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Abstract

The sliding window model of computation captures scenarios in which data is
arriving continuously, but only the latest w elements should be used for analysis.
The goal is to design algorithms that update the solution efficiently with each arrival
rather than recomputing it from scratch. In this work, we focus on k-clustering
problems such as k-means and k-median. In this setting, we provide simple
and practical algorithms that offer stronger performance guarantees than previous
results. Empirically, we show that our methods store only a small fraction of the
data, are orders of magnitude faster, and find solutions with costs only slightly
higher than those returned by algorithms with access to the full dataset.

1 Introduction

Data clustering is a central tenet of unsupervised machine learning. One version of the problem can
be phrased as grouping data into k clusters so that elements within the same cluster are similar to
each other. Classic formulations of this question include the k-median and k-means problems for
which good approximation algorithms are known [1, 44]. Unfortunately, these algorithms often do
not scale to large modern datasets requiring researchers to turn to parallel [8], distributed [9], and
streaming methods. In the latter model, points arrive one at a time and the goal is to find algorithms
that quickly update a small sketch (or summary) of the input data that can then be used to compute an
approximately optimal solution.

One significant limitation of the classic data stream model is that it ignores the time when a data
point arrived; in fact, all of the points in the input are treated with equal significance. However, in
practice, it is often important (and sometimes necessary) to restrict the computation to very recent
data. This restriction may be due to data freshness—e.g., when training a model on recent events,
data from many days ago may be less relevant compared to data from the previous hour. Another
motivation arises from legal reasons, e.g., data privacy laws such as the General Data Protection
Regulation (GDPR), encourage and mandate that companies not retain certain user data beyond a
specified period. This has resulted in many products including a data retention policy [54]. Such
recency requirements can be modeled by the sliding window model. Here the goal is to maintain
a small sketch of the input data, just as with the streaming model, and then use only this sketch to
approximate the solution on the last w elements of the stream.

Clustering in the sliding window model is the main question that we study in this work. A trivial
solution simply maintains the w elements in the window and recomputes the clusters from scratch at
each step. We intend to find solutions that use less space, and are more efficient at processing each
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new element. In particular, we present an algorithm which uses space linear in k, and polylogarithmic
in w, but still attains a constant factor approximation.

Related Work Clustering. Clustering is a fundamental problem in unsupervised machine learning
and has application in a disparate variety of settings, including data summarization, exploratory
data analysis, matrix approximations and outlier detection [39, 41, 46, 50]. One of the most studied
formulations in clustering of metric spaces is that of finding k centers that minimize an objective
consisting of the `p norm of the distances of all points to their closest center. For p ∈ {1, 2,∞}
this problem corresponds to k-median, k-means, and k-center, respectively, which are NP-hard, but
constant factor approximation algorithms are known [1, 34, 44]. Several techniques have been used
to tackle these problems at scale, including dimensionality reduction [45], core-sets [6], distributed
algorithms [5], and streaming methods reviewed later. To clarify between Euclidean or general metric
spaces, we note that our results work on arbitrary general metric spaces. The hardness results in
the literature hold even for special case of Euclidean metrics and the constant factor approximation
algorithms hold for the general metric spaces.

Streaming model. Significant attention has been devoted to models for analyzing large-scale datasets
that evolve over time. The streaming model of computation is of the most well-known (see [49]
for a survey) and focuses on defining low-memory algorithms for processing data arriving one item
at a time. A number of interesting results are known in this model ranging from the estimation of
stream statistics [3, 10], to submodular optimization [7], to graph problems [2, 30, 42], and many
others. Clustering is also well studied in this setting, including algorithms for k-median, k-means,
and k-center in the insertion-only stream case [6, 20, 35].

