
Supplementary Material for “Robust Multi-Agent Reinforcement
Learning with Model Uncertainty”

A Supplementary Proofs

A.1 Proof of Proposition 2.2

The result is a direct application of Theorem 4 in [23]. The minor difference is that the reward
uncertainty set R̄is here is a vector lying in R|A|, which might be different across agents. While in
[23], the cost uncertainty set Cs is a vector of dimension |N ||A|. Thus, each element in Cs therein
should be equivalent to the concatenated vector ((R̄1

s)
>, (R̄2

s)
>, · · · , (R̄Ns)>)>, which also lies in a

compact set since each subvector lies in a compact set. This enables the application of [23, Theorem
4] to obtain the existence result.

A.2 Convergence of Q-learning Under Certain Conditions

We now provide some theoretical justifications for the convergence of the Q-learning update proposed
in §3.1. In the following, we rely on the assumptions based on the final version of the formulation
by [25], where the authors resolve issues with their initial formulation. While convergence to Nash
equilibrium under these assumptions are guaranteed, we understand these assumptions are a bit
restrictive for practical applications. Additional discussion on the shortcomings surrounding the
use of convergence to Nash equilibrium can be found in literature. Hence, we view our result as
a proof-of-concept for justifying the value-based/Q-learning update. Indeed, developing provable
convergent Q-learning for general-sum Markov games without restrictive assumptions remains open,
and is still worth further investigation. Hence, we have been motivated to develop an actor-critic
algorithm later, which incorporates function approximation to handle more practical cases.

Recall that the Q-value function at the RMPNE satisfies the following Bellman equation:

Q̄i∗
(
s, a, R̄i(s, a)

)
:= R̄i(s, a) + γ

∑
s′∈S

P (s′ | s, a)
∑
a′

(N∏
j=1

πj∗(a
′j | s′)

)
Q̄i∗
(
s′, a′, R̄i∗(s

′, a′)
)
.

(A.1)

The Q-learning update can be written as

Q̄it+1(st, at, R̄
i
t) := (1− αt) · Q̄it(st, at, R̄it) + αt ·

[
R̄it + γ

∑
at+1

π∗,t(at+1 | st+1)·

Q̄it(st+1, at+1, R̄
i
t+1)

]
. (A.2)

We consider the setting with two agents for simplicity, and make the following assumptions, motivated
from [25].

Assumption 4.1. Every state and action have been visited infinitely often.

Assumption 4.2. The learning rate αt satisfies the following conditions:

• 0 ≤ αt < 1,
∑
t≥0 αt =∞, and

∑
t≥0 α

2
t <∞,

• αt(s, a1, a2, R̄i(s, a)) = 0 if (s, a1, a2, R̄i(s, a)) 6= (st, a
1
t , a

2
t , R̄

i
t).

Assumption 4.3. Define Q̄it(s) = [Q̄it(s, a
1, a2, R̄i(s, a))]a1∈A1,a2∈A2,R̄is∈R̄is to be the estimates

of Q-value functions at iteration t of (A.2), and define the stage RMPNE for (Q̄1
t (s), Q̄

2
t (s)) as the

tuple of policies
(
{π0,i
∗ (s)}i∈N , π1

∗(· | s), π2
∗(· | s)

)
that is obtained from(

πi∗(· | s), π0,i
∗ (s)

)
∈ argmax

πi(· | s)
min
π0,i(s)

∑
a∈A

πi(ai | s)π−i∗ (a−i | s)Q̄it
(
s, a, π0,i(s)[a]

)
, (A.3)

where −i = 1 if i = 2, and −i = 2 if i = 1. Moreover, the stage equilibrium policy tuple satisfies
one of the following properties:

14

• The equilibrium policy tuple is global optimum, i.e., for any πi(· | s) ∈ ∆(Ai) with i = 1, 2
and π0,i(s) ∈ R̄is,∑
a∈A

πi∗(a
i | s)π−i∗ (a−i | s)Q̄it

(
s, a, π0,i

∗ (s)[a]
)
≥
∑
a∈A

πi(ai | s)π−i(a−i | s)Q̄it
(
s, a, π0,i(s)[a]

)
.

