Figure 1: The extended graphical model used for the presented CRL algorithm. Solid lines mark
connections that are present in the ‘single task’ RL problem. The dashed lines represent the addi-
tional connections that occur in the contextual RL setting, where a contextual variable ¢ influences
the MDP. Note that ¢ and O refer to the same variables across all timesteps.

A Proofs

We start by restating the Latent-Variable Model for the Contextual RL setting
Prw(0) = /p,,#,, (O, 71, ¢)drde x / f(R(7, ¢))pw(T]|e)pu(c)drde, (1)

where p(O|7,¢) < f(R(r,c)) with R(T,¢) = >~ 7c(8S¢, a¢) and the monotonic transformation
f : R = R defines the probability of trajectory 7 being optimal in context c. In LVM , pu(c)
is the distribution over contexts and p,, (7|c) is the probability of a trajectory, that depends on the
policy 7, (als,)

Pw(T]€)=po,c(S0) Hﬁc(3t+1|3t, a;)m,(ag|st, c). 2
t>0
Please note the distribution pe(S¢+1/8t,a+). This modified version of the original transition dy-
namics pe(S¢+1|8¢, a;) is used to account for the discouting factor v < 1 that is present in the
infinite horizon MDP setting. The dynamics p,. are defined by introducing a terminal state s7, with
r(sr,a) = 0 for all @ € A, to which a transition can occur from any state with probability 1 — -y

1, if s; = sy and 8441 = sy

Be(St1a]50, ar) = 0, if s; = sp and sy41 # sy
t+1|9t t) — .

eATHLIoE (1—7), if s; # sy and 8,41 = s7

YPe(Si41|8, @), else.

Figure [I] visualizes the structure of LVM (I). The term Latent-Variable Model arises because, con-
ceptually, we think about states, actions and contexts as being ‘hidden’. This means that there is
an underlying distribution over states, actions and contexts, which is, however, marginalized out,
leaving only the quantity of interest - the ‘optimality’ event O. This marginalization makes direct
optimization of likelihood (T)) intractable. The EM algorithm [1]], as applied in the main paper,
introduces a variational distribution ¢(c) which decomposes the logarithm of likelihood

log (pu (0)) = / 4(€)10g (py o (0)) de 3)
= c)lo 1(0) Prw(O,€) c
= [aternos (q<c> pu,u<c|0>) I @
= 0 pi,,,w((’),c) c c
=0 [tog (22 0D) | 4 Dy @bt)

The reformulation of the marginal likelihood p,, .,(O) between lines (3)) and (4)) is possible because
Pr.w(O, €) = Py w(c|O)py o (O). Decomposing the likelihood is beneficial, since it allows to split
the optimization of log (p, ., (O)) into two steps that can be tackled individually, the so called E-
and M-Step. The E-Step minimizes the second term in Eq. , yielding ¢(c) = pu . (c]O) if g(c)
is not restricted to a parametric form. The M-Step then maximizes the first term of Eq. (5) w.r.t. v.

Before proving our first result from the main paper, we quickly note that for our model, the M-Step
can be equally thought of as minimizing Dk (¢(c)||p.(€)) w.r.t. v, since

Prw(0,c) q(c)
E 1 ———— || = E,q [l o - FE 1 6
q(c) |: 0og (q(c) >:| q(c) [og (pw(|c))] q(c) [og <pu(c)) 6)
where the first term is constant w.r.t. and the second term is equal to —Dxy. (¢(c)|p.(c)).

A.1 Theorem 1

This theorem establishes the connection between the maximization of our proposed objective for
Curriculum generation w.r.t. v

max J(v,w) —aDky (pu(c)|p(e)), a>0 (7

and the discussed EM algorithm when applied to LVM [T} More precisely, we show that modifica-
tions of the E-Step allow to relate Objective (/) to the execution of the E- and M-Step.