Sliding window streaming model. The sliding window model significantly increases the difficultly of
the problem, since deletions need to be handled as well. Several techniques are known, including
the exponential histogram framework [27] that addresses weakly additive set functions, and the
smooth histogram framework [18] that is suited for functions that are well-behaved and possesses
a sufficiently small constant approximation. Since many problems, such as k-clustering, do not fit
into these two categories, a number of algorithms have been developed for specific problems such as
submodular optimization [14, 21, 29], graph sparsification [26], minimizing the enclosing ball [55],
private heavy hitters [54], diversity maximization [14] and linear algebra operations [15]. Sliding
window algorithms find also applications in data summarization [23].

Turning to sliding window algorithms for clustering, for the k-center problem Cohen et al. [25] show
a (6 + ε)-approximation using O(k log ∆) space and per point update time of O(k2 log ∆), where
∆ is the spread of the metric, i.e. the ratio of the largest to the smallest pairwise distances. For
k-median and k-means, [17] give constant factor approximation algorithms that use O(k3 log6 w)
space and per point update time of O(poly(k, logw)).1 Their bound is polylogarithmic in w, but
cubic in k, making it impractical unless k � w.2 In this paper we improve their bounds and give a
simpler algorithm with only linear dependency of k. Furthermore we show experimentally (Figure 1
and Table 1) that our algorithm is faster and uses significantly less memory than the one presented
in [17] even with very small values k (i.e., k ≥ 4). In a different approach, [56] study a variant
where one receives points in batches and uses heuristics to reduce the space and time. Their approach
does provide approximation guarantees but it applies only to the Euclidean k-means case. Recently,
[32] studied clustering problems in the distributed sliding window model, but these results are not
applicable to our setting.

The more challenging fully-dynamic stream case has also received attention [16, 38]. Contrary to our
result for the sliding window case, in the fully-dynamic case, obtaining a Õ(k) memory, low update
time algorithm, for the arbitrary metric k-clustering case with general `p norms is an open problem.
For the special case of d-dimensional Euclidean spaces for k-means, there are positive results—[38]
give Õ(kd4)-space core-set with 1 + ε approximation.

Dynamic algorithms have also been studied in a consistent model [24, 43], but there the objective is
to minimize the number of changes to the solution as the input evolves, rather than minimizing the
approximation ratio and space used. Finally, a relaxation of the fully dynamic model that allows only

1We note that the authors assume that the cost of any solution is polynomial in w. We chose to state our
bounds explicitly, which introduces a dependence on the ratio of the max and min costs of the solution.

2We note here that in some practical applications k can be large. For instance, in spam and abuse [53],
near-duplicate detection [37] or reconciliation tasks [52].

2



a limited number of deletions has also been addressed [33, 48]. The only work related to clustering is
that of submodular maximization [48] which includes exemplar-based clustering as a special case.

Our Contributions We simplify and improve the state-of-the-art of k-clustering sliding window
algorithms, resulting in lower memory algorithms. Specifically, we:

• Introduce a simple new algorithm for k-clustering in the sliding window setting (Section 3.2).
The algorithm is an example of a more general technique that we develop for minimization
problems in this setting. (Section 3).

• Prove that the algorithm needs space linear in k to obtain a constant approximate solution
(Theorem 3.4), thus improving over the best previously known result which required Ω(k3)
space.

• Show empirically that the algorithm is orders of magnitude faster, more space efficient, and
more accurate than previous solutions, even for small values of k (Section 4).

2 Preliminaries

Let X be a set of arbitrary points, and d : X ×X → R be a distance function. We assume that (X,d)
is an arbitrary metric space, that is, d is non-negative, symmetric, and satisfies the triangle inequality.
For simplicity of exposition we will make a series of additional assumptions, in supplementary
material, we explain how we can remove all these assumptions. We assume that the distances are
normalized to lie between 1 and ∆. We will also consider weighted instances of our problem where,
in addition, we are given a function weight : X → Z denoting the multiplicity of the point.

