
We thank all reviewers for their helpful feedback. Below we address the questions and comments individually.1

R1,R2,R3 - Writing. We will correct typos in the main text and bibliography, and refer to Figure 1 in the introduction.2

R1 - Finite Data Analysis. We remark that: (i) while our results are asymptotic in nature, our experiments showed3

that they give accurate description of the prediction risk for dataset with moderate size, as demonstrated in Figure 24

(n = 300); (ii) we believe that similar to previous works on double descent, our asymptotic characterization can be5

translated to non-asymptotic guarantees using standard concentration tools.6

R1 - Definition of “Same Order”. We apologize for the confusion. As we specify a joint relation between covariances,7

we use the term “order” to describe the increasing or decreasing trend of a vector, i.e. “same order” of a and b implies8

ai ≥ aj iff bi ≥ bj for all i,j. When Σx, Σβ are codiagonalizable, “same order” of eigenvalues suggests that the features9

are informative (learning is “easy”); this is analogous to a fast eigenvalue decay of the RKHS “source condition”.10

R1 - Extension to Neural Network. We believe that our analysis can be extended to neural nets that are well-described11

by a kernel or random features model (which is linear regression under different features). This includes a two-layer12

network with fixed 1st layer (RF model), or with trained 1st layer under overparameterization (the NTK model).13

R2 - Novelty & Comparison with [1]. We thank the reviewer for mentioning this reference – we were not aware of14

this work (which is arxived in May) at the time of submission. However, we believe that the reviewer has misjudged the15

relation and overlap between [1] and our work. We first note that computing the prediction risk is only a small part of16

our contribution; we also provided precise characterization of the optimal ridge parameter and weighting matrix. More17

importantly, the setup and theory in [1] are quite different than and do not produce our results. In particular:18

• [1] may not cover the case when λ ≤ 0. When the regularization strength λ is negative, it is not guaranteed that19

limit of VAMP exists due to non-convexity of the objective in the overparameterized regime. Even if we assume20

VAMP converges for all λ and estimation of generalization error is accurate, it is still not clear that VAMP converges21

to the specific ridge solution studied in our paper when λ is negative or 0 (which corresponds to minimum `222

norm solution), since it is possible that the SE has multiple fixed points when λ ≤ 0. We remark that establishing23

convergence and uniqueness can also be challenging for analysis based on the Convex Gordon Min-max Theorem.24

• The VAMP framework does not capture our “aligned” or “misalgined” cases. The key assumption in the VAMP25

analysis in [1] is that the limiting distribution of β?i , the components of the true signal, is independent to that of the26

features. As a result, random permutation of β?i does not effect the generalization error of the VAMP estimate. This27

corresponds to the “random order” case in our setup, for which we showed that the corresponding optimal ridge28

parameter is always non-negative1. In contrast, we specified a general joint distribution between the eigenvalues of29

Σx and the components of d̄β (See exact definition in paper). As demonstrated in Figure 2, different joint distribution30

leads to different generalization error even when the limiting spectral distributions of Σx and Σβ are the same. It is31

precisely this extension that enables us to explain the “negative ridge” phenomenon.32

• The analysis in [1] alone cannot characterize the optimal ridge parameter and weighting matrix. As mentioned33

above, the optimal ridge parameter is always non-negative under the assumption in VAMP (it is also not true that SE34

can always be simplified to exact expressions.). Furthermore, we decided the optimal weighting matrix for optimal λ35

or the bias and variance term separately, and also covered the case when it only depends on feature covariance.36

R3 - Optimal Choice of Weighting Matrix. We provide the following clarification and comments on the optimal Σw.37

• The data covariance Σx considered in Section 6 is the population covariance matrix, not the empirical covariance38

(which is degenerate when γ > 1). While it can be difficult to determine Σx from labeled data alone, the quantity39

can be estimated from additional unlabeled data (i.e., a semi-supervised setting2). We agree with the reviewer that40

designing a weighting matrix solely based on the empirical covariance is an interesting problem.41

• We agree that interpolating between weighting matrices is an intuitive strategy: Figure 4 and 5 consider various42

powers of data covariance (Σα
x for different α), which can be seen as a geometric interpolation between Ip and Σx.43

• As mentioned in the paragraph starting from line 251, given the data covariance, a reasonable decision rule is to44

construct the weighting matrix based on certain polynomial transformations to Σx, the parameter of which can be45

tuned via cross validation. Figure 5 and 8 show that such approach does indeed outperform standard ridge regression.46

R3 - On Assumption 2. We agree with the reviewer that assumption 2 does not cover all possible weighting matrices.47

We remark that this assumption is not needed in our risk calculation, but only in the characterization of optimal48

weighting matrix (for convenient formulas). In addition, it is worth noting that similar codiagonalizability assumptions49

is not uncommon in the theoretical study of regression models. For instance, the standard source condition in RKHS50

regression is analogous to codiagonalizable Σx and Σβ with certain eigenvalue decay in our setup.51

1This partially justifies the restriction to non-negative λ in the VAMP framework.
2For example see: Tony Cai, T., and Zijian Guo. "Semisupervised inference for explained variance in high dimensional linear

regression and its applications." Journal of the Royal Statistical Society: Series B.


