
Appendix to
Faster Randomized Infeasible Interior Point Methods

for Tall/Wide Linear Programs

Appendix A Extensions

We briefly discuss extensions of our work. First, there is nothing special about using a CG solver
for solving eqn. (5). We analyze two more solvers that could replace the proposed CG solver
without any loss in accuracy or any increase in the number of iterations for the long-step infeasible
IPM Algorithm 2 of Section 3. In Appendix D, we analyze the performance of the preconditioned
Richardson Iteration and in Appendix E, we analyze the performance of the preconditioned Steepest
Descent. In both cases, if the respective preconditioned solver (with the preconditioner of Section 2)
runs for t = O(log n) steps, Theorem 1 still holds, with small differences in the constant terms.
While preconditioned Richardson iteration and preconditioned Steepest Descent are interesting from
a theoretical perspective, they are not particularly practical.

Second, recall that our approach focused on full rank input matrices A ∈ Rm×n with m � n.
Our overall approach still works if A in any m× n matrix that is low-rank, e.g., rank(A) = k �
min{m,n}. In that case, using the thin SVD of A, we can rewrite the linear constraints as follows
UAΣAVT

Ax = b, where UA ∈ Rm×k and VA ∈ Rn×k are the matrices of left and right singular
vecors of A respectively; ΣA ∈ Rk×k is the diagonal matrix with the k non-zero singular values of
A as its diagonal elements. The LP of eqn. (1) can be restated as

min cTx , subject to VT
Ax = b̃ ,x ≥ 0 , (21)

where b̃ = Σ−1A UT
Ab. Note that, rank(VA) = k � n and therefore eqn. (21) can be solved using

our framework. The matrices UA, VA, and ΣA can be approximately recovered using the fast SVD
algorithms of [23, 5, 10]. However, the accuracy of the final solution will depend on the accuracy of
the approximate SVD and we defer this analysis to future work.

Third, even though we chose to use the Count-Min sketch and its analysis from [13] (Section 1.3),
there are many other alternative sketching matrix constructions that would lead to similar results. A
particularly simple one is the Gaussian sketching matrix WG ∈ Rn×w, where every entry is aN (0, 1)
random variable. Setting w = O (m+log(1/δ)/ζ2) would result in the same accuracy guarantees as
the sketching matrix of Section 1.3. However, the (theoretical) running time needed to compute
ADW increases toO(m · nnz(A)). In practice, at least for relatively small matrices, using Gaussian
sketching matrices is a reasonable alternative; see the discussion in [35] which argued that the
Gaussian matrix sketching-based solvers are considerably better than direct solvers. We also opted to
use Gaussian matrices in our empirical evaluation, since we primarily interested in measuring the
accuracy of the final solution as a function of the number of iterations of the solver and the IPM
algorithm. Other known constructions of sketching matrices that are also applicable in our setting
include (any) sub-gaussian sketching matrix; the Subsampled Randomized Hadamard transform
(SRHT); and any of the Sparse Subspace Embeddings of [9, 39, 34, 11].

We conclude by noting that our work can also be extended to analyze feasible IPMs, namely
Algorithm 2 can start with a strictly feasible point. In this case, the analysis is somewhat simpler and
the iteration complexity of the IPM algorithm reduces to O(n log(1/ε)), which is the best known
for feasible long-step path following IPM algorithms. We chose to present the more technically
challenging infeasible IPM in this paper and delegate the feasible case to future work.

Appendix B Additional Notations

As before, we take AD = UΣVT to be the thin SVD representation of AD. Additionally, for
any two symmetric positive semidefinite (positive definite) matrices A1 and A2 with same order,
A1 4 A2 (A1 ≺ A2) denotes that A2 −A1 is positive semidefinite (positive definite). For any
two vectors a = (a1, . . . , a`)

T and b = (b1, . . . , b`)
T let a ◦ b = (a1b1, . . . , a`b`)

T. For any vector
a ∈ Rn its `∞ norm is defined as ‖a‖∞ = maxi |ai|.

13

Appendix C Proofs

C.1 Proof of Lemma 2

Proof Consider the condition of eqn. (12):

‖VTWWTV − Im‖2 ≤
ζ

2
⇔ − ζ

2
Im 4 VTWWTV − Im 4

ζ

2
Im (22)

⇔ − ζ

2
AD2AT 4 ADWWTDAT −AD2AT 4

ζ

2
AD2AT (23)

⇔
(

1− ζ

2

)
AD2AT 4 ADWWTDAT︸ ︷︷ ︸

Q

4

(
1 +

ζ

2

)
AD2AT , (24)

where we obtain eqn. (23) by pre- and post-multiplying the previous inequality by UΣ and ΣUT

respectively and using the facts that AD = UΣVT and AD2AT = UΣ2UT. Also, from eqn. (22),
note that all the eigenvalues of VTWWTV lie between (1− ζ

2) and (1 + ζ
2) i.e., rank(VTW) = m.