The k-clustering family of problems asks to find a set of k cluster centers that minimizes a
particular objective function. For a point x and a set of points Y = {y1, y2, . . . , ym}, we let
d(x, Y ) = miny∈Y d(x, y), and let cl(x, Y ) be the point that realizes it, arg miny∈Y d(x, y). The
cost of a set of centers C is: fp(X, C) =

∑
x∈X d

p(x, C). Similarly for weighted instances, we have
fp(X,weight, C) =

∑
x∈X weight(x)dp(x, C).

Note that for p = 2, this is precisely the k-MEDOIDS problem.3 For p = 1, the above encodes the
k-MEDIAN problem. When p is clear from the context, we will drop the subscript. We also refer
to the optimum cost for a particular instance (X, d) as OPTp(X), and the optimal clustering as
C∗p(X) = {c∗1, c∗2, . . . , c∗k} , shortening to C∗ when clear from context. Throughout the paper, we
assume that p is a constant with p ≥ 1.

While mapping a point to its nearest cluster is optimal, any map µ : X → X will produce a
valid clustering. In a slight abuse of notation we extend the definition of fp to say fp(X,µ) =∑

x∈X d(x, µ(x))p.

In this work, we are interested in algorithms for sliding window problems, we refer to the window
size as w and to the set of elements in the active window as W , and we use n for the size of the entire
stream, typically n� w. We denote by Xt the t-th element of the stream and by X[a,b] the subset of
the stream from time a to b (both included). For simplicity of exposition, we assume that we have
access to a lower bound m and upper bound M of the cost of the optimal solution in any sliding
window.4

We use two tools repeatedly in our analysis. The first is the relaxed triangle inequality. For p ≥ 1
and any x, y, z ∈ X , we have: d(x, y)p ≤ 2p−1(d(x, z)p + d(z, y)p). The second is the fact that the
value of the optimum solution of a clustering problem does not change drastically if the points are
shifted around by a small amount. This is captured by Lemma 2.1 which was first proved in [35]. For
completeness we present its proof in the supplementary material.

Lemma 2.1. Given a set of points X = {x1, . . . , xn} consider a multiset Y = {y1, . . . , yn} such
that

∑
i d
p(xi, yi) ≤ αOPTp(X), for a constant α. Let B∗ be the optimal k-clustering solution for

Y . Then fp(X,B∗) ∈ O((1 + α)OPTp(X)).

3In the Euclidean space, if the centers do not need to be part of the input, then setting p = 2 recovers the
k-MEANS problem.

4These assumptions are not necessary. In the supplementary material, we explain how we estimate them in
our experiments and how from a theoretical perspective we can remove the assumptions.
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Given a set of points X , a mapping µ : X → Y , and a weighted instance defined by (Y,weight),
we say that the weighted instance is consistent with µ, if for all y ∈ Y , we have that weight(y) =
|{x ∈ X| µ(x) = y}|. We say it is ε-consistent (for constant ε ≥ 0), if for all y ∈ Y , we have that
|{x ∈ X | µ(x) = y}| ≤ weight(y) ≤ (1 + ε)|{x ∈ X | µ(x) = y}|.
Finally, we remark that the k-clustering problem is NP-hard, so our focus will be on finding efficient
approximation algorithms. We say that we obtain an α approximation for a clustering problem
if fp(X, C) ≤ α · OPTp(X). The best-known approximation factor for all the problems that we
consider are constant [1, 19, 36]. Additionally, since the algorithms work in arbitrary metric spaces,
we measure update time in terms of distance function evaluations and use the number of points as
space cost (all other costs are negligible).

3 Algorithm and Analysis

The starting point of our clustering is the development of efficient sketching technique that, given a
stream of points, X , a mapping µ, and a time, τ , returns a weighted instance that is ε-consistent with
µ for the points inserted at or after τ . To see why having such a sketch is useful, suppose µ has a cost
a constant factor larger than the cost of the optimal solution. Then we could get an approximation
to the sliding window problem by computing an approximately optimal clustering on the weighted
instance (see Lemma 2.1).

