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Abstract

Machine learning pipelines often rely on optimization procedures to make discrete
decisions (e.g., sorting, picking closest neighbors, or shortest paths). Although
these discrete decisions are easily computed, they break the back-propagation
of computational graphs. In order to expand the scope of learning problems
that can be solved in an end-to-end fashion, we propose a systematic method
to transform optimizers into operations that are differentiable and never locally
constant. Our approach relies on stochastically perturbed optimizers, and can be
used readily together with existing solvers. Their derivatives can be evaluated
efficiently, and smoothness tuned via the chosen noise amplitude. We also show
how this framework can be connected to a family of losses developed in structured
prediction, and give theoretical guarantees for their use in learning tasks. We
demonstrate experimentally the performance of our approach on various tasks.

1 Introduction

Many applications of machine learning benefit from the possibility to train by gradient descent com-
positional models using end-to-end differentiability. Yet, there remain fields where discrete decisions
are required at intermediate steps of a data processing pipeline (e.g., in robotics, graphics or biology).
This is the result of many factors: discrete decisions provide a much sought-for interpretability,
and discrete solvers are built upon decades of advances in combinatorial algorithms [47] for quick
decisions (e.g., sorting, picking closest neighbors, exploring options with beam-search, or with
shortest paths problems). These discrete decisions can easily be computed in a forward pass. Their
derivatives with respect to inputs are however degenerate: small changes in the inputs either yield no
change or discontinuous changes in the outputs. Discrete solvers thus break the back-propagation of
computational graphs, and cannot be incorporated in end-to-end learning.

In order to expand the set of operations that can be incorporated in differentiable models, we
propose and investigate a new, systematic method to transform discrete optimizers into differentiable
operations. Our approach builds upon the method of stochastic perturbations, the theory of which
was developed and applied to several tasks of machine learning recently; see [27]. In a nutshell, we
perturb the inputs of a discrete solver with random noise, and consider the perturbed solutions of
the problem. The method is both easy to analyze theoretically and simple to implement. We show
that the formal expectations of these perturbed solutions are never locally constant and everywhere
differentiable, with successive derivatives being expectations of simple expressions.
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Related work. Our work is part of growing efforts to modify operations to make them differentiable.
Several works have studied the introduction of regularization in the optimization problem to make the
argmax differentiable. These works are usually problem-specific, since a new optimization problem
needs to be solved. Examples include assignments [3], optimal transport [11, 17], differentiable
dynamic programming [36], differentiable submodular optimization [19], ranking [18, 10], and top-k
[56, 5, 31]. A generic approach is SparseMAP [38], based on Frank-Wolfe or active-set algorithms for
solving, and on implicit differentiation for Jacobian computation. Like our proposal, SparseMAP only
requires access to a linear maximization oracle. However, it is sequential in nature, while our approach
is trivial to parallelize. In [42], a related approach is proposed, with squared euclidean regularization
on the probability space (rather than the mean space). To solve some computational difficulties
on projecting on such a large space, top-k oracles are leveraged. In [4], implicit differentiation on
solutions of convex optimization is analyzed. They express the derivatives of the argmax exactly,
leading to zero Jacobian almost everywhere when optimizing over polytopes. A possible perspective
on efforts to handle discrete operators is to consider on one hand changes to the loss function, such
as the max-margin loss [51, 20] used in recent architectures [46]; and on the other hand gradient
estimation, through a proxy of the operator that often relies on regularization or perturbation. Our
proposition uses stochastic perturbations. As part of the latter, Vlastelica et al. [54] propose to
interpolate in a piecewise-linear manner between locally constant regions. The aim is to keep the
same value for the Jacobian of the argmax for a large region of inputs, allowing for zero Jacobians
as well. In subsequent work, this has been coupled with improvement on loss functions in specific
applications [44, 45]. Our work provides contribution to both these approaches.

An example of expectation of a perturbed argmax, commonly known as the “Gumbel trick”, dates
back to Gumbel [23], and random choice models [33, 35, 22]. It is exploited in online learning and
bandits to promote exploration, and induce robustness to adversaries (see, e.g., [2] for a survey). It is
used for action spaces that are combinatorial in nature [37], used together with a softmax to obtain
differentiable sampling [29, 34], to learn parsing trees in a differentiable fashion [15, 16] and with
distributions from extreme value theory [7].