Theorem 1. Choosing f(-)=exp(-), maximizing Objective ([7]) minus a KL divergence
term Dgp (pu(c)|lps(c)) is equal to executing E- and M-Step while restricting q(c)
to be of the same parametric form as p,(c) and introducing a regularized E-Step

Dit (a(©)]| 492w (elO) 7 u(c) 7).

Proof. As we restrict ¢(c) to be of the same parametric form as p,,(c), an M-Step becomes superflu-
ous, because the optimal solution of this M-Step clearly matches ¢(c). We see that, when restricting
g(c) to the same parametric form as p,, (c¢), executing E- and M-Step is equal to simply minimzing
the E-Step, where ¢(c) is replaced by p,(¢)

1 1 o
mUinDKL (v(c) Zp,;,w(c|(9)1+a,u(c)l+a)) (8)

Consequently, we are left to show that above optimization problem is the same as the maximization
of Objective This is, however, a task of simple reformulation

1 ; .
min Dk (pu(C) ZP@JC@WM(C)W) 9)

=minZ + By, (o) [log (Py (c))] (10)

P,w(€|0) T pu(c) e

1

(e) [10g (P (Ol€))] + ——p5.u(O) (11)

1
=—max—4 + —F Tr
v «Q

14+a P

lo pv(©) .)] (12)
’ (m(e)w(e)w

Before proceeding to reformulate above KL-Divergence, we note that we can simply remove the
normalization constant Z as well as the term lJ%a Do w (0), since they are constant w.r.t. v. Further-
more, we can rescale the objective by 1 4+ a without changing the optimal solution, yielding

—Ep ()

= () T
=max By, (o) 108 (s (Ole))] — D (pu(€)[po(e) — oD (pu(€)u(e) . (14)

max B, (o) l0g (pu(Ole))] — (1 +) B, 0 |}0g <p~(c) pu(c))] 13

The last reformulation was possible since we can write p,(¢) = p,,(c)l%a pu(€)Ta. To proof
Theorem |1, we simply need to relate the quantity £, () [log (p.(O|c))] to J(v,w). Using
)

f(R(7,¢)) = exp(R(r, €)) and Jensens inequality, we can show that
log (p., (Ole)) = log (/ exp(R(r, c))pw(7|c)d7') —log(Z) (15)
> [Rr.opu(rle)ir - log(2) (16)
= /ZT(St’ a)po.c(s0) [[Pe(seialse, ar)mo(ailss, ¢)dsida, —log(Z) (17)
>0 >0
= /ZWtT(Sn at)po,c(so) Hpc(st-s-l\st, ai)mw(at|st, c)dsida; —log(Z)
>0 >0
(18)
= Ep, .(s) V(s ¢)] —log(Z) (19)

The reformulation between lines and (I8) is possible because of the modified dynamics. The
chance of not transitioning into st for ¢ steps is given by 4%. Since the agent recieves no re-
ward in s7, any terms of the form 7(st, a;) can be removed from the expectation in line .
Combining these two observations yields line (I8). Given that the normalization constant Z is
constant across all contexts ¢, we can again remove it from the optimization of the reformulated
E-Step (Eq. [I4). With that we see that when choosing f(R(7,¢)) = exp(R(,¢)), it holds that
By, (c) [log (pw,(Olc))] > J(v,w). Consequently, we optimize the E-Step using a lower bound by
optimizing Objective [7 Given that we can skip the M-Step due to restricting the form of ¢(c), we
see that we are indeed performing the steps of the EM algorithm outlined in Theorem [T} O

A.2 Theorem 2

This theorem shows that the update rule for the context distribution, established by Klink et al. [2], is
also explained as applying EM to maximize p, ., (O) w.r.t. v. In this case, however, the variational
distribution is not restricted to a parametric form, requiring an explicit M-Step. Looking at the work
by Klink et al. [2]], we see that their algorithm indeed performs an M-Step by fitting a parametric
model to weighted samples (which approximately represent ¢(c)).