To develop such a sketch, we begin by relaxing our goal by allowing our sketch to return a weighted
instance that is ε-consistent with µ for the entire stream X as opposed to the substream starting at
Xτ . Although a single sketch with this property is not enough to obtain a good algorithm for the
overall problem, we design a sliding window algorithm that builds multiple such sketches in parallel.
We can show that it is enough to maintain a polylogarithmic number of carefully chosen sketches to
guarantee that we can return a good approximation to the optimal solution in the active window.

In subsection 3.1 we describe how we construct a single efficient sketch. Then, in the subsection 3.2,
we describe how we can combine different sketches to obtain a good approximation. All of the
missing proofs of the lemmas and the pseudo-code for all the missing algorithms are presented in the
supplementary material.

3.1 Augmented Meyerson Sketch

Our sketching technique builds upon previous clustering algorithms developed for the streaming
model of computation. Among these, a powerful approach is the sketch introduced for facility
location problems by Meyerson [47].

At its core, given an approximate lower bound to the value of the optimum solution, Meyerson’s
algorithm constructs a set C of sizeO(k log ∆), known as a sketch, and a consistent weighted instance,
such that, with constant probability, fp(X, C) ∈ O(OPTp(X)). Given such a sketch, it is easy to
both: amplify the success probability to be arbitrarily close to 1 by running multiple copies in parallel,
and reduce the number of centers to k by keeping track of the number of points assigned to each
c ∈ C and then clustering this weighted instance into k groups.

What makes the sketch appealing in practice is its easy construction—each arriving point is added as
a new center with some carefully chosen probability. If a new point does not make it as a center, it is
assigned to the nearest existing center, and the latter’s weight is incremented by 1.

Meyerson algorithm was initially designed for online problems, and then adapted to algorithms in the
streaming computation model, where points arrive one at a time but are never deleted. To solve the
sliding window problem naively, one can simply start a new sketch with every newly arriving point,
but this is inefficient. To overcome these limitations we extend the Meyerson sketch. In particular,
there are two challenges that we face in sliding window models:

1. The weight of each cluster is not monotonically increasing, as points that are assigned to the
cluster time out and are dropped from the window.

2. The designated center of each cluster may itself expire and be removed from the window,
requiring us to pick a new representative for the cluster.
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Using some auxiliary bookkeeping we can augment the classic Meyerson sketch to return a weighted
instance that is ε-consistent with a mapping µ whose cost is a constant factor larger than the cost of
the optimal solution for the entire stream X . More precisely,
Lemma 3.1. Let w be the size of the sliding window, ε ∈ (0, 1) be a constant and t the current time.
Let (X,d) be a metric space and fix γ ∈ (0, 1). The augmented Meyerson algorithm computes an im-
plicit mapping µ : X → C, and an ε-consistent weighted instance (C, ŵeight) for all substreamsX[τ,t]

with τ ≥ t−w, such that, with probability 1−γ, we have: |C| ≤ 22p+8k log γ−1 log ∆ and
fp(X[τ,t], C) ≤ 22p+8 OPTp(X).

The algorithm uses spaceO(k log γ−1 log ∆ log(M/m)(logM+logw+log ∆)) and stores the cost
of the consistent mapping, f(X,µ), and allows a 1 + ε approximation to the cost of the ε-consistent
mapping, denoted by f̂(X[τ,t], µ). This is the ε-consistent mapping that is computed by the augmented
Meyerson algorithm. In section 2, M and m are defined as the upper and lower bounds on the cost
of the optimal solution.

Note that when M/m and ∆ are polynomial in w,5 the above space bound is O(k log γ−1 log3(w)).

3.2 Sliding Window Algorithm

In the previous section we have shown that we can the Meyerson sketch to have enough information
to output a solution using the points in the active window whose cost is comparable to the cost of the
optimal computed on the whole stream. However, we need an algorithm that is competitive with the
cost of the optimum solution computed solely on the elements in the sliding window.