Therefore, rank(ADW) = rank(UΣVTW) = m, as UΣ is non-singular and we know rank of
a matrix remains unaltered by pre (or post)-multiplying by a non-singular matrix. So, we have
rank(Q) = m; in words Q has full rank. Therefore, all the diagonal entries of ΣQ are positive and
Q−1/2QQ−1/2 = (UQΣ

−1/2
Q UT

Q) UQΣQUT
Q (UQΣ

−1/2
Q UT

Q) = Im .

Using above arguments, pre- and post- multiplying eqn. (24) by Q−1/2, we obtain(
1− ζ

2

)
Q−1/2AD2ATQ−1/2 4 Im 4

(
1 +

ζ

2

)
Q−1/2AD2ATQ−1/2

⇔
(

1 +
ζ

2

)−1
Im 4 Q−1/2AD2ATQ−1/2 4

(
1− ζ

2

)−1
Im . (25)

Eqn. (25) implies and is implied by the fact that all the eigenvalues of Q−1/2AD2ATQ−1/2 are

bounded between
(

1 + ζ
2

)−1
and

(
1− ζ

2

)−1
. Therefore, we have(

1 +
ζ

2

)−1
≤ σ2

i (Q−1/2AD) ≤
(

1− ζ

2

)−1
, for i = 1, . . . ,m.

C.2 Satisfying eqn. (7) using CG Solver

Let f̃ (j) be the residual at the j-th iteration of the CG algorithm, i.e., f̃ (j) = Q−1/2AD2ATQ−1/2z̃j−
Q−1/2p. Recall from Algorithm 1 that z̃0 = 0 and thus f̃ (0) = −Q−1/2p. In our parlance, Theorem
8 of [6] proved the following bound.

Lemma 5 (Theorem 8 of [6]) Let f̃ (j−1) and f̃ (j) be the residuals obtained by the CG solver at
steps j − 1 and j. Then,

‖f̃ (j)‖2 ≤
κ2(Q−1/2AD)− 1

2
‖f̃ (j−1)‖2 ,

where κ(Q−1/2AD) is the condition number of Q−1/2AD.

From Lemma 2, we get

κ2(Q−
1/2AD) =

σ2
max(Q−1/2AD)

σ2
min(Q−1/2AD)

≤ 1 + ζ/2

1− ζ/2
. (26)

Combining eqn. (26) with Lemma 5,

‖f̃ (j)‖2 ≤
1+ζ/2
1−ζ/2 − 1

2
‖f̃ (j−1)‖2 =

ζ

2− ζ
‖f̃ (j−1)‖2 ≤ ζ‖f̃ (j−1)‖2 , (27)

14

where the last inequality follows from ζ ≤ 1. Applying eqn. (27) recursively, we get

‖f̃ (t)‖2 ≤ ζ‖f̃ (t−1)‖2 ≤ · · · ≤ ζt‖f̃ (0)‖2 = ζt‖Q−1/2p‖2 ,
which proves the condition of eqn. (7).

C.3 Proof of Lemma 3

Proof Let AD = UΣVT be the thin SVD representation of AD. We use the exact same W as
discussed in Section 2. Therefore, eqn. (12) holds with probability 1− δ and it directly follows from
the proof of Lemma 2 that rank(ADW) = m.

Now, as ADW has full row-rank, right-inverse exists and ADW (ADW)† = Im. Therefore,
taking v = (XS)1/2W(ADW)†(AD2AT∆̂y − p), we finally have

AS−1 v = AS−1(XS)
1/2W(ADW)†(AD2AT∆̂y − p)

= ADW(ADW)†(AD2AT∆̂y − p)

= AD2AT∆̂y − p ,

where the second equality follows from the fact that D = X1/2S−1/2. This concludes the proof.

C.4 Proof of Lemma 4

Proof We already have, Q = ADW(ADW)T = UQΣQUT
Q. From this, we know that UQ and

Σ
1/2
Q are respectively the matrices of left singular vectors and singular values of ADW. Now, let V̂ be

the right singular vector of ADW. Therefore, ADW = UQΣ
1/2
Q V̂T is the thin SVD representation

of ADW. Also, from Lemma 2, we know Q has full rank. Therefore, Q1/2Q−1/2 = Im.

Next, we bound ‖v‖2 in the following way

‖v‖2 = ‖(XS)
1/2W(ADW)†(AD2AT∆̂y − p)‖2

= ‖(XS)
1/2W(ADW)†Q

1/2Q
−1/2(AD2AT∆̂y − p)‖2

≤ ‖(XS)
1/2W(ADW)†Q

1/2‖2 ‖f̃ (t)‖2 , (28)

where we have used the fact that Q−1/2(AD2AT∆̂y−p) = f̃ (t) and the last inequality follows from
the sub-multiplicativity property of spectral-norm.

Again, using SVD of ADW and Q, we have (ADW)†Q1/2 = V̂Σ
−1/2
Q UT

Q UQΣ
1/2
Q UT

Q = V̂UT
Q.