The use of perturbation techniques as an alternative to MCMC techniques for sampling was pioneered
by Papandreou & Yuille [40]. They are used to compute expected statistics arising in gradients
of conditional random fields. They show exactness for the fully perturbed (but intractable case)
and propose “low-rank” perturbations as an approximation. These results are extended in [25],
proving that the expected maximum with low-rank perturbations provides an upper-bound on the log
partition, and replacing the log partition in conditional random fields loss by that expectation. Their
results, however, are limited to discrete product spaces. New lower bounds on the partition function
are derived in [26], as well as a new unbiased sequential sampler for the Gibbs distribution based
on low-rank perturbations. These results were further refined in [21] and [39], and these bounds
further studied in [49], who proposed a doubly stochastic scheme. Apart from [32], who use a finite
difference method, we are not aware of any prior work using perturbation techniques to differentiate
through an argmax. As reviewed above, all papers focus on (approximately) sampling from the
Gibbs distribution, upper-bounding the log partition function, or differentiating through the max.

Contributions. We make the following contributions:

- We propose a new general method transforming discrete optimizers, inspired by the stochastic pertur-
bation literature. This versatile method applies to any blackbox solver without ad-hoc modifications.

- Our stochastic smoothing allows argmax differentiation, through the formal perturbed maximizer.
Its Jacobian is well-defined and non-zero everywhere, thereby avoiding vanishing gradients.

-The successive derivatives of the perturbed maximum and argmax are expressed as simple expecta-
tions, which are easy to approximate with Monte-Carlo methods.

- Our method yields natural connections to the recently-proposed Fenchel-Young losses by Blondel
et al. [9]. We show that the equivalence via duality with regularized optimization makes these losses
natural. We propose a doubly stochastic scheme for their minimization in learning tasks, and we
demonstrate our method on structured prediction tasks, in particular ranking (permutation prediction),
for which conditional random fields and the Gibbs distribution are intractable.
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2 Perturbed maximizers
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Figure 1: Stochastic smoothing yields a per-
turbed optimizer y˚ε in expectation.

Given a finite set of distinct points Y Ă Rd and C
its convex hull, we consider a general discrete
optimization problem parameterized by an input
θ P Rd as follows:

F pθq “ max
yPC

xy, θy , y˚pθq “ arg max
yPC

xy, θy .

(1)
As we discuss below, this formulation encom-
passes a variety of discrete operations commonly
used in machine learning. In all cases, C is a
convex polytope and these problems are linear
programs (LP). For almost every θ, the argmax
is unique, and y˚pθq “ ∇θF pθq. While widespread, these functions do not have the convenient
properties of blocks in end-to-end learning architectures, such as smoothness or differentiability. In
particular, θ ÞÑ y˚pθq is piecewise constant: its gradient is zero almost everywhere, and undefined
otherwise. To address these issues, we simply add to θ a random noise vector εZ, where ε ą 0 is a
temperature parameter and Z has a positive and differentiable density dµpzq9 expp´νpzqqdz on Rd,
so that y˚pθ` εZq is almost surely (a.s.) uniquely defined. This induces a probability distribution pθ
for Y P Y given by pθpyq “ P py˚pθ ` εZq “ yq; see Figure 1.

This creates a general and natural model on the variable Y , when observations are solutions of
optimization problems, with uncertain costs. It enables the modeling of phenomena where agents
chose an optimal y P C based on uncertain knowledge of θ. We view this as a generalization, or
alternative to the Gibbs distribution, rather than an approximation thereof.

Taking expectations with respect to the random perturbation leads to smoothed versions of F and y˚:
Definition 2.1. For all θ P Rd, and ε ą 0, we define the perturbed maximum as

Fεpθq “ ErF pθ ` εZqs “ ErmaxyPC xy, θ ` εZys,

and, the perturbed maximizer as

y˚ε pθq “ EpθpyqrY s “ Erarg max
yPC

xy, θ ` εZys “ Er∇θ max
yPC

xy, θ ` εZys “ ∇θFεpθq .