We give some intuition behind our algorithm before delving into the details. Suppose we had a good
guess on the value of the optimum solution, λ∗ and imagine splitting the input x1, x2, . . . , xt into
blocks A1 = {x1, x2, . . . , xb1}, A2 = {xb1+1, . . . , xb2}, etc. with the constraints that (i) each block
has optimum cost smaller than λ∗, and (ii) is also maximal, that is adding the next element to the
block causes its cost to exceed λ∗. It is easy to see, that any sliding window of optimal solution of
cost λ∗ overlaps at most two blocks. The idea behind our algorithm is that, if we started an augmented
Meyerson sketch in each block, and we obtain a good mapping for the suffix of the first of these two
blocks, we can recover a good approximate solution for the sliding window.

We now show how to formalize this idea. During the execution of the algorithm, we first discretize
the possible values of the optimum solution, and run a set of sketches for each value of λ. Specifically,
for each guess λ, we run Algorithm 1 to compute the AugmentedMeyerson for two consecutive
substreams, Aλ and Bλ, of the input stream X . (The full pseudocode of AugmentedMeyerson
is available in the supplementary material.) When a new point, x, arrives we check whether the
k-clustering cost of the solution computed on the sketch after adding x to Bλ exceeds λ. If not, we
add it to the sketch for Bλ, if so we reset the Bλ substream to x, and rename the old sketch of Bλ as
Aλ. Thus the algorithm maintains two sketches, on consecutive subintervals. Notice that the cost of
each sketch is at most λ, and each sketch is grown to be maximal before being reset.

We remark that to convert the Meyerson sketch to a k-clustering solution, we need to run a k-clustering
algorithm on the weighted instance given by the sketch. Since the problem is NP-hard, let ALG denote
any ρ-approximate algorithm, such as the one by [36]. Let S(Z) = (Y (Z),weight(Z)) denote the
augmented Meyerson sketch built on a (sub)stream Z, with Y (Z) as the centers, and weight(Z) as
the (approximate) weight function. We denote by ALG(S(Z)) the solution obtained by running ALG

over the weighted instance S(Z). Let f̂p(S(Z),ALG(S(Z))) be the estimated cost of the solution
ALG(S(Z)) over the stream Z obtained by the sketch S(Z).

We show that we can implement a function f̂p that operates only on the information in the augmented
Meyerson sketch S(Z) and gives a β ∈ O(ρ) approximation to the cost on the unabridged input.
Lemma 3.2 (Approximate solution and approximate cost from a sketch). Using an approximation
algorithm ALG, from the augmented Meyerson sketch S(Z), with probability ≥ 1− γ, we can output
a solution ALG(S(Z)) and an estimate f̂p(S(Z),ALG(S(Z))) of its cost s.t. fp(Z,ALG(S(Z))) ≤
f̂p(S(Z),ALG(S(Z))) ≤ β(ρ)fp(Z,OPT(Z)) for a constant β(ρ) ≤ 23p+6ρ depending only the
approximation factor ρ of ALG.

5We note that prior work [17, 25] makes similar assumptions to get a bound depending on w.
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Algorithm 1 Meyerson Sketches, ComputeSketches(X,w, λ,m,M,∆)

1: Input: A sequence of points X = x0, x1, x2, . . . , xn. The size of the window w. Cost threshold λ. A lower
bound m and upper bound M of the cost of the optimal solution and upper bound on distances ∆.

2: Output: Two sketches for the stream S1 and S2.
3: S1 ← AugmentedMeyerson(∅, w,m,M,∆); S2 ← AugmentedMeyerson(∅, w,m,M,∆)
4: Aλ ← ∅; Bλ ← ∅ (Recall that Aλ, Bλ are sets and S1 and S2 the corresponding sketches. Note that the

content of the sets is not stored explicitly.)
5: for x ∈ X do
6: Let Stemp be computed by AugmentedMeyerson(Bλ ∪ {x}, w,m,M,∆) . (Note: it can be computed

by adding x to a copy of the sketch maintained by S2)
7: if f̂p(Stemp,ALG(Stemp)) ≤ λ then
8: Add x to the stream of the sketch S2. (Bλ ← Bλ ∪ {x}, S2 ←