Now, note that UQ ∈ Rm×m is an orthogonal matrix and V̂ ∈ Rw×m has orthogonal columns
i.e. ‖V̂‖2 = 1. Therefore, combining these with eqn. (28) yields,

‖v‖2 ≤ ‖(XS)
1/2WV̂UT

Q‖2‖f̃ (t)‖2 = ‖(XS)
1/2WV̂‖2‖f̃ (t)‖2

≤ ‖(XS)
1/2W‖2‖V̂‖2‖f̃ (t)‖2 = ‖(XS)

1/2W‖2‖f̃ (t)‖2 , (29)

where the first equality in eqn. (29) follows from the unitary invariance property of the spectral norm;
the second inequality follows from the sub-multiplicativity of the spectral norm and the last equality
is due to ‖V̂‖2 = 1. Now, as we use the exact same W discussed in Section 2 to construct v and note
that eqn. (10) holds for any matrix Z (irrespective of its dimensions). Therefore, taking Z = (XS)1/2

with that W, eqn. (10) in Section 1.3 boils down to∥∥∥(XS)
1/2WWT(XS)

1/2 − (XS)
∥∥∥
2
≤ ζ

4

(
‖(XS)

1/2‖22 +
‖(XS)1/2‖2F

m

)
(30)

holds with probability at least 1− δ.

Now, applying Weyl’s inequality on the left hand side of the eqn. (30), we further have∣∣∣∣∥∥∥(XS)
1/2W

∥∥∥2
2
−
∥∥∥(XS)

1/2
∥∥∥2
2

∣∣∣∣ ≤ ζ

4

(
‖(XS)

1/2‖22 +
‖(XS)1/2‖2F

m

)
(31)

15

Now, using the facts that ζ4 ≤ 1, ‖(XS)1/2‖2 ≤ ‖(XS)1/2‖F , and ‖(XS)
1/2‖2F
m ≤ ‖(XS)1/2‖2F , from

eqn. (31), ∥∥∥(XS)
1/2W

∥∥∥2
2
≤ 3‖(XS)

1/2‖2F = 3nµ , (32)

where the last equality follows from ‖(XS)1/2‖2F = xTs = nµ .

Finally, combining eqns. (29) and (32), we conclude

‖v‖2 ≤
√

3nµ‖f̃ (t)‖2.

Appendix D Richardson Iteration

Here, we show that all our analyses still hold, even if we replace Step 3 of Algorithm 1 (CG solver)
with Richardson iteration. Basically, all we need to show is the condition in eqn. (7) holds. Note that
the condition in eqn. (6) already holds from Lemma 2, as we use the exact same sketching matrix
W ∈ Rn×w discussed in Section 2.

Algorithm 3 Richardson Iteration Solver
Input: AD ∈ Rm×n, p ∈ Rm; number of iterations t > 0; sketching matrix W ∈ Rn×w;
Initialize: z̃0 ← 0m;
for j = 1 to t do

z̃j ← z̃j−1 + Q−1/2(p−AD2ATQ−1/2z̃j−1);
end for
Output: return z̃t;

Our first result expresses the residual vector f̃ (j) in terms of f̃ (j−1) for j = 1, 2, . . . , t.

Lemma 6 Let f̃ (j), j = 1, 2, . . . , t be the residual vectors at each iteration.Then,

f̃ (j) =
(
Im −Q−

1/2AD2ATQ−
1/2
)

f̃ (j−1) . (33)

Recall that Q = ADWWTDAT and f̃ (j) = Q−1/2(AD2ATQ−1/2z̃j − p).

Proof Using Algorithm 3, we express f̃ (j) as

f̃ (j) = Q−
1/2AD2ATQ−

1/2z̃j −Q−
1/2p

= Q−
1/2AD2ATQ−

1/2
(
z̃j−1 + Q−

1/2(p−AD2ATQ−
1/2z̃j−1)

)
−Q−

1/2p

=
(
Q−

1/2AD2ATQ−
1/2z̃j−1 −Q−

1/2p
)

−Q−
1/2AD2ATQ−

1/2
(
Q−

1/2AD2ATQ−
1/2z̃j−1 −Q−

1/2p
)

=
(
Im −Q−

1/2AD2ATQ−
1/2
)(

Q−
1/2AD2ATQ−

1/2z̃j−1 −Q−
1/2p

)
=
(
Im −Q−

1/2AD2ATQ−
1/2
)

f̃ (j−1) ,

which concludes the proof.

In the next result, we show that the spectral norm of (Im −Q−1/2AD2ATQ−1/2) is upper bounded
by ζ.

Lemma 7 Let the condition in eqn. (6) holds for the sketching matrix W ∈ Rn×w, then

‖Q−1/2AD2ATQ−
1/2 − Im‖2 ≤ ζ .

16

Proof As the condition in eqn. (6) holds, we can go backwards in the proof of Lemma 2 and see that
eqn. (25) holds. So, we subtract Im from each side of eqn. (25) to get(

2

2 + ζ
− 1

)
Im 4 Q−1/2AD2ATQ−1/2 − Im 4

(
2

2− ζ
− 1

)
Im

⇔ − ζ

2 + ζ
Im 4 Q−1/2AD2ATQ−1/2 − Im 4

ζ

2− ζ
Im

⇒ − ζ

2− ζ
Im 4 Q−1/2AD2ATQ−1/2 − Im 4

ζ

2− ζ
Im (34)

⇔ ‖Q−1/2AD2ATQ−1/2 − Im‖2 ≤
ζ

2− ζ
≤ ζ , (35)

where eqn. (34) holds as ζ
2+ζ ≤

ζ
2−ζ and the last inequality of eqn. (35) follows from ζ < 1.