Theorem 2. Choosing f(-)=exp (-/n), the (unrestricted) variational distribution after the reg-

ularized E-Step is given by q(c)xpy(c)exp (V“’(c)+"a(1°g7§i(:a))_1°g(p"(C)))), where V,,(c) is the

‘episodic value function’ as defined in [3)].

Proof. We first note that, given that we are not restricting ¢(c) to any parametric form,

q(c) = +pow (c|(9)T1a p(c) ™= holds after the E-Step. A reformulation of this probabilitty dis-
tribution brings us closer to the desired result

ZPou(O) e ule o @0)
5P (O]€) 7y (€) 7 pu(e) TH 1)
0P (€)p(Ole) 7 pu(e) o py () 75 (22)
xpu (€) exp (10g (P (Ole) 7 u(e) o pi (€)%)) 23)
o (€) e <1og (a(Ole) + o Gog(uc)) - log<pu<c>>>> o

To proof Theorem we need to relate log(p,(O|c)) to the ‘episodic value function’
Vi (e) = nlog ([exp (R(|c)/n) pw(7|c)dr) as defined in [3]. By choosing the transformation

f(R(7,c)) = exp (@) it follows that

log(pw(Ole)) (25)
~tou [01 Apa(rlcrar) 26)
x log (/ exp <R(T’c)> pw(T|C)dT) = le(c). 27)
n n
Inserting this result into Eq. proofs the theorem. O

B Experimental Details

In this section, we present details that could not be included in the main paper due to space limita-
tions. This includes parameters of the employed algorithms, additional details about the mechanics
of the environments as well as a qualitative discussion of the results.

The parameters of SPDL for different environments and RL algorithms are shown in Table|l{ The
parameters N, and ¢ have the same meaning as in the main paper. The additional parameter nogrsgr
describes the number of RL algorithm iterations that take place before SPDL is allowed the change

Table 1: Hyperparameters for the SPDL algorithm per environment and RL algorithm. The asterisks
in the table mark the Ball-Catching experiments with an initialized context distribution.

Nq C M OoFFSET Nstep OLB DKLLB
POINT-MASS (TRPO) 70 1.6 5 2048 [0.2 0.1875 0.1] 8000
POINT-MASS (PPO) 10 1.4 5 2048 [0.2 0.1875 0.1] 8000
POINT-MASS (SAC) 50 1.2 5 2048 [0.2 0.1875 0.1] 8000
ANT (PPO) 15 0.4 40 81920 [1 0.5] 11000
BALL-CATCHING (TRPO) 70 0.4 5 5000 - -
BALL-CATCHING* (TRPO) 0 0.425 5 5000 - -
BALL-CATCHING (PPO) 50 0.45 5 5000 - -
BALL-CATCHING* (PPO) 0 0.45 5 5000 - -
BALL-CATCHING (SAC) 60 0.6 5 5000 - -
BALL-CATCHING* (SAC) 0 0.6 5 5000 - -

the context distribution. This parameter can be necessary if some iterations are required until the
approximated value function produces meaningful estimates of the expected value. In the ant en-
vironment, we realized that the agent takes a certain amount of time (roughly 40 iterations) until it
manages to reach the wall. Only then, the difference in task difficulty becomes apparent. The pa-
rameter noppser allows to compensate for such task-specific details. This procedure corresponds to
providing parameters of a pre-trained policy as wy in the algorithm sketched in the main paper. We
selected the best ¢ for every RL algorithm by a simple grid-search in an interval around a reasonably
working parameter that was found by simple trial and error. For the PointMass environment, we
only tuned the hyperparameters for SPDL in the experiment with a three-dimensional context space
and reused them for the two-dimensional context space. To conduct the experiments, we use the
implementation of ALP-GMM, GoalGAN and SPRL provided in the repositories accompanying the
papers [4, 5, 2].

For ALP-GMM we tuned the percentage of random samples drawn from the context space pranp,
the number of policy rollouts between the update of the context distribution nrorrour as well as the
maximum buffer size of past trajectories to keep sguprsr. For each environment and algorithm, we
did a grid-search over

(pRAND7 TMROLLOUT SBUFFER) c {0.1, 0.27 03} X {50, 100, 200} X {500, 1000, 2000}.