AugmentedMeyerson(Bλ, w,m,M,∆))
9: else

10: S1 ← S2; S2 ← AugmentedMeyerson({x}, w,m,M,∆). (Aλ ← Bλ; Bλ ← {x})
11: end if
12: end for
13: Return (S1, S2, and start and end times of Aλ and Bλ)

Composition of sketches from sub-streams Before presenting the global sliding window algo-
rithm that uses these pairs of sketches, we introduce some additional notation. Let S(Z) be the
augmented Meyerson sketch computed over the stream Z. Let Suffixτ (S(Z)) denote the sketch
obtained from a sketch S for the points that arrived after τ . This can be done using the operations
defined in the supplementary material.

We say that a time τ is contained in a substream A if A contains elements inserted on or after time
τ . Finally we define Aτ as the suffix of A that contains elements starting at time τ . Given two
sketches S(A), and S(B) computed over two disjoint substreams A,B, let S(A) ∪ S(B) be the
sketch obtained by joining the centers of S(A) and S(B) (and summing their respective weights)
in a single instance. We now prove a key property of the augmented Meyerson sketches we defined
before.
Lemma 3.3 (Composition with a Suffix of stream). Given two substreams A,B (with possibly
B = ∅) and a time τ in A, let ALG be a constant approximation algorithm for the k-clustering
problem. Then if OPTp(A) ≤ O(OPTp(Aτ ∪ B), then, with probability ≥ 1 − O(γ), we have
fp(Aτ ∪B,ALG(Suffixτ (S(A)) ∪ S(B))) ≤ O(OPTp(Aτ ∪B)).

The main idea of the proof is to show that Suffixτ (S(A))∪S(B) is ε-consistent with a good mapping
from Aτ ∪ B and then by using a technique similar to Lemma 2.1 show that we can compute a
constant approximation from an ε-consistent sketch.

Algorithm 2 Our main algorithm. Input: X,m,M,∆, approx. factor of ALG (β) and δ.
1: Λ← {m, (1 + δ)m, . . . , 2pβ(1 + δ)M}
2: for λ ∈ Λ do
3: Sλ,1, Sλ,2 ← ComputeSketches(X,w, λ,m,M,∆)
4: end for
5: if Bλ∗ = W for some λ∗ then return ALG(Sλ∗,2)
6: λ∗ ← min({λ : Aλ 6⊆W})
7: τ ← max(|X| − w, 1)
8: if W ∩Aλ∗ 6= ∅ then return ALG(Suffixτ (Sλ∗,1) ∪ Sλ∗,2)
9: else return ALG(Suffixτ (Sλ∗,2))

Final algorithm. We can now present the full algorithm in Algorithm 2. As mentioned before, we
run multiple copies of ComputeSketches in parallel, for geometrically increasing values of λ.

For each value of λ, we maintain the pair of sketches over the stream X . Finally, we compute the
centers using such sketches. If we get lucky, and for the sliding window W there exists a subsequence
where Bλ∗ is precisely W , we use the appropriate sketch and return ALG(Sλ∗,2). Otherwise, we find
the smallest λ∗ for which Aλ is not a subset of W . We then use the pair of sketches associated with
Aλ∗ and Bλ∗ , combining the sketch of the suffix of Aλ∗ that intersects with W , and the sketch on
Bλ∗ .
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The main result is that this algorithm provides a constant approximation of the k-clustering problem,
for any p ≥ 1, with probability at least 1 − γ, using space linear in k and logarithmic in other
parameters. The total running time of the algorithm depends on the complexity of ALG. Let T (n, k)
be the complexity of solving an instance of k-clustering with size n points using ALG.

Theorem 3.4. With probability 1 − γ, Algorithm 2, outputs an O(1)-approximation for
the sliding window k-clustering problem using space: O

(
k log(∆)(log(∆) + log(w) +

log(M)) log2(M/m) log(γ−1 log(M/m))
)

and total update time O(T (k log(∆), k)

log2(M/m) log(γ−1 log(M/m)) (log(∆) + log(w) + log(M)).