Satisfying eqn. (6). Note that the condition in eqn. (6) already holds from Lemma 2, as we use the
exact same sketching matrix W ∈ Rn×w discussed in Section 2.

Satisfying eqn. (7). Using Lemma 7 and applying Lemma 6 recursively, we get

‖f̃ (t)‖2 ≤ ζ‖f̃ (t−1)‖2 ≤ · · · ≤ ζt‖f̃ (0)‖2 = ζt‖Q−1/2p‖2 .

Appendix E Steepest Descent

We will now replace Step 3 of Algorithm 1 (our proposed CG solver) by preconditioned steepest
descent. We will again prove that our analysis of the proposed infeasible long-step IPM remains
essentially the same.

First, we construct the sketching matrix W as discussed in Section 1.3, with a slightly more stringent
accuracy guarantee. More specifically, we necessitate that∥∥VTWWTV − Im

∥∥
2
≤ ζ(1− ζ)

2
(36)

holds with probability at least 1− δ for a constant ζ ∈ [0, 1]. Notice that the sketching dimension
w = O(m log(m/δ)) and the running time needed to compute Q−1/2 (which isO(nnz(A)·log(m/δ)+
m3 log(m/δ))) remain, asymptotically, the same. In the case of steepest descent, it turns out that
at each iteration the search direction is the negative of the gradient, which is equal to the residual
f̃ (j). Moreover, the step size αj is determined by an exact line search that minimizes the underlying
quadratic function:

αj =
f̃ (j)

T

f̃ (j)

f̃ (j)TQ−1/2 AD2ATQ−1/2f̃ (j)
.

For this choice of αj , it is easy to verify that the current gradient is orthogonal to the previous one.

Algorithm 4 Steepest Descent Solver
Input: AD ∈ Rm×n, p ∈ Rm; number of iterations t > 0; sketching matrix W ∈ Rn×w;
Initialize: z̃0 ← 0m;
for j = 0 to t− 1 do

αj = f̃ (j)
T
f̃ (j)

f̃ (j)TQ−1/2 AD2ATQ−1/2 f̃ (j)
;

z̃j+1 ← z̃j − αj f̃ (j);
end for
Output: return = z̃t;

Similar to Lemma 6, our next result reveals a recursive relation between the search directions which,
later on, will be instrumental in bounding f̃ (t).

17

Lemma 8 Let f̃ (j), j = 1, 2, . . . , t be the residual vectors at each iteration and αj is given by
Algorithm 4. Then,

f̃ (j+1) =
(
Im − αjQ−

1/2AD2ATQ−
1/2
)

f̃ (j) , (37)

Recall that Q = ADWWTDAT and f̃ (j) = Q−1/2(AD2ATQ−1/2z̃j − p) .

Proof In Algorithm 4, we pre-multiply z̃j+1 with Q−1/2AD2ATQ−1/2 and then subtract Q−1/2p
to get

f̃ (j+1) = Q−
1/2AD2ATQ−

1/2z̃j+1 −Q−
1/2p

= Q−
1/2AD2ATQ−

1/2z̃j −Q−
1/2p− αjQ−

1/2AD2ATQ−
1/2f̃ (j)

= f̃ (j) − αjQ−
1/2AD2ATQ−

1/2f̃ (j) =
(
Im − αjQ−

1/2AD2ATQ−
1/2
)

f̃ (j) ,

which concludes the proof.

Next, using this new condition in eqn. (36), we will bound
∥∥Im − αjQ−1/2AD2ATQ−1/2

∥∥
2

through
a couple of results.

Lemma 9 If eqn. (36) is satisfied, then |αj − 1| ≤ ζ(1−ζ)
2 .

Proof First, we rewrite eqn. (36) as follows,

−ζ(1− ζ)

2
Im 4 VTWWTV − Im 4

ζ(1− ζ)

2
Im

Next, we pre and post-multiply the the above expression by UΣ and ΣUT to get

−ζ(1− ζ)

2
AD2AT 4 ADWWTDAT︸ ︷︷ ︸

Q

−AD2AT 4
ζ(1− ζ)

2
AD2AT (38)

Now, pre and post-multiplying eqn. (38) again by Q−1/2, we have(
1− ζ(1− ζ)

2

)
Q−

1/2AD2ATQ−
1/2 4 Im 4

(
1 +

ζ(1− ζ)

2

)
Q−

1/2AD2ATQ−
1/2

⇒
(

1− ζ(1− ζ)

2

)
f̃ (j)

T

Q−
1/2AD2ATQ−

1/2f̃ (j) ≤ f̃ (j)
T

f̃ (j) ≤
(

1 +
ζ(1− ζ)

2

)
f̃ (j)

T

Q−
1/2AD2ATQ−

1/2f̃ (j)

⇒
(

1− ζ(1− ζ)

2

)
≤ f̃ (j)

T

f̃ (j)

f̃ (j)TQ−1/2AD2ATQ−1/2f̃ (j)
≤
(

1 +
ζ(1− ζ)

2

)
⇔ |αj − 1| ≤ ζ(1− ζ)

2
, for j = 1, 2, . . . , t . (39)

Our next result shows that under eqn. (36),
∥∥Im − αjQ−1/2AD2ATQ−1/2

∥∥
2

is upper bounded by a
small quantity for for j = 1, 2, . . . , t .