For Goal GAN we tuned the amount of random noise that is added on top of each sample dnoisE,
the number of policy rollouts between the update of the context distribution nrorrour as well as the
percentage of samples drawn from the success buffer psyccess. For each environment and algorithm,
we did a grid-search over

(dnoisE, MroLLOUT; Psuccess) € {0.025,0.05,0.1} x {50, 100,200} x {0.1,0.2,0.3}.
The results of the hyperparameter optimization for GoalGAN and ALP-GMM are shown in Table[2]

The similarity of our algorithm and SPRL — and since we could only apply it to one experiment
due to numerical reasons — allowed to start from the parameters of SPDL and obtain well-working
parameters by a few adjustments.

In the experiments, we found that restricting the standard deviation of the context distribution to stay
above a certain lower bound o7 g helps to stabilize learning when generating curricula for narrow tar-
get distributions with SPDL. Although such constraints could be included rigorously via constraints
on the distribution p,,(¢) in the E-Step, we accomplish this by just clipping the standard deviation
until the KL-Divergence w.r.t. the target distribution falls below a certain threshold Dgp,,. This
technique was also employed by Klink et al. [2].

Opposed to the sketched algorithm in the main paper, we specify the number of steps nsygp in the
environment instead of the number of trajectory rollouts between context distribution updates in our
implementation.

Since for all environments, both initial- and target distribution are Gaussians with independent noise
in each dimension, we specify them in Table[3|by providing their mean g and the vector of standard
deviations for each dimension §. When sampling from a Gaussian, the resulting context is clipped
to stay in the defined context space.

Table 2: Hyperparameters for the ALP-GMM and GoalGAN algorithm per environment and RL
algorithm. The abbreviation AG is used for ALP-GMM, while GG stands for Goal GAN.

PRAND TVIROLLOUT pg SBUFFER ONOISE TROLLOUTGg ~ PSUCCESS

POINT-MASS 3D (TRPO) 0.1 100 1000 0.05 200 0.2
PoINT-MASS 3D (PPO) 0.1 100 500 0.025 200 0.1
POINT-MASS 3D (SAC) 0.1 200 1000 0.1 100 0.1
POINT-MASS 2D (TRPO) 0.3 100 500 0.1 200 0.2
POINT-MASS 2D (PPO) 0.2 100 500 0.1 200 0.3
POINT-MASS 2D (SAC) 0.2 200 1000 0.025 50 0.2
ANT (PPO) 0.1 50 500 0.05 125 0.2
BALL-CATCHING (TRPO) 0.2 200 2000 0.1 200 0.3
BALL-CATCHING (PPO) 0.3 200 2000 0.1 200 0.3
BALL-CATCHING (SAC) 0.3 200 1000 0.1 200 0.3

If necessary, we tuned the hyperparameters of the RL algorithms by hand on easier versions of the
target task, not employing any Curriculum. The goal was to be as fair as possible by not optimizing
the RL algorithm for a specific curriculum. For the Ant and PointMass environment, this was done
by training on a wide gate positioned right in front of the agent. For the Ball-Catching environment,
this was done by training on a version of the environment with dense reward. For PPO, we use the
“PPO2” implementation of Stable-Baselines.

The experiments were conducted on a computer with an AMD Ryzen 9 3900X 12-Core Processor,
an Nvidia RTX 2080 graphics card and 64GB of RAM.