We remark that if M and ∆ are polynomial in w, then the total space is O(k log4 w log(logw/γ))
and the total update time is O(T (k logw, k) log3(w) log(logw/γ)). The main component in the
constant approximation factor of Theorem 3.4 statement comes from the 23p+5ρ approximation for
the insertion-only case [43]. Here p is the norm, and ρ is the offline algorithm factor. Given the
composition operation in our analysis in addition to applying triangle inequality and some other steps,
we end up with an approximation factor ≈ 28p+6ρ. We do not aim to optimize for this approximation
factor, however it could be an interesting future direction.

4 Empirical Evaluation

We now describe the methodology of our empirical evaluation before providing our experiments
results. We report only the main results in the section, more details on the experiments and results
are in supplementary material. Our code is available open-source on github6. All datasets used are
publicly-available.

Datasets. We used 3 real-world datasets from the UCI Repository [28] that have been used in
previous experiments on k-clustering for data streams settings: SKINTYPE [12], n = 245057, d = 4,
SHUTTLE, n = 58000, d = 9, and COVERTYPE [13], n = 581012, d = 54. Consistent with
previous work, we stream all points in the natural order (as they are stored in the dataset). We also use
4 publicly-available synthetic dataset from [31] (the S-Set series) that have ground-truth clusters. We
use 4 datasets (s1, s2, s3, s4) that are increasingly harder to cluster and have each k = 15 ground-truth
clusters. Consistent with previous work, we stream the points in random order (as they are sorted
by ground truth in the dataset). In all datasets, we pre-process each dataset to have zero mean and
unit standard deviation in each dimension. All experiments use Euclidean distance, we focus on the
the K-MEANS objective (p = 2) which we use as cost. We use k-means++ [4] as the solver ALG to
extract the solution from our sketch.

Parameters. We vary the number of centers, k, from 4 to 40 and window size, w, from 10,000 to
40,000. We experiment with δ = [0.1, 0.2] and set ε = 0.05 (empirically the results are robust to
wide settings of ε).

Metrics. We focus on three key metrics: cost of the clustering, maximum space requirement of our
sketch, and average running time of the update function. To give an implementation independent
view into space and update time, we report as space usage the number of points stored, and as update
time the number of distance evaluations. All of the other costs are negligible by comparison.

Baselines. We consider the following baselines.
Batch K-Means++: We use k-means++ over the entire window as a proxy for the optimum, since
the latter is NP-hard to compute. At every insertion, we report the best solution over 10 runs of
k-means++ on the window. Observe that this is inefficient as it requires Ω(w) space and Ω(kw) run
time per update. Sampling: We maintain a random sample of points from the active window, and
then run k-means++ on the sample. This allows us to evaluate the performance of a baseline, at
the same space cost of our algorithm. SODA16: We also evaluated the only previously published
algorithm for this setting in [17].

We note that we made some practical modifications to further improve the performance of our
algorithm which we report in the supplementary material.

6https://github.com/google-research/google-research/tree/master/sliding_window_
clustering/
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Figure 1: Comparison of the max memory use of SODA16 and our algorithm for W = 10,000.

Dataset k
Space Decr.

Factor
Speed-Up

Factor
Cost

(ratio)

COVER 4 5.23 10.88 99.5%
16 6.04 13.10 95.1%

SHUTTLE 4 5.07 9.09 106.8%
16 15.32 15.14 118.9%

Table 1: Decrease of space use, decrease in (speed-up) and ratio of mean cost of the solutions of our
algorithm vs the SODA16 baseline (100% means same cost, < 100% means a reduction in cost).