Models of random optimizers for linear problems with perturbed inputs are the subject of a wide
litterature in machine learning, under the name of “perturb-and-MAP” [40, 25], and perturbed leader
method in online learning [24, 30, 1]. We refer to it here as the perturbed model.

Broad applicability. Many operations used in machine learning can be written in the form of
Eq. (1) and are thus part of our framework. Indeed, for any score function s : Y Ñ R, the problem
maxyPY spyq, can at least be written as a linear program (LP) in Eq. (1), for some embedding of the
set Y . We emphasize that the LP structure need not be known to use the perturbed maximizers. In
our experiments, we focus on the following three tasks (see Appendix B for more examples).

Maximum. The max function from Rd to R, that returns the largest among the d entries of a vector
θ is commonly used for d-way multiclass classification. It is equal to F pθq over the unit simplex
C “ ty P Rd : y ě 0 , 1Jy “ 1u. The computational cost is Opdq. On this set, using Gumbel noise
yields the Gibbs distribution for pθ (see below).

Ranking. The function returning the ranks (in descending order) of a vector θ P Rd can be written
as the argmax of a linear program over the permutahedron, the convex hull of permutations of any
vector v with distinct entries C “ Pv “ cvxtPσv : σ P Σdu. The computational cost is Opd log dq,
using a sort.

Shortest paths. For a graph G “ pV,Eq and positive costs over edges c P RE , the problem of finding
a shortest path (i.e., with minimal total cost) from vertices s to t can be written in our setting with
θ “ ´c and C “ ty P RE : y ě 0 , p1Ñi ´ 1iÑq

Jy “ δi“s ´ δi“tu. The computational cost is
Op|V |2q, using Dijkstra’s algorithm.

A generalization of Gumbel-max. An example of this setting is well-known: when Y is the set
of one-hot-encoding of d classes, C is the unit simplex, and Z has the Gumbel distribution [23].
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In that case it is well-known that pθ is the Gibbs distribution, proportional to exppxy, θy{εq, Fεpθq
is the log-sum-exp function of θ, and y˚ε pθq is the vector of softmax (or exponential weights) of
the components of θ. Our model is therefore a generalization of the Gumbel-max setting. As Fε
generalizes the log-sum-exp function for Gumbel noise on the simplex, its dual Ω is a generalization
of the negative Shannon entropy (which is the Fenchel dual of the log-sum-exp function). We show
this connection, and that the perturbed maximizer can also be defined as the solution of a convex
problem (by Fenchel-Rockafellar duality) in Proposition 2.1 below. The following table summarizes
those parallels. Our framework generalizes these ideas, and proposes to exploit the ease of simulation
of pθ (rather than the explicit forms of Gibbs distributions) for applications in machine learning tasks.

Gumbel-max General perturbed optimizer

noise distribution Zi independent Gumbel Z „ µ, general random

domain C unit simplex ∆n general polytope: cvxpYq
argmax distribution pGibbs,θ9 exppxy, θy{εq pθ, no closed form

expectation of maximum log-sum-exp of θ general Fεpθq

convex regularizer Shannon negentropy general Ω “ pFεq
‹

As pointed out in the remark above, the link between perturbation and regularization extends to
our setting, and the perturbed maximizer can always be expressed as a regularized maximizer (see
Proposition 2.1 below). This formulation, and the properties of the convex regularizer Ω yield some
of the properties in Proposition 2.2 and 2.3, as well as the link with structured losses.

Proposition 2.1. Let Ω be the Fenchel dual of F1, with domain C. We have that
y˚ε pθq “ arg max

yPC

 

xy, θy ´ εΩpyq
(

. (2)

Differentiation and associated loss function. While these connections have been studied before
[27, 1, 2], we provide two key new insights. First, the perturbed model allows to take derivatives with
respect to the input θ of Fε and of y˚ε (Proposition 2.2). These derivatives are also easily expressed as
expectations involving F and y˚ with noisy inputs, as discussed in Section 3. In turn, this yields fast
computational methods for these functions and their derivatives. Second, by the duality point of view
describing y˚ε as a regularized maximizer, there exists a natural convex loss for this model that can be
efficiently optimized in θ, for data yi P Y . We describe this formalism in Section 4, and apply it in
experiments in Section 5.