B.1 Point-Mass Environment

The state of this environment is comprised of the position and velocity of the point-mass s =
[& y y]. The actions correspond to the force applied in x- and y-dimension a = [F,, Fy]. The con-
text encodes position and width of the gate as well as the dynamic friction coefficient of the ground
on which the point mass slides ¢ = [p, wy i) € [—4,4] x [0.5,8] x [0,4] C R3. The dynamics of
the system are defined by

& 0 1 0 0 0 0
#l [0 —m 0 0 1 0
g1 =lo o o 1]%T|o o™
i 0 0 0 —m 0 1

The - and y- position of the point mass is enforced to stay within the space [—4, 4] x [—4,4]. The
gate is located at position [p, 0]. If the agent crosses the line y = 0, we check whether its z-position
is within the interval [p, — 0.5w, pg + 0.5w,]. If this is not the case, we stop the episode as the
agent has crashed into the wall. Each episode is terminated after a maximum of 100 steps. The
reward function is given by

r(s;a) = exp (=0.6]o — [z ¢]2) ,
where 0 = [0 —3], || - ||2 is the L2-Norm. The agent is always initialized at state sop = [0 0 3 0].
For all RL algorithms, we use a discount factor of v = 0.95 and represent policy and value function

by networks using 21 hidden layers with tanh activations. For TRPO and PPO, we take 2048 steps
in the environment between policy updates.

For TRPO we set the GAE parameter A = 0.99, the maximum allowed KL-Divergence to 0.004 and
the value function step size a, ~ 0.24, leaving all other parameters to their implementation defaults.

For PPO we use GAE parameter A = 0.99, an entropy coefficient of 0 and disable the clipping of the
value function objective. The number of optimization epochs is set to 8 and we use 32 mini-batches.
All other parameters are left to their implementation defaults.

For SAC, we use an experience-buffer of 10000 samples, leaving every other setting to the imple-
mentation default. Hence we use the soft Q-Updates and update the policy after every environment
step.

A S N AN

x % %)
(a) Default (b) Random (c) ALP-GMM (d) Goal GAN (e) SPDL

b 4 b 4 R 4
(f) Default (g) Random (h) ALP-GMM (i) Goal GAN (j) SPDL

| N AN N

AN
v, X x

(k) Default (1) Random (m) ALP-GMM (n) Goal GAN (o) SPDL

x x

Figure 2: Visualizations of policy rollouts in the Point-Mass Environment (three context dimensions)
with policies learned using different curricula and RL algorithms. Each rollout was generated using
a policy learned with a different seed. The first row shows results for TRPO, the second for PPO
and the third shows results for SAC.

For SPRL, we use K, = 40, noprser = 0, (= 2.0 for the 3D- and ¢ = 1.5 and 2D case. We use the
same values for o g and Dg;,, as for SPDL (Table |I[) Between updates of the episodic policy, we
do 25 policy rollouts and keep a buffer containing rollouts from the past 10 iterations, resulting in
250 samples for policy- and context distribution update. The linear policy over network weights is
initialized to a zero-mean Gaussian with unit variance. We use Polynomial features up to degree two
for approximating the value function during policy optimization. For the allowed KL-Divergence,
we observed best results when using € = 0.5 for the weight computation of the samples, but using
a lower value of € = 0.2 when fitting the parametric policy to these weighted samples. We suppose
that the higher value of € during weight computation counteracts the effect of the buffer containing
policy samples from earlier iterations.

Looking at Figure[2] we can see that ALP-GMM allowed to learn policies that sometimes are able to
pass the gate. However, in other cases, the policies crashed the point mass into the wall. Opposed to
this, directly training on the target task led to policies that learned to steer the point mass very close
to the wall without crashing (which is unfortunately hard to see in the plot). Reinvestigating the
above reward function, this explains the lower reward of ALP-GMM, GoalGAN and the randomly
generated curriculum compared to directly learning on the target task, as a crash prevents the agent
from accumulating positive rewards over time.