Lemma 10 If eqn. (36) is satisfied, then
∥∥Im − αjQ−1/2AD2ATQ−1/2

∥∥
2
≤ ζ , for j = 1, 2, . . . , t.

Proof We note that eqn. (36) directly implies∥∥VTWWTV − Im
∥∥
2
≤ ζ

2
(40)

Now, as eqn. (40) holds, from eqn. (25) in the proof of Lemma 2, we have(
1 +

ζ

2

)−1
Im 4 Q−1/2AD2ATQ−1/2 4

(
1− ζ

2

)−1
Im

18

⇔
(

2αj
2 + ζ

− 1

)
Im 4 αjQ

−1/2AD2ATQ−1/2 − Im 4

(
2αj

2− ζ
− 1

)
Im

⇔ 2(αj − 1)− ζ
2 + ζ

Im 4 αjQ
−1/2AD2ATQ−1/2 − Im 4

2(αj − 1) + ζ

2− ζ
Im , (41)

where the above expression follows from multiplying eqn. (25) by αj and then subtracting Im.

Now, from Lemma 9, we have, −ζ(1− ζ) ≤ 2(αj − 1) ≤ ζ(1− ζ) for j = 1, 2, . . . , t. Using this in
eqn. (41), we further have

− ζ(1− ζ) + ζ

2 + ζ
Im 4 αjQ

−1/2AD2ATQ−1/2 − Im 4
ζ(1− ζ) + ζ

2− ζ
Im

⇔ − ζ(2− ζ)

2 + ζ
Im 4 αjQ

−1/2AD2ATQ−1/2 − Im 4 ζ Im

⇒ − ζ Im 4 αjQ
−1/2AD2ATQ−1/2 − Im 4 ζ Im (42)

⇒
∥∥∥Im − αjQ−1/2AD2ATQ−

1/2
∥∥∥
2
≤ ζ ,

where eqn. (42) is due to the fact that 2−ζ
2+ζ ≤ 1.

Satisfying eqn. (6). As eqn. (40) holds, eqn. (6) directly follows from Lemma 2.

Satisfying eqn. (7). Using Lemma 10 and applying Lemma 8 recursively, we get

‖f̃ (t)‖2 ≤ ζ‖f̃ (t−1)‖2 ≤ · · · ≤ ζt‖f̃ (0)‖2 = ζt‖Q−1/2p‖2 .

Appendix F Convergence Analysis of Algorithm 2

F.1 Number of Iterations for the CG Solver

In this section, most of the proofs follow [38] except for the fact that we used our sketching based
preconditioner Q−1/2. Recall that S is the set of optimal and feasible solutions for the proposed LP.

Lemma 11 Let (x0,y0, s0) be the initial point with (x0, s0) > 0 and (x∗,y∗, s∗) ∈ S such that
(x∗, s∗) ≤ (x0, s0) with s0 ≥ |ATy0 − c|. Then, for any point (x,y, s) ∈ N (γ) such that r = η r0

and 0 ≤ η ≤ min
{

1, sTx
s0Tx0

}
, then we have

(i) η (xTs0 + sTx0) ≤ 3nµ , (43a)

(ii) η ‖S(x∗ − x0)‖2 ≤ η ‖Sx0‖2 ≤ ηsTx0 ≤ 3nµ , (43b)

(iii) η ‖X(s0 + ATy0 − c)‖2 ≤ 2η ‖Xs0‖2 ≤ 2η xTs0 ≤ 6nµ . (43c)

Proof We prove eqns. (43a)–(43c) below.

Proof of eqn. (43a). For completeness, we provide a proof of eqn. (43a) which is already discussed
in [38]. Since (x∗, s∗,y∗) ∈ S, the following equalities hold:

Ax∗ = b (44a)

ATy∗ + s∗ = c (44b)

Furthermore, r = ηr0 implies

Ax− b = η(Ax0 − b) (45a)

ATy + s− c = η(ATy0 + s0 − c) (45b)

Combining eqn. (44a) with eqn. (45a) and eqn. (44b) with eqn. (45b), we get

A
(
x− ηx0 − (1− η)x∗

)
= 0 (46a)

19

AT(y − ηy0 − (1− η)y∗) + (s− ηs0 − (1− η)s∗) = 0 (46b)

Multiplying the eqn. (46b) by
(
x− ηx0 − (1− η)x∗

)T
on the left and using eqn. (46a), we get(

x− ηx0 − (1− η)x∗
)T (

s− ηs0 − (1− η)s∗
)