Properties of the model. This model modifies the maximum and maximizer by perturbation.
Because of the simple action of the stochastic noise , we can analyze their properties precisely.
Proposition 2.2. Assume C is a convex polytope with non-empty interior, and µ has positive differen-
tiable density. The perturbed model pθ and the associated functions Fε, Ω “ pFεq

‹, and y˚ε have the
following properties, for RC “ maxyPC }y} and Mµ “ Er}∇zνpZq}2s1{2:

- Fε is strictly convex, twice differentiable, RC-Lipschitz-continuous and its gradient is RCMµ{ε-
Lipschitz-continuous. Its dual Ω is 1{pRCMµq-strongly convex, differentiable, and Legendre-type.

- For all θ P Rd, y˚ε pθq is in the interior of C and y˚ε is differentiable in θ.

- Impact of ε ą 0: we have Fεpθq “ εF1

`

θ
ε

˘

, F˚ε pyq “ εΩpyq, y˚ε pθq “ y˚1
`

θ
ε

˘

.

We develop in further details the simple expressions for derivatives of Fε and y˚ε in Section 3. By this
proposition, since Fε is strictly convex, it is nowhere locally linear, so y˚ε is nowhere locally constant.
Formally, Fε is a mirror map, its gradient is a one-to-one mapping from Rd unto the interior of C.
The gradient of εΩ is its functional inverse, by convex duality between these functions (see, e.g.,
surveys [55, 12] and references therein).
Remark 1. For these properties to hold, it is crucial that C has non-empty interior, i.e., that Y does
not lie in an affine subspace of lower dimension. To adapt to cases where C lies in a subspace, we
consider the set of inputs θ up to vectors orthogonal to C, or represent Y in a lower-dimensional
subspace. As an example, over the unit simplex and Gumbel noise, the log-sum-exp is not strictly
convex, and in fact linear along the all-ones vector 1. In such cases, the model is only well-specified
in θ up to the space orthogonal to C, which does not affect prediction tasks.
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For any positive temperature ε, these properties imply that there is an informative, well-defined, and
nonzero gradient in θ. They also imply the limiting behavior at extreme temperatures.
Proposition 2.3. With the conditions of Proposition 2.2, for θ such that y˚pθq is a unique maximum:

For εÑ 0, Fεpθq Ñ F pθq and y˚ε pθq Ñ y˚pθq. For εÑ8, y˚ε pθq Ñ y˚1 p0q “ arg minyPC Ωpyq.

For every ε ą 0, we have F pθq ´ Fεpθq ď Cε and xy˚pθq, θy ´ xy˚ε pθq, θy ď C 1ε, for C,C 1 ą 0.

The properties of the distributions pθ in this model are well studied in the perturbations literature
(see, e.g., [27] for a survey). They notably do not have a simple closed-form expression, but can be
very easy to sample from. By the argmax definition, simulating Y „ pθ, only requires to sample µ
(e.g., Gaussian, or vector of i.i.d. Gumbel), and to solve the original optimization problem. It is the
case in the applications we consider (e.g., max, ranking, shortest paths). This is in stark contrast to
the Gibbs distribution, which has the opposite properties.

3 Differentiation of soft maximizers

As noted above, for the right noise distributions, the perturbed maximizer y˚ε is differentiable in its
inputs, with non-zero Jacobian. It is based on integration by parts, not on finite differences as in [32].
Proposition 3.1. [2, Lemma 1.5] For noise Z with distribution dµpzq9 expp´νpzqqdz and twice
differentiable ν, the following holds (with Jθ y˚ε pθq the Jacobian matrix of y˚ε at θ):

Fεpθq “ ErF pθ ` εZqs , y˚ε pθq “ ∇θFεpθq “ Ery˚pθ ` εZqs “ ErF pθ ` εZq∇zνpZq{εs ,
Jθ y

˚
ε pθq “ Ery˚pθ ` εZq∇zνpZqJ{εs “ ErF pθ ` εZqp∇zνpZq∇zνpZqJ ´∇2

zνpZqq{ε
2s .