• One agent receives a higher payoff when the other agent deviates from the equilibrium
policy tuple, i.e., for any πi(· | s) ∈ ∆(Ai) and π0,i(s) ∈ R̄is with i = 1, 2∑

a∈A

π1
∗(a

1 | s)π2
∗(a

2 | s)Q̄1
t

(
s, a, π0,1(s)[a]

)
≤
∑
a∈A

π1
∗(a

1 | s)π2(a2 | s)Q̄1
t

(
s, a, π0,1(s)[a]

)
,

∑
a∈A

π2
∗(a

2 | s)π1
∗(a

1 | s)Q̄2
t

(
s, a, π0,2(s)[a]

)
≤
∑
a∈A

π2
∗(a

2 | s)π1(a1 | s)Q̄2
t

(
s, a, π0,2(s)[a]

)
.

With Assumptions 4.1-4.3, we can prove the convergence of Q-learning in the following theorem.

Theorem 4.4. Under Assumptions 4.1-4.3, the sequence {(Q̄1
t , Q̄

2
t)} obtained from (A.2) converges

to (Q̄1
∗, Q̄

2
∗), which are the optimal Q-value functions that solve the Bellman equation (A.1), namely,

the robust Markov perfect Nash equilibrium Q-value.

Proof. Define the operator

PitQ̄i(s) = R̄it + γ
∑
a∈A

πi∗(a
i | s)π−i∗ (a−i | s)Q̄i

(
s, a, π0,i

∗ (s)[a]
)
, (A.4)

for i = 1, 2, where
(
{π0,i
∗ (s)}i=1,2, π

1
∗(· | s), π2

∗(· | s)
)

is the tuple of equilibrium policies for
(Q̄1(s), Q̄2(s)) obtained from (A.3). We first show that Pt = (P1

t ,P2
t) is a contraction mapping.

Lemma A.1. Let Pt = (P1
t ,P2

t) where Pit is defined in (A.4). Then Pt is a contraction mapping
under Assumption 4.3.

Proof. Consider two pairs of Q-values at state s denoted by (Q̄1(s), Q̄2(s)) and (Q̂1(s), Q̂2(s)),
respectively, whose equilibrium tuples are denoted by(

{π0,i
∗ (s)}i=1,2, π

1
∗(· | s), π2

∗(· | s)
)
, and

(
{π̂0,i
∗ (s)}i=1,2, π̂

1
∗(· | s), π̂2

∗(· | s)
)
.

To show the contraction property, we consider the following two cases.

Case 1: PitQ̄i(s) ≥ PitQ̂i(s). Then under the first property of Assumption 4.3, i.e., the global
optimality of the equilibrium, we have

0 ≤ P1
t Q̄

1(s)− P1
t Q̂

1(s)

= γ

[∑
a∈A

πi∗(a
i | s)π−i∗ (a−i | s)Q̄i

(
s, a, π0,i

∗ (s)[a]
)
−
∑
a∈A

π̂i∗(a
i | s)π̂−i∗ (a−i | s)Q̂i

(
s, a, π̂0,i

∗ (s)[a]
)]

≤ γ
[∑
a∈A

πi∗(a
i | s)π−i∗ (a−i | s)Q̄i

(
s, a, π0,i

∗ (s)[a]
)
−
∑
a∈A

πi∗(a
i | s)π−i∗ (a−i | s)Q̂i

(
s, a, π0,i

∗ (s)[a]
)]

≤ γ max
a1,a2,R̄is

∣∣Q̄i(s, a1, a2, R̄i(s, a))− Q̂i(s, a1, a2, R̄i(s, a))
∣∣ = γ‖Q̄i(s)− Q̂i(s)‖∞, (A.5)

where the second inequality uses this property. Furthermore, under the second property of Assumption
4.3, we can derive

0 ≤ P1
t Q̄

1(s)− P1
t Q̂

1(s)

= γ

[∑
a∈A

πi∗(a
i | s)π−i∗ (a−i | s)Q̄i

(
s, a, π0,i

∗ (s)[a]
)
−
∑
a∈A

π̂i∗(a
i | s)π̂−i∗ (a−i | s)Q̂i

(
s, a, π̂0,i

∗ (s)[a]
)]

≤ γ
[∑
a∈A

πi∗(a
i | s)π−i∗ (a−i | s)Q̄i

(
s, a, π0,i

∗ (s)[a]
)
−
∑
a∈A

πi∗(a
i | s)π̂−i∗ (a−i | s)Q̂i

(
s, a, π′0,i∗ (s)[a]