= 0 ,

expanding which we get

η
(
x0Ts + xTs0

)
= η2x0Ts0 + (1− η)2(x∗)Ts∗ + xTs

+ η(1− η)
(
x0Ts∗ + (x∗)Ts0

)
− (1− η)

(
(x∗)Ts + xTs∗

)
(47)

Next, we use the given conditions and rewrite eqn. (47) as

η
(
x0Ts + s0

T

x
)
≤ η2x0Ts0 + xTs + η(1− η)

(
x0Ts∗ + s0

T

x∗
)

≤ η2x0Ts0 + xTs + 2η(1− η)x0Ts0

≤ 2ηx0Ts0 + xTs ≤ 3xTs = 3nµ , (48)

where the first inequality in eqn. (48) follows from from a couple of facts. First, (1− η)((x∗)Ts +
xTs∗) ≥ 0 as (x∗, s∗) ≥ 0 and (x0, s0) ≥ 0; second, as (x∗, s∗,y∗) ∈ S (which implies x∗ ◦ s∗ =
0), we have (x∗)Ts∗ = 0 . Second inequality in eqn. (48) holds as x∗ ≤ x0, s∗ ≤ s0, (x∗, s∗) ≥ 0

and (x0, s0) ≥ 0; combining which we have (x0Ts∗ + s0
T

x∗) ≤ 2 x0Ts0. Third inequality in
eqn. (48) is true as we have η2x0T + 2η(1 − η)x0Ts0 = 2ηx0Ts0 − η2x0Ts0 ≤ 2ηx0Ts0. Final
inequality holds as η ≤ xTs

x0Ts0
.

Proof of eqn. (43b). The last inequality directly follows from eqn. (43a); second last inequality is
also easy to prove as

‖Sx0‖2 =

√√√√ s∑
i=1

(six0i)
2 ≤

√√√√(s∑
i=1

six0i

)2

= sTx0 . (49)

To prove the first inequality in eqn. (43b), we use the fact x0 ≥ x∗ as follows

‖Sx0‖22 − ‖S(x∗ − x0)‖22 =

n∑
i=1

(six
0
i)

2 −
n∑
i=1

s2i
(
(x∗i)

2 + (x0i)
2 − 2x∗i x

0
i

)
=

n∑
i=1

s2i
(
2x∗i x

0
i − (x∗i)

2
)
≥ 0 .

Proof of eqn. (43c). This can be proven using a similar approach as in eqn. (43b). Last inequality
directly follows from eqn. (43a); second last inequality is also easy to prove as

‖Xs0‖2 =

√√√√ n∑
i=1

(xis0i)
2 ≤

√√√√(n∑
i=1

xis0i

)2

= xTs0 . (50)

For the first inequality, we proceed as follows

‖X(s0 + ATy0 − c)‖22 = ‖Xs0‖22 + ‖X(ATy0 − c)‖22 + 2s0
T

XTX(ATy0 − c)

= ‖Xs0‖22 +

n∑
i=1

x2i (A
Ty0 − c)2i + 2

n∑
i=1

x2i s
0
i (A

Ty0 − c)i

≤ ‖Xs0‖22 +

n∑
i=1

(xis
0
i)

2 + 2

n∑
i=1

(xis
0
i)

2

20

= ‖Xs0‖22 + ‖Xs0‖22 + 2‖Xs0‖22 = 4‖Xs0‖22 , (51)

where the inequality in eqn. (51) follows from xi ≥ 0, s0i ≥ 0 and
∣∣(ATy0 − c)i

∣∣ ≤ s0i for all
i = 1, 2, . . . n . This concludes the proof of Lemma 11.

Our next result bounds ‖Q−1/2p‖2 which will be instrumental in proving the final convergence
bound.

Lemma 12 Let (x0,y0, s0) be the initial point with (x0, s0) > 0 such that x0 ≥ x∗ and s0 ≥
max{s∗, |c−ATy0|} for some (x∗,y∗, s∗) ∈ S. Furthermore, let (x,y, s) ∈ N (γ) with r = η r0

for some 0 ≤ η ≤ 1. If the sketching matrix W ∈ Rn×w satisfies the condition in eqn. (6), then

‖Q−1/2p‖2 ≤
√

2

(
9n√
1− γ

+ σ

√
n

1− γ
+
√
n

)
√
µ .

Recall that, r = (rp, rd) = (Ax−b,ATy+s−c) and r0 = (r0p, r
0
d) = (Ax0−b,ATy0+s0−c) .

Proof Note that after correcting the approximation error of the CG solver using v, the primal and
dual residuals r = (rp, rd) corresponding to an iterate (x,y, s) ∈ N (γ) always lie on the line
segment between zero and r(0). In other words, r = ηr(0) always holds for some η ∈ [0, 1]. This
was formally proven in Lemma 3.3 of [38]. To bound ‖Q−1/2p‖2, first we express p as in eqn. (3)
and rewrite

Q−
1/2p = Q−

1/2
(
−rp − σµAS−11n + Ax−AD2rd

)
(52)

Then, applying triangle inequality on ‖Q−1/2p‖2 in eqn. (52), we get

‖Q−1/2p‖2 ≤ ∆1 + ∆2 + ∆3 + ∆4 , (53)

where

∆1 = ‖Q−1/2rp‖2 ,
∆2 = σµ‖Q−1/2AD(XS)−

1/21n‖2 ,
∆3 = ‖Q−1/2ADD−1x‖2 ,
∆4 = ‖Q−1/2AD2rd‖2 .