The derivatives are simple expectations. We discuss in the following subsection efficient techniques
to evaluate in practice y˚ε pθq and its Jacobian, or to generate stochastic gradients, based on these
expressions. Our method therefore provides automatically a smoothing of the function and an
unbiased stochastic estimate of the corresponding Jacobian, which is always non-zero. This can be
contrasted with methods relying on implicit differentiation or finite differences without smoothing,
that can lead to zero Jacobians, and does not require an ad hoc solver, as would be needed for
log-barrier approaches [48].
Remark 2. Being able to compute the perturbed maximizer and its Jacobian allows to optimize
functions that depend on θ through y˚ε pθq. This can be used to alter the costs to promote solutions
with certain desired properties. Moreover, in a supervised learning setting, this allows to train models
containing blocks with inputs θ “ gwpxq, for some feature vector x, by minimizing a loss ` between
the perturbed maximizer y˚ε pθq and the ground-truth y,

`py˚ε pθq, yq “ `py˚ε pgwpxqq, yq. (3)
For first-order methods, differentiating the above w.r.t. w requires not only the usual model-dependent
Jacobian Jwgwpxq, but also a gradient in the first argument of the loss `. If this block is a strict
discrete maximizer y˚, as noted above, the computational graph is broken during the backward pass:
the gradient provides no information for learning. However, with our proposed modification, we have
that the gradient of Eq. (3) w.r.t. θ is equal to

Jθ y
˚
ε pθq∇`py˚ε pθq, yq , (4)

where∇` is the gradient w.r.t. the first argument of `. Thus, the gradient can be fully backpropagated.
Perturbed maximizers can therefore be used in end-to-end prediction models, for any loss ` on the
perturbed maximizer. Furthermore, we describe in Section 4 a loss that can be directly optimized in θ
by first-order methods. It comes with a strong algorithmic advantage, as it requires only to compute
the perturbed maximizer and not its Jacobian.

Practical implementation. For any θ, the perturbed maximizer y˚ε pθq is a solution of a convex
optimization problem in Eq. (2), allowing computation if Ω has a simple form. More generally, by
their expressions as expectations, the perturbed maximizer and its Jacobian can be approximated with
Monte-Carlo methods. This only requires to efficiently sample from µ, and to solve LPs over C.
Definition 3.1. Given θ P Rd, let pZp1q, . . . , ZpMqq be M i.i.d. copies of Z and, for m “ 1, . . . ,M ,

ypmq “ y˚pθ ` εZpmqq “ arg maxyPCxy, θ ` εZ
pmqy .

A Monte-Carlo estimate ȳε,M pθq of y˚ε pθq is given by ȳε,M pθq “ 1
M

řM
m“1 y

pmq.
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Since Erypmqs “ y˚ε pθq for every m P t1, . . . ,Mu, by definition of pθ, it is an unbiased estimate of
y˚ε pθq. Note that the formulae in Proposition 3.1 give several manners to stochastically approximate
Fε, y˚ε , and their derivatives by using F pθ ` εZpmqq, y˚pθ ` εZpmqq and ∇zνpZpmqq and averages.
This yields unbiased estimates for Fε, y˚ε , and its Jacobian. The plurality of these formulae gives the
user several options for practical implementation. For both y˚ε and its Jacobian, we use the first one
presented in Proposition 3.1 for our applications.

A great strength of this method is the absence of conceptual or computational overhead. Further, even
though our analysis relies on the specific structure of the problem as an LP, these algorithms do not.
The Monte-Carlo estimates can be obtained by using a function y˚ as a blackbox, without requiring
knowledge of the problem or of the algorithm that solves it. For instance, for ranking, solving the LP
only involves a sort.

If y˚ε or its derivatives are used in stochastic gradient descent for training in supervised learning, a
full approximation of the gradients is not always necessary. Taking only M “ 1 (or a small number)
of observations is acceptable here, as the gradients are stochastic in the first place.