)]
≤ γ

[∑
a∈A

πi∗(a
i | s)π−i∗ (a−i | s)Q̄i

(
s, a, π′0,i∗ (s)[a]

)
−
∑
a∈A

πi∗(a
i | s)π̂−i∗ (a−i | s)Q̂i

(
s, a, π′0,i∗ (s)[a]

)]
≤ γ

[∑
a∈A

πi∗(a
i | s)π̂−i∗ (a−i | s)Q̄i

(
s, a, π′0,i∗ (s)[a]

)
−
∑
a∈A

πi∗(a
i | s)π̂−i∗ (a−i | s)Q̂i

(
s, a, π′0,i∗ (s)[a]

)]
≤ γ‖Q̄i(s)− Q̂i(s)‖∞, (A.6)

15

where the second inequality uses the definition of the equilibrium, with π′0,i∗ (s) denoting the mini-
mizer of Q̂i(s) corresponding to πi∗; the third inequality is due to that for fixed π1

∗(· | s) and π2
∗(· | s),

π0,i
∗ (s) is the minimizer; the fourth inequality uses the second property of Assumption 4.3; the last

inequality follows by the definition of ‖ · ‖∞-norm. Both (A.5) and (A.6) lead to a γ-contraction in
‖ · ‖∞ norm.

Case 2: PitQ̄i(s) ≤ PitQ̂i(s). Similar arguments apply for this case, which are omitted here for
brevity.

Note that for both cases, the γ-contraction result holds for any s ∈ S , which completes the proof.

Let Q̄i = [Q̄i(s)]s∈S for any Q̄i. Then Lemma A.1 means that ‖PitQ̄i−PitQ̄i∗‖∞ ≤ γ‖Q̄i− Q̄i∗‖∞
for any Q̄i. In sum, the operator Pt satisfies both conditions: i) it is a contraction mapping; ii) Q̄i∗
is a fixed point of Q̄i∗ = E(PitQ̄i∗) for i = 1, 2. By Lemma 8 in [25] (also Corollary 5 in [49]), we
know that {(Q̄1

t , Q̄
2
t)} converges to {(Q̄1

∗, Q̄
2
∗)}, which concludes the proof.

The convergence to the Q-value at the equilibrium further proves the convergence to the equilibrium
policies, which are obtained based on the Q-value estimate Q̄t = (Q̄1

t , · · · , Q̄Nt) at iteration t, by
solving(

πi∗,t(· | s), π
0,i
∗,t(s)

)
∈ argmax

πi(· | s)
min
π0,i(s)

∑
a∈A

πi(ai | s)
∏
j 6=i

πj∗(a
j | s)Q̄it

(
s, a, π0,i(s)[a]

)
,

where π0,i(s)[a] is the a-th element of the output vector π0,i(s)[a].

B Policy Gradient Theorem in Robust MARL

We now prove the policy gradient theorem in robust MARL, as previously stated in Lemma 3.1.
For completeness, we here derive a more general version of the theorem, allowing both the reward
function and transition probability distribution being parametrized. We first introduce θ0,0 to be the
parameter of the transition model Pθ0,0 , making the joint policy to be π̃θ := (πθ0 , πθ1 , · · · , πθN),
with parameter θ = (θ0, θ1, · · · , θN) and θ0 := (θ0,0, θ0,1, · · · , θ0,N). We can then define the return
objective of each agent i under the joint policy π̃θ as J i(θ) := V̄ iπ̃θ (s

′), where the value function V̄ iπ̃θ
satisfies

V̄ iπ̃θ (s) =
∑
a∈A

N∏
j=1

πθj (a
j | s)

(
πθ0,i(s)[a] + γ

∑
s′∈S

Pθ0,0(s′ | s, a)V̄ iπ̃θ (s
′)

)
, (B.1)

in contrast to (3.4) without transition parametrization. Similarly one can define the Q-value function
under the joint policy π̃θ, denoted by Q̄iπ̃θ . We then state the complete version as follows.