To bound ∆1, ∆2, ∆3 and ∆4 separately, we will heavily use the condition in eqn. (6). In particular,
from eqn. (6), note that we have ‖Q−1/2AD‖2 ≤

√
2 as ζ ≤ 1 .

Bounding ∆1. Putting rp = η r0p, r0p = Ax0 − b and b = Ax∗, we rewrite ∆1 as

∆1 = η ‖Q−1/2A(x0 − x∗)‖2
= η ‖Q−1/2ADD−1(x0 − x∗)‖2
≤ η ‖Q−1/2AD‖2‖D−1(x0 − x∗)‖2
≤
√

2η ‖D−1(x0 − x∗)‖2
=
√

2η ‖(XS)−
1/2S(x0 − x∗)‖2

≤
√

2η ‖(XS)−
1/2‖2 ‖S(x0 − x∗)‖2 , (54)

where the above steps follow from submultiplicativity and eqn. (6). From eqn. (6), note that we have
‖Q−1/2AD‖2 ≤

√
2 as ζ ≤ 1 . Now, applying eqn. (43b) and ‖(XS)−1/2‖2 = max1≤i≤n

1√
xisi

,
we further have

∆1 ≤
√

2 max
1≤i≤n

1
√
xisi

· 3nµ

≤ 3
√

2n

√
µ

1− γ
, (55)

where the last inequality follows from (x,y, s) ∈ N (γ).

21

Bounding ∆2. Applying submultiplicativity, we have

∆2 = σµ ‖Q−1/2 AD (XS)−
1/21n‖2

≤ σµ ‖Q−1/2 AD‖2‖(XS)−
1/21n‖2

≤
√

2σµ ‖(XS)−
1/21n‖2

=
√

2σµ

√√√√ n∑
i=1

1

xisi
≤
√

2σµ

√√√√ n∑
i=1

1

(1− γ)µ

=
√

2σ

√
nµ

(1− γ)
, (56)

where the second last inequality follows from eqn. (6) and last inequality holds as (x,y, s) ∈ N (γ).

Bounding ∆3. Putting D = S−1/2X1/2; x = X 1n and

∆3 = ‖Q−1/2 AD (S
1/2X−

1/2) X 1n‖2
= ‖Q−1/2 AD (SX)

1/2 1n‖2
≤ ‖Q−1/2 AD‖2‖(SX)

1/2 1n‖2

≤
√

2

√√√√ n∑
i=1

xisi =
√

2nµ , (57)

where the inequalities follows respectively from submultiplicativity and eqn. (6).

Bounding ∆4. Putting rd = η r0d, we have

∆4 = η‖Q−1/2 A D2r0d‖2
≤ η‖Q−1/2 AD‖2‖(XS)−

1/2Xr0d‖2
≤
√

2η ‖(XS)−
1/2X(ATy0 + s0 − c)‖2

≤
√

2η ‖(XS)−
1/2‖2 ‖X(ATy0 + s0 − c)‖2 ,

where the above inequalities follow from submultiplicativity and eqn. (6). Now, applying eqn. (43c)
and ‖(XS)−1/2‖2 ≤ 1√

(1−γ)µ
, we further have

∆4 ≤ 6
√

2n

√
µ

1− γ
(58)

Final bound. Combining eqns. (53), (55) ,(56), (57) and (58)

‖Q−1/2p‖2 ≤
√

2

(
9n√
1− γ

+ σ

√
n

1− γ
+
√
n

)
√
µ . (59)

This concludes the proof of Lemma 12.

Lemma 13 Let the sketching matrix W satisfy the conditions in eqns. (6) and (7). Then, after
t ≥ log(4

√
6nψ/γσ)

log(1/ζ) iterations of the CG solver in Algorithm 1, we have the following:

‖f̃ (t)‖2 ≤
γσ

4
√
n

√
µ and ‖v‖2 ≤

γσ

4
µ ,

where ψ =
(

9n√
1−γ + σ

√
n

1−γ +
√
n
)

and f̃ (t) = Q−1/2AD2ATQ−1/2z̃t −Q−1/2p is the residual

of the solver.

22

Proof Combining Lemma 12 and the condition in eqn. (7), we have

‖f̃ (t)‖2 ≤ ζtψ
√

2µ. (60)

Now, ‖f̃ (t)‖2 ≤ γσ
4
√
n

√
µ holds if

√
2ψ ζt

√
µ ≤ γσ

4
√
n

√
µ, which holds if

(
1
ζ

)t
≥ 4

√
2nψ
γσ . The last

inequality holds for our choice of t. Next, combining Lemma 4 and eqn. (60) we get

‖v‖2 ≤
√

3nµ ‖f̃ (t)‖2 ≤
√

6n ζtψµ

Therefore, ‖v‖2 ≤ γσµ
4 holds if

√
6nψ ζtψµ ≤ γσµ

4 , which holds for our choice of t. Now, fixing γ,
σ, and ζ, after t = O(log n) iterations of Algorithm 1 the conclusions of the lemma hold.

