of Austen plots will improve the credibility of
machine-learning based causal inferences from observational data. Austen plots allow us to both
use state-of-the-art models for the observed part of the data, and to reason coherently about the
causal effects of potential unobserved confounders. The availability of such a tool may speed the
adoption of machine-learning based causal inference for important real-world applications (where,
so far, adoption has been slow).

On the negative side, an accelerated adoption of machine-learning methods into causal practice may
be undesirable. This is simply because the standards of evidence and evaluation used in common
machine-learning practice do not fully reflect the needs of causal practice. Austen plots partially
bridge this gap, but they just one of the elements required to establish credibility.
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