Lemma B.1 (Policy Gradient Theorem in Robust MARL). For each agent i = 1, · · · , N , the policy
gradient of the objective J i(θ) with respect to the parameter θ has the following form:

∇θiJ i(θ) = Es∼ρs0πθ ,a∼πθ(· | s)
[
∇ log πθi(a

i | s)Q̄iπ̃θ (s, a)
]
, (B.2)

∇θ0,iJ i(θ) = Es∼ρs0πθ ,a∼πθ(· | s)
[
∇πθ0,i(s)[a]

]
, (B.3)

∇θ0,0J i(θ) = Es∼ρs0πθ ,a∼πθ(· | s),s′∼Pθ0,0 (· | s,a)

[
γ∇ logPθ0,0(s′ | s, a) · V̄ iπ̃θ (s

′)
]
, (B.4)

where πθ(a | s) :=
∏N
j=1 πθj (a

j | s), ρs0πθ (s) :=
∑∞
t=0 γ

t· Pr(s0 → s, t, πθ) is the discounted state
visitation measure under joint policy πθ with state starting from s0, with Pr(s→ s′, t, πθ) denoting
the probability of transitioning from s to s′ under joint policy πθ with t-steps, and πθ0,i(s)[a] is the
a-th element of the output of πθ0,i(s).

Proof. Note that J i(θ) can be viewed as the standard value in Markov games with reward function
Ri(s, a) = πθ0,i(s)[a]. Thus, the form of (B.2) follows by the derivation in either [13, Eq. (4)] or
[15, Theorem 3.1].

16

Moreover, taking gradient with respect to θ0,i for i ∈ N on both sides of (B.1) yields

∇θ0,i V̄ iπ̃θ (s) =
∑
a∈A

πθ(a | s)
(
∇πθ0,i(s)[a] + γ

∑
s′∈S

P (s′ | s, a) · ∇θ0,i V̄ iπ̃θ (s
′)

)
=
∑
a∈A

πθ(a | s)
[
∇πθ0,i(s)[a] + γ

∑
s′∈S

P (s′ | s, a) ·
∑
a′∈A

πθ(a
′ | s′)(

∇πθ0,i(s′)[a′] + γ
∑
s′′∈S

P (s′′ | s′, a′) · ∇θ0,i V̄ iπ̃θ (s
′′)

)]
= Ea∼πθ(· | s)

[
∇πθ0,i(s)[a]

]
+ γ

∑
s′∈S

Pr(s→ s′, 1, πθ)Ea′∼πθ(· | s′)
[
∇πθ0,i(s′)[a′]

]
+ γ2

∑
s′′∈S

Pr(s→ s′′, 2, πθ) · ∇θ0,i V̄ iπ̃θ (s
′′), (B.5)

where the second equation follows by unrolling∇θ0,i V̄ iπ̃θ (s
′). By keeping unrolling (B.5), we have

∇θ0,i V̄ iπ̃θ (s) =
∑
s′∈S

∞∑
t=0

γtPr(s→ s′, t, πθ) · Ea′∼πθ(· | s′)
[
∇πθ0,i(s′)[a′]

]
=
∑
s′∈S

ρsπθ (s
′) · Ea′∼πθ(· | s′)

[
∇πθ0,i(s′)[a′]

]
, (B.6)

which implies the formula in (B.3).

Finally, taking gradient with respect to θ0,0 on both sides of (B.1), we have

∇θ0,0 V̄ iπ̃θ (s) = γ
∑
a∈A

πθ(a | s)
∑
s′∈S

(
∇θ0,0Pθ0,0(s′ | s, a) · V̄ iπ̃θ (s

′) + Pθ0,0(s′ | s, a) · ∇θ0,0 V̄ iπ̃θ (s
′)

)
=
∑
a∈A

πθ(a | s)
[
γ
∑
s′∈S
∇θ0,0Pθ0,0(s′ | s, a) · V̄ iπ̃θ (s

′) + γ
∑
s′∈S

Pθ0,0(s′ | s, a) · ∇θ0,0 V̄ iπ̃θ (s
′)

]
=
∑
a∈A

πθ(a | s)
[
γ
∑
s′∈S
∇θ0,0Pθ0,0(s′ | s, a) · V̄ iπ̃θ (s

′) + γ
∑
s′∈S

Pθ0,0(s′ | s, a) ·
∑
a′∈A

πθ(a
′ | s′)(

γ
∑
s′′∈S

∇θ0,0Pθ0,0(s′′ | s′, a′) · V̄ iπ̃θ (s
′′) + γ

∑
s′′∈S

Pθ0,0(s′′ | s′, a′) · ∇θ0,0 V̄ iπ̃θ (s
′′)