With parallelization and warm starts, we can alleviate the dependency in M of the running time: We
can independently sample the Zpmq and compute the ypmq “ y˚pθ` εZpmqq in parallel. On the other
hand, starting from a solution or near-solution (such as y˚pθq) as initialization can improve running
times dramatically, especially at lower temperatures. In our experiments on GPU, this led to running
times almost independent of M (for values up to 1000).

4 Perturbed model learning with Fenchel-Young losses

There is a large literature on learning parameters of a Gibbs distribution based on data pyiqi“1,...,n,
through maximization of the likelihood:
¯̀
npθq“

1
n

řn
i“1 log pGibbs,θpyiq“

1
n

řn
i“1xyi, θy´logZpθq with ∇θ ¯̀

npθq“
1
n

řn
i“1 yi´EGibbs,θrY s.

(5)
The expression of the gradient justifies the name of moment-matching procedures. The expectation
of the Gibbs is however hard to evaluate in some cases. For instance, for permutation problems, it is
known to be #P-hard to compute [52, 50]. This motivates its replacement by pθ (perturb-and-MAP in
this literature), and to use this method as a proxy for log-likelihood to learn the parameters [40].

We show here that this approach can be formally analyzed by the use of Fenchel-Young losses [8] in
this context. It is equivalent to maximizing a term akin to Eq. (5), substituting the log-partition Zpθq
with Fεpθq. The use of these losses also drastically improves the algorithmic aspects of the learning
tasks, by the specific expression of the gradients of the loss.
Definition 4.1. In the perturbed model, the Fenchel-Young loss Lεp¨ ; yq is defined for θ P Rd by

Lεpθ ; yq “ Fεpθq ` εΩpyq ´ xθ, yy .

It is nonnegative, convex in θ, and minimized with value 0 if and only if θ is such that y˚ε pθq “ y.
It is equal to the Bregman divergence associated to εΩ, i.e., Lεpθ ; yq “ DεΩpy, ŷ

˚
ε pθqq. As θ

and y interact in this loss only through a scalar product, for random Y we have ErLεpθ;Y qs “
Lεpθ;ErY sq ` C, where C does not depend on θ. This is particularly convenient in analyzing the
performance of Fenchel-Young losses in generative models. The gradient of the loss is

∇θLεpθ ; yq “ ∇θFεpθq ´ y “ y˚ε pθq ´ y .

The Fenchel-Young loss can therefore be interpreted as a loss in θ that is a function of y˚ε pθq.
Moreover, it can be optimized in θ with first-order methods simply by computing the soft maximizer,
without having to compute its Jacobian. It is therefore a particular case of the situation described in
Eq.(3) and (4), allowing to even bypass virtually the perturbed maximizer block in the output, and to
directly optimize a loss between observation y and model outputs θ “ gwpxq. An interesting, yet
perhaps counter-intuitive aspect of this approach is that the Fenchel–Young loss can be optimized
with gradients, without being computed (which requires to also solve an optimization problem).

Supervised and unsupervised learning. As described in Remark 2, given observations
pxi, yiq1ďiďn P Xn ˆ Yn, we can fit a model gw such that y˚ε pgwpxiqq « yi. The Fenchel-Young
loss between gwpxiq and yi is a natural way to do so

Lε,emppwq “
1
n

řn
i“1 Lεpgwpxiq ; yiq , motivated by model yi “ arg maxyPC xgw0

pxiq`εZ
piq, yy .
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Indeed, under this generative model for some w0, the population loss ErLε,emppwqs is the average
of terms Lεpgwpxiq ; y˚ε pgw0pxiqqq, up to an additive constant. The population loss is therefore
minimized at w0. The gradient of the empirical loss is given by

∇wLε,emppwq “
1
n

řn
i“1 Jw gwpxiq ¨ py

˚
ε pgwpxiqq ´ yiq .

Each term in the sum, gradient of the loss for a single observation, is therefore a stochastic gradient
for Lε,emp (w.r.t. i uniform in rns) or for Lε,pop (w.r.t. to a random yi from pgw0

pxiq).