Comparison with previous work. We begin by comparing our algorithm to the previously pub-
lished algorithm of [17]. The baseline in this paragraph is SODA16 algorithm in [17]. We confirm
empirically that the memory use of this baseline already exceeds the size of the sliding window for
very small k, and that it is significantly slower than our algorithm. Figure 1 shows the space used by
our algorithm and by the baseline over the COVERTYPE dataset for a |W | = 10,000 and different k.
We confirm that our algorithm’s memory grows linearly in k while the baseline grows super-linearly
in k and that for k > 10 the baseline costs more than storing the entire window. In Table 1 we show
that our algorithm is significantly faster and uses less memory than the SODA16 already for small
values of k. In the supplementary material we show that the difference is even larger for bigger
values of k. Given the inefficiency of the SODA16 baseline, for the rest of the section we do not run
experiments with it.

Cost of the solution. We now take a look at how the cost of the solution evolves over time during
the execution of our algorithm. In Figure 2 we plot the cost of the solution obtained by our algorithm
(Sketch), our proxy for the optimum (KM++) and the sampling baseline (Sampling Baseline) on
the COVERTYPE dataset. The sampling baseline is allowed to store the same number of points
stored by our algorithm (at the same point in time). We use k = 20, |W | = 40,000, and δ = 0.2.
The plot is obtained by computing the cost of the algorithms every 100 timesteps. Observe that our
algorithm closely tracks that of the offline algorithm result, even as the cost fluctuates up and down.
Our algorithm’s cost is always close to that of the off-line algorithm and significantly better than the
random sampling baseline

Update time and space tradeoff. We now investigate the time and space tradeoff of our algorithm.
As a baseline we look at the cost required simply to recompute the solution using k-means++ at every
time step. In Table 2 (δ = 0.2) we focus on the COVERTYPE dataset, the other results are similar.
Table 2 shows the percent of the sliding window data points stored (Space) and the percent of update

W k Space Time

40000
10 3.5% (0.39%) 0.45% (0.29%)
20 6.5% (0.87%) 0.93% (0.63%)
40 11.3% (1.74%) 1.58% (1.23%)

Table 2: Max percentage of sliding window (length W ) stored (Space) and median percentage of time (Time)
vs. one run of k-means++ (stddev in parantesis).
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Figure 2: Cost of the solution obtained by our algorithm (Sketch) and the two baselines for k = 20,
|W | = 40,000 and δ = 0.2 on COVERTYPE.

time (Time) of our algorithm vs a single run of k-means++ over the window. In the supplementary
material we show that the savings become larger (at parity of k) as |W | grows and that we always
store a small fraction of the window, providing order-of-magnitude speed ups (e.g., we use < 0.5% of
the time of the baseline for k = 10, |W | = 40,000). Here the baseline is the k-means++ algorithm.

Recovering ground-truth clusters. We evaluated the accuracy of the clusters produced by our
algorithm on a dataset with ground-truth clusters using the well known V-Measure accuracy definition
for clustering [51]. We observe that on all datasets our algorithm performs better than the sampling
baseline and in line with the offline k-means++. For example, on the s1 our algorithm gets V-Measure
of 0.969, while k-means++ gets 0.969 and sampling gets 0.933. The full results are available in the
supplementary material.

5 Conclusion

We present the first algorithms for the k-clustering problem on sliding windows with space linear in
k. Empirically we observe that the algorithm performs much better than the analytic bounds, and it
allows to store only a small fraction of the input. A natural avenue for future work is to give a tighter
analysis, and reduce this gap between theory and practice.

Broader Impact

Clustering is a fundamental unsupervised machine learning problem that lies at the core of multiple
real-world applications. In this paper, we address the problem of clustering in a sliding window
setting. As we argued in the introduction, the sliding window model allows us to discard old data
which is a core principle in data retention policies.

Whenever a clustering algorithm is used on user data it is important to consider the impact it may have
on the users. In this work we focus on the algorithmic aspects of the problem and we do not address
other considerations of using clustering that may be needed in practical settings. For instance, there
is a burgeoning literature on fairness considerations in unsupervised methods, including clustering,
which further delves into these issues. We refer to this literature [22, 40, 11] for addressing such
issues.
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