)]
= Ea∼πθ(· | s),s′∼Pθ0,0 (· | s,a)

[
γ∇ logPθ0,0(s′ | s, a) · V̄ iπ̃θ (s

′)
]

+ γ
∑
s′∈S

Pr(s→ s′, 1, πθ) · Ea′∼πθ(· | s′),s′′∼Pθ0,0 (· | s′,a′)
[
γ∇ logPθ0,0(s′′ | s′, a′) · V̄ iπ̃θ (s

′′)
]

+ γ2
∑
s′′∈S

Pr(s→ s′′, 2, πθ) · ∇θ0,0 V̄ iπ̃θ (s
′′). (B.7)

By keeping unrolling (B.7), we have
∇θ0,0 V̄ iπ̃θ (s)

=
∑
s′∈S

∞∑
t=0

γtPr(s→ s′, t, πθ) · Ea′∼πθ(· | s′),s′′∼Pθ0,0 (· | s′,a′)
[
γ∇ logPθ0,0(s′′ | s′, a′) · V̄ iπ̃θ (s

′′)
]

=
∑
s′∈S

ρsπθ (s
′) · Ea′∼πθ(· | s′),s′′∼Pθ0,0 (· | s′,a′)

[
γ∇ logPθ0,0(s′′ | s′, a′) · V̄ iπ̃θ (s

′′)
]
, (B.8)

which implies the policy gradient with respect to θ0,0 and completes the proof.

More specifically, for simplicity, suppose the uncertainty of the transition Pθ0,0(· | s, a) is parameter-
ized as that for any (s, a),

Pθ0,0(· | s, a) = µ · P pert

θ0,0 (· | s, a) + (1− µ) · P (· | s, a),

17

Algorithm 1 Actor-Critic for Robust Multi-Agent RL (Robust-MADDPG):

1: Initialization of Q-value parameters {ωi0}i∈N , and policy parameters {θi0}i∈N and θ0
0 :=

{θ0,i
0 }i∈N .

2: for episode = 1 to M do
3: Receive an initial state s
4: for t = 1, · · ·T do
5: For each agent i, sample action ai ∼ πθit with current policy πθit
6: Execute joint a = (a1, · · · , aN), and observe new state s′
7: Each agent i also receives a reward with uncertainty r̄i
8: Store (s, a, r̄i, s′) for each i in replay buffer D, let s′ ← s
9: for agent i = 1 to N do

10: Sample a random mini-batch of S samples of (st, at, r̄
i
t, st+1) from D

11: Set

yt = πθ′0,i(st)[at] + γQ̄ω′i(st+1, a
1
t+1, · · · , aNt+1)

∣∣
ait+1∼πθ′i (· | st+1)

,

12: Update critic by minimizing the loss L(ωi) = 1
S

∑S
t=1

(
yt − Q̄ωi(st, at)

)2
13: Update actor using the sampled policy gradient

∇θiJ i(θ) ≈
1

S

S∑
t=1

∇πθi(ait | st)∇aiQ̄ωi(st, a1
t , · · · , ai, · · · , aNt) | ai=πθi (st),

θ′i = (1− τ)θi + τ∇θiJ i(θ)

∇θ0,iJ i(θ) ≈
1

S

S∑
t=1

∇πθ0,i(st)[at] + η

S∑
t=1

∇
(
πθ0,i(st)[at]− r̄it

)2
,

θ′0,i = (1− τ)θ0,i + τ∇θ0,iJ i(θ)

14: end for
15: end for
16: end for

where µ ∈ [0, 1] denotes the uncertainty level, and P pert

θ0,0 (· | s, a) is some perturbation of the transition,
which is parameterized by θ0,0. In this case, (B.8) becomes
∇θ0,0 V̄ iπ̃θ (s)

=
∑
s′∈S

ρsπθ (s
′) · Ea′∼πθ(· | s′)

[∑
s′′∈S

γµ · ∇P pert

θ0,0 (s′′ | s′, a′) · V̄ iπ̃θ (s
′′)

]
=
∑
s′∈S

ρsπθ (s
′) · Ea′∼πθ(· | s′),s′′∼Pθ0,0 (· | s′,a′)

[
γµ · ∇ logP

pert

θ0,0 (s′′ | s′, a′) · V̄ iπ̃θ (s
′′)

]
︸ ︷︷ ︸

can be sampled without knowing the model

, (B.9)

which might be easier to implement in simulations.