B.2 Ant Environment

As mentioned in the main paper, we simulate the ant using the Isaac Gym simulator [6]. This allows
to speed up training time by parallelizing the simulation of policy rollouts on the graphics card.
Since the Stable-Baselines implementation of TRPO and SAC do not support the use of vectorized

Position
Position
Position

T T T
0 500 0 500 500

Timestep Timestep Timestep
(a) Default (b) Random (c) ALP-GMM

Position
Position

T T
0 500 0 500

Timestep Timestep
(d) Goal GAN (e) SPDL

Figure 3: Visualizations of the x-position during policy rollouts in the Ant Environment with policies
learned using different curricula. The blue lines correspond to 200 individual trajectories and the
thick black line shows the median over these individual trajectories. The trajectories were generated
from 20 algorithms runs, were each final policy was used to generate 10 trajectories.

environments, it is hard to combine Isaac Gym with these algorithms. Because of this reason, we
decided not to run experiments with TRPO and SAC in the Ant environment.

The state s € R?? is defined to be the 3D-position of the ant’s body, its angular and linear velocity
as well as positions and velocities of the 8 joints of the ant. An action @ € R? is defined by the 8
torques that are applied to the ant’s joints.

The context ¢ = [p, w,] € [—10,10] x [3,13] C R? defines, just as in the Point-Mass environment,
the position and width of the gate that the Ant needs to pass.

The reward function of the environment is computed based on the z-position of the ant’s center of
mass ¢, in the following way

r(s,a) = 1+ 5exp (—0.5min(0, ¢, — 4.5)%) — 0.3| all3.

The constant 1 term was taken from the OpenAl Gym implementation to encourage the survival of
the ant [7]. Compared to the OpenAl Gym environment, we set the armature value of the joints from
1 to 0 and also decrease the maximum torque from 150Nm to 20Nm, since the values from OpenAl
Gym resulted in unrealistic movement behavior in combination with Isaac Gym. Nonetheless, these
changes did not result in a qualitative change in the algorithm performances.

With the wall being located at position z=3, the agent needs to pass it in order to obtain the full
environment reward by ensuring that ¢, >= 4.5.

The policy and value function are represented by neural networks with two hidden layers of 64
neurons each and tanh activation functions. We use a discount factor v = 0.995 for all algorithms,
which can be explained due to the long time horizons of 750 steps. We take 81920 steps in the
environment between a policy update. This was significantly sped-up by the use of the Isaac Gym
simulator, which allowed to simulate 40 environments in parallel on a single GPU.

For PPO, we use an entropy coefficient of 0 and disable the clipping of the value function objective.
All other parameters are left to their implementation defaults. We disable the entropy coefficient as
we observed that for the Ant environment, PPO still tends to keep around 10 — 15% of its initial
additive noise even during late iterations.

Investigating Figure [3] we see that both SPDL and GoalGAN learn policies that allow to pass the
gate. However, the policies learned with SPDL seem to be more reliable compared to the ones
learned with Goal GAN. As mentioned in the main paper, ALP-GMM and a random curriculum also

learn policies that navigate the ant towards the goal in order to pass it. However, the behavior is
less directed and less reliable. Interestingly, directly learning on the target task results in a policy
that tends to not move in order to avoid action penalties. Looking at the main paper, we see that
this results in a similar reward compared to the inefficient policies learned with ALP-GMM and a
random curriculum.

B.3 Ball-Catching Environment

In the final environment, the robot is controlled in joint space via the desired position for 5 of the 7
joints. We only control a subspace of all available joints, since it is not necessary for the robot to
leave the “catching” plane (defined by z = 0) that is intersected by each ball. The actions a € R
are defined as the displacement of the current desired joint position. The state s € R?! consists
of the positions and velocities of the controlled joints, their current desired positions, the current
three-dimensional ball position and its linear velocity.

As previously mentioned, the reward function is sparse,

50 + 25(n - vp,)5, if ball catched
0, else

r(s,a) = 0.275 — 0.005||al|3 + { :
only giving a meaningful reward when catching the ball and otherwise just a slight penalty on the
actions to avoid unnecessary movements. In the above definition, ns is a normal vector of the end
effector surface and vy, is the linear velocity of the ball. This additional term is used to encourage the
robot to align its end effector with the curve of the ball. If the end effector is e.g. a net (as assumed
for our experiment), the normal is chosen such that aligning it with the ball maximizes the opening
through which the ball can enter the net.