The methods we described to stochastically approximate the gradient are particularly adapted here.
Indeed, following [49], given an observation yi and a current value θi “ gwpxiq, a doubly stochastic
version of the gradient∇wLεpgwpxiq ; yiq is obtained by

γ̄i,M pwq “ Jw gwpxiq
`

1
M

řM
m“1 y

˚
`

gwpxiq ` εZ
pmq

˘

´ yi
˘

. (6)

This can also be used with a procedure where batches of data points are used to compute approximate
gradients, where the number of artificial samples M and the batch size can be chosen separately.

This can be extended to an unsupervised setting, where observations pyiq1ďiďn P Yn are fitted
with a model pθ, motivated by a generative model where yi “ arg maxyPC xθ0 ` εZi, yy, that is
yi „ pθ0pyq, for some unknown θ0. We have a natural empirical L̄n and population loss Lθ0 :

L̄ε,npθq“
1
n

řn
i“1 Lεpθ ; yiq“Lεpθ; Ȳnq`CpY q , Lε,θ0pθq“ErL̄ε,npθqs“Lεpθ; y

˚
ε pθ0qq`Cpθ0q .

Their gradients are given by

∇θL̄ε,npθq “ ∇θFεpθq ´ Ȳn “ y˚ε pθq ´ Ȳn , and ∇θLε,θ0pθq “ y˚ε pθq ´ y
˚
ε pθ0q .

The empirical loss is minimized for θ̂n such that y˚ε pθ̂nq “ Ȳn and the population loss when
y˚ε pθq “ y˚ε pθ0q. As a consequence, the whole battery of statistical results, from asymptotic to
non-asymptotic, can be leveraged, and we present the simplest one (asymptotic normality).

Proposition 4.1. When n goes to8, with the assumptions of Proposition 2.2 on the model, we have

?
npθ̂n ´ θ0q Ñ N

`

0,
`

∇2
θFεpθ0q

˘´1
ΣY

`

∇2
θFεpθ0q

˘´1˘
,

in distribution, where ΣY is the covariance of Y „ pθ.

5 Experiments

We demonstrate the usefulness of perturbed maximizers in a supervised learning setting, as described
in Section 4. We focus on a classification task and on two structured prediction tasks, label ranking
and learning to predict shortest paths. Since we focus on the prediction task, the issues raised in
Remark 1 do not apply. When learning with the Fenchel-Young losses, we simulate doubly stochastic
gradients∇wLεpgwpxiq ; yiq of the empirical loss with M artificial perturbations (see Equation 6).

We will open-source a Python package allowing to turn any black-box solver into a differentiable
function, in just a few lines of code. Full details of the experiments are included in Appendix C.
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Figure 2: Left. Accuracy in training, using the perturbed FY loss, or cross entropy baseline. Center.
Test accuracy for these methods. Right. Impact of the parameter ε on test and train squared loss.
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5.1 Perturbed max

We use the perturbed argmax with Gaussian noise in an image classification task on the CIFAR-10
dataset. This serves two purposes: showing that we perform as well as the cross entropy loss, in a case
where a soft max can be easily computed, and exhibiting the impact of the algorithmic parameters. We
train a vanilla-CNN with 10 network outputs that are the entries of θ, we minimize the Fenchel-Young
loss between θi “ gwpxiq and yi, with different temperatures ε and number of perturbations M . We
observe competitive performance compared to standard losses as baselines (Fig. 2, left and center).

We analyze the impact of the algorithmic parameters on optimization and generalization abilities.
We exhibit the final loss and accuracy for different number of perturbations in the doubly stochastic
gradient (M “ 1, 1000). We highlight the importance of the temperature parameter ε on the
algorithm (see Figure 2, right). Very high or low temperatures degrade the ability to fit to training
and to generalize to test data, by lack of smoothing or loss of information about θ. We also observe
that our framework is very robust to the choice of ε, demonstrating its adaptivity.