Proof of Lemma 3.1:

The results can be obtained from Lemma B.1 by simply fixing Pθ0,0 as P , and re-defining the
corresponding Q-value and state-value functions following (3.5) and (3.4) instead.

C Actor-Critic for Robust MARL

As also stated in [13], if working with deterministic policies, one can write the first gradient in
Lemma 3.1 as:

∇θiJ i(θ) = Es,a∼D
[
∇πθi(ai | s)∇aiQ̄iπ̃θ (s, a) | ai=πθi (s)

]
, (C.1)

where D is the replay buffer containing the samples (s, a1, · · · , aN , s′, r̄1
s , · · · , r̄Ns) collected from

experiences of all agents. We consider the deterministic policies in our experiments, and use (C.1)

18

agent 1
agent 2

agent 3

agent

adversary
?

agent 1

agent 3

adversary

predator 1

predator 2

prey

agent 2

?

Figure 4: The particle environments used in our experiments. From left to right: “cooperative
navigation”, “keep-away”, “physical deception”, and “predator-prey”. The figure is based on [13].

when developing our Robust-MADDPG method, as stated in Algorithm 1. Note that the minimization
in line 12 in Algorithm 1 can be solved by any non-convex optimization solvers, or by just several
iterations of gradient steps w.r.t. ωi. In addition, in the second update (nature policy update) of Line
13, we add another term to restrict the nature policy output in the uncertainty set.

D Environments

We use the similar particle environments as in [13], where there is a two-dimensional world with
continuous space and discrete time. The agents can only perform physical actions. More specifically,
we consider the following four environments. One can also refer to Figure 4 for graphical illustrations
of the experimental scenarios.

Cooperative navigation. In this cooperative environment, N agents collaborate to occupy N
landmarks. Each agent observes the relative positions of other agents and landmarks. Moreover,
agents are rewarded based on the minimum distance of any agent from each landmark, and are
penalized if they collide with other agents.

Keep-away. The fully competitive environment consists of L landmarks including a target land-
mark, an agent who knows the target, and an adversarial agent whose goal is to push the agent away
from the target. The loss of the agent is the distance to the target landmark, and the adversary is
rewarded by occupying the goal while keeping the agent away, although the adversary does not know
the correct target. This must be inferred from the agent’s movements.

Physical deception. This mixed cooperative-competitive environment has N landmarks with a
target landmark. An adversarial agent has no information about the target landmark, but attempts to
find out and occupy it. The reward of adversary is simply based on how close it is to the target. In
addition, another N agents are trying to ‘deceive’ the adversary by cooperatively reaching the target
while also occupying other landmarks. The agents are rewarded by how close the nearest one is from
the target landmark, and also penalized by the distance of the adversary to the target.

Predator-prey. In this scenario, N slower cooperating predators aim to hit a faster prey agent
around the world with L randomly generated obstacle landmarks that block the way. Predators get
rewards every time one of them touches the prey, and the prey gets penalized in the mean time. Each
agent observes the relative positions and velocities of other agents and positions of the obstacles.

E Implementation Detail

We implemented Robust-MADDPG in PyTorch based on the source code of Recurrent MADDPG5.
We also re-implemented M3DDPG based on its authors’ source code6. All actors, critics, and the
nature actors use the same two-layer MLP architecture. Each agent either knows other agents’ actors
or needs to approximate them during learning. In our experiments, we reported the results assuming
each agent knows all the other actors. Since some environments are intrinsically more difficult than

5https://github.com/nicoring/rec-maddpg
6https://github.com/dadadidodi/m3ddpg

19

others, we adopt different numbers of training episodes to allow for convergence. For keep-away
and physical deception, we trained for 50K episodes. For cooperative navigation and predator-prey,
we trained for 100K episodes. All experiments were run on AWS EC2 p3.x16 instances where each
100K training episodes job took about 5-5.5 hours. We used the default hyperparameters in the source
code. One new hyperparameter we added is the MSE weight η in Line 13 of the algorithm. When η
is low (such as 0.001 or 0.01), the MSE part weights too little and cannot constrain the nature policy
to fall into the uncertainty set. After tuning, we found η = 0.1 ∼ 1 is generally a good range but we
want to emphasize it is task-dependent.

20