The context ¢ = [¢,7,d,] € [0.1257,0.57] x [0.6,1.1] x [0.75,4] C R3 controls the target ball
position in the catching plane, i.e.

Paes = [0 —rcos(¢) 0.75 + rsin(¢)].

Furthermore, the context determines the distance in z-dimension from which the ball is thrown
Dinit = [dr dy dZ]»

where d,, ~ U(—0.75, —0.65) and d, ~ U(0.8,1.8) and U represents the uniform distribution. The
initial velocity is then computed using simple projectile motion formulas by requiring the ball to
reach pg, at time ¢ = 0.5 4 0.05d,. As we can see, the context implicitly controls the initial state
of the environment.

The policy and value function networks for the RL algorithms have three hidden layers with 64
neurons each and tanh activation functions. We use a discount factor of v = 0.995. The policy
updates in TRPO and PPO are done after 5000 environment steps.

For SAC, a replay buffer size of 100, 000 is used. Due to the sparsity of the reward, we increase the
batch size to 512. Learning with SAC starts after 1000 environment steps. All other parameters are
left to their implementation defaults.

For TRPO we set the GAE parameter A = 0.95, leaving all other parameters to their implementation
defaults.

For PPO we use a GAE parameter A = 0.95, 10 optimization epochs, 25 mini-batches per epoch,
an entropy coefficient of 0 and disable the clipping of the value function objective. The remaining
parameters are left to their implementation defaults.

Table 3: Mean and standard deviation of target and initial distributions per environment.

Hoinir 61NIT Hrarcer 6TARGET
POINT-MASS [0 4.25 2] [2 1.875 1] [2.5 0.5 0] [0.004 0.00375 0.002]
ANT [0 8] (3.2 1.6] [—8 3] [0.01 0.005)
BALL-CATCHING [0.68 0.9 0.85] [0.03 0.03 0.3] [1.06 0.85 2.375] [0.8 0.38 1]

0.75
Qo
©
o
o 0.50
=
K=
o
©
O 0.25
0.00 -
Default Defaultt GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
(a) SAC
0.75
o
©
o
o 0.50
£
<
o
©
O 0.25
0.00 -
Default Default* GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
(b) TRPO
0.75
Qo
©
o
o 0.50
=
Ny
o
©
O 0.25
0.00 -
Default Defaultt GoalGAN* Goal GAN ALP-GMM SPDL* SPDL
(c) PPO

Figure 4: Mean Catching Rate of the final policies learned with different curricula and RL algorithms
on the Ball Catching environment. The mean is computed from 20 algorithm runs with different
seeds. For each run, the success rate is computed from 200 ball-throws. The bars visualize the
estimated standard error.

Figure [] visualizes the catching success rates of the learned policies. As can be seen, the perfor-
mance of the policies learned with the different RL algorithms achieve comparable catching per-
formance. Interestingly, SAC performs comparable in terms of catching performance, although the
average reward of the final policies learned with SAC is lower. This is to be credited to excessive
movement and/or bad alignment of the end effector with the velocity vector of the ball.

References

[1] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

[2] Pascal Klink, Hany Abdulsamad, Boris Belousov, and Jan Peters. Self-paced contextual rein-
forcement learning. In CoRL, 2019.

[3] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search for
robotics. Foundations and Trends®) in Robotics, 2(1-2):1-142, 2013.

[4] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In ICML, 2018.

[5] Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms
for curriculum learning of deep rl in continuously parameterized environments. In CoRL, 2019.

[6] Nvidia. Isaac gym. https://developer.nvidia.com/gtc/2019/video/59918,2019. Ac-
cessed: 2020-02-06.

[7] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

10

https://developer.nvidia.com/gtc/2019/video/S9918

	Proofs
	Theorem 1
	Theorem 2

	Experimental Details
	Point-Mass Environment
	Ant Environment
	Ball-Catching Environment