5.2 Perturbed label ranking

We consider label ranking tasks, where each yi is a label permutation for features xi. We minimize
the weights of an affine model gw (i.e., θi “ gwpxiq) using our perturbed Fenchel-Young loss, a
simple squared loss and the recently-proposed method of gradient estimation Vlastelica et al. [54].
Note that our loss is convex in θ and enjoys unbiased gradients, while [54] uses a non-convex loss
with gradient proxies. We use the same 21 datasets as in [28, 14]. We report Spearman’s correlation
(higher is better) in Figure 3. Results are averaged over 10-fold CV and parameters tuned by 5-fold
CV. We find that the FY loss performs better or similarly (within a 5% range) on 76 % and 90 % of
the datasets, respectively. Detailed experimental setup and results are given in Appendix C.2.
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Figure 3: Comparison of Spearman correlations on 21 datasets Left. Our proposed perturbed Fenchel-
Young (FY) loss, a squared loss and the gradient estimation (GE) for `2 loss of [54] Right. Our
proposed perturbed squared `2 loss, our perturbed FY, and GE for `2. Points above the diagonal are
datasets where our loss on the y-axis performs better.

10 2 10 1 100 101 102 103
0%

20%

40%

60%

80%

Perfect Ranks
Perturbed FY
Perturbed squared loss
Squared loss
GE for squared loss

Figure 4: Average number of instances with
exactly correct ranks for all 100 labels, for
different values of σ, for four methods.

To better understand the complexity of this task, we
also created a range of artificial datasets where 100
labels are generated by taking a randomly perturbed
yi “ arg maxyxx

J
i w0 ` σZi, yy, in dimension 50,

for different values of σ. We minimize the same
losses as before in w. For almost correct labels
(σ « 0), our method accurately generalizes to the test
data (see Figure 3, and Figure 7 in Appendix C for
other metrics). We observe that the Fenchel-Young
loss performs as well or better than the other losses,
particularly in terms of robustness to the noise. All
details are included in Appendix C.2.
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5.3 Perturbed shortest path

We replicate the experiment of Vlastelica et al. [54], aiming to learn the travel costs in graphs
based on features, given examples of shortest path solutions (see Figure 5). We use a dataset of
10,000 RGB images of size 96ˆ 96 illustrating Warcraft terrains of 12ˆ 12 2D grid networks. The
responses yi are a shortest path between the top-left and bottom-right corners, for costs hidden to
the network, corresponding to the terrain type. They are 12ˆ 12 binary matrices representing the
vertices along the shortest path.

Features Costs Shortest Path Perturbed Path = 0.5 Perturbed Path = 2.0

Figure 5: In the shortest path experiment, training features are images. Shortest paths are computed
based on terrain costs, hidden to the network. Training responses are shortest paths based on this cost.

Following [54], we train a network whose first five layers are those of ResNet18 for the Fenchel-
Young loss between the predicted costs θi “ gwpxiq and the shortest path yi. We optimize over 50
epochs with batches of size 70, temperature ε “ 1 andM “ 1 (single perturbation). We are able, only
after a few epochs, to generalize very well, and to accurately predict the shortest path on the test data.
We compare our method to two baselines, from [54]: training the same network with their proposed
gradient estimation, and with a squared loss. We show two metrics: perfect accuracy percentage and
cost ratio to optimal path (see Figure 6); full implementation details are in Appendix C.3.
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Figure 6: Accuracy of the predicted path for several methods during training. Left. Percentage of
test instances where the predicted path is optimal. Right. Ratio of costs between the predicted path
and the actual shortest path – without the squared loss baseline as it does not yield valid paths.

6 Conclusion

Despite a large body of work on perturbations techniques for machine learning, most existing works
focused on approximating sampling, log-partitions and expectations under the Gibbs distribution.
Together with novel theoretical insights, we propose to use a general perturbation framework to
differentiate through, not only a max, but also an argmax, without ad-hoc modification of the
underlying solver. In addition, by defining an equivalent regularizer Ω, we show how to construct
Fenchel-Young losses and propose a doubly stochastic scheme, enabling learning in various tasks,
and validate on experiments its ease of application.
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Broader impact

This submission focuses on foundational work, with application to general machine learning tech-
niques. These techniques expend the range of operations that can be used in end-to-end differentiable
systems, by allowing to incorporate optimizers in ML pipelines. There are no foreseeable societal
consequences that are specifically related to these methods, beyond those of the field in general.
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