F.2 Determining Step-size, Bounding the Number of Iterations, and Proof of Theorem 1

Let (∆̂x, ∆̂y, ∆̂s) respectively satisfies eqns. (17), (18) and (14b). We rewrite the systen in the
following alternative form

A∆̂x =− rp , (61a)

AT∆̂y + ∆̂s =− rd , (61b)

X∆̂s + S∆̂x =−XS 1n + σµ1n − v . (61c)

Indeed, first we now show how to satisfy eqns. (17), (18) and (14b) from eqn. (61). Pre-multiplying
both sides of eqn. (61c) by AS−1 and noting that D2 = XS−1, we get

AD2∆̂s + A∆̂x = −AX1n + σµAS−11n −AS−1v

⇒AD2∆̂s = rp −Ax + σµAS−11n −AS−1v. (62)

Eqn. (62) holds as AX1n = Ax and, from eqn. (61a), A∆̂x = −rp. Next, pre-multiplying
eqn. (61b) by AD2, we get

AD2AT∆̂y + AD2∆̂s = −AD2rd

⇒AD2AT∆̂y = −rp + Ax− σµAS−11n −AD2rd + AS−1v = p + AS−1v. (63)
The first equality in eqn. (63) follows from eqn. (62) and the definition of p in eqn. (16). This
establishes eqn. (18). Eqn. (14b) directly follows from eqn. (61b). Finally, we get eqn. (17) by
pre-multiplying eqn. (61c) by S−1.

Next, we define each new point traversed by the algorithm as (x(α),y(α), s(α)), where

(x(α),y(α), s(α)) := (x,y, s) + α(∆̂x, ∆̂y, ∆̂s) (64)

µ(α) := x(α)T s(α)/n (65)
r(α) := r (x(α), s(α),y(α)) . (66)

The goal in this section is to bound the number of iterations required by Algorithm 2. Towards that
end, we bound the magnitude of the step size α. First, we provide an upper bound on α, which
allows us to show that each new point (x(α), s(α),y(α)) traversed by the algorithm stays within the
neighborhood N (γ). Second, we provide a lower bound on α, which allows us to bound the number
of iterations required. We use multiple lemmas from [38], which we reproduce here, without their
proofs.

First, we provide an upper bound on α, ensuring that each new point (x(α),y(α), s(α)) traversed by
the algorithm stays within the neighborhood N (γ).

Lemma 14 (Lemma 3.5 of [38]) Assume (∆̂x, ∆̂y, ∆̂s) satisfies eqns. (61) for some σ > 0,
(x,y, s) ∈ N (γ) (for γ ∈ (0, 1)), and ‖v‖2 ≤ γσµ

4 . Then, (x(α),y(α), s(α)) ∈ N (γ) for ev-
ery scalar α such that

0 ≤ α ≤ min

{
1,

γσµ

4‖∆̂x ◦ ∆̂s‖∞

}
. (67)

23

We now provide a lower bound on the values of ᾱ and the corresponding µ(ᾱ); see Algorithm 2.

Lemma 15 (Lemma 3.6 of [38]) In each iteration of Algorithm 2, if ‖v‖2 ≤ γσµ
4 , then the step size

ᾱ satisfies

ᾱ ≥ min

{
1,

min{γσ, (1− 5
4σ)}µ

4‖∆̂x ◦ ∆̂s‖∞

}
(68)

and

µ(ᾱ) =
[
1− ᾱ

2
(1− 5

4
σ)
]
µ. (69)

At this point, we have provided a lower bound (eqn. (68)) for the allowed values of the step size ᾱ.
Next, we show that this lower bound is bounded away from zero. From eqn. (68) this is equivalent to
showing that ‖∆̂x ◦ ∆̂s‖∞ is bounded.

Lemma 16 (Lemma 3.7 of [38] (slightly modified)) Let (x0,y0, s0) be the initial point with
(x0, s0) > 0 and (x0, s0) ≥ (x∗, s∗) for some (x∗,y∗, s∗) ∈ S. Let (x,y, s) ∈ N (γ) be such
that r = ηr0 for some η ∈ [0, 1] and ‖v‖2 ≤ γσµ

4 . Then, the search direction (∆̂x, ∆̂y, ∆̂s)
produced by Algorithm 2 at each iteration satisfies

max{‖D−1∆̂x‖2, ‖D∆̂s‖2} ≤
(

1 +
σ2

1− γ
− 2σ

)1/2√
nµ+

6n√
(1− γ)

√
µ+

γσ

4
√

1− γ
√
µ.

(70)

We should note here that the above lemma is slightly different than Lemma 3.7 of [38]. Indeed,
Lemma 3.7 of [38] actually proves the following bound:

max{‖D−1∆̂x‖2, ‖D∆̂s‖2} ≤
(

1 +
σ2

1− γ
− 2σ

)1/2√
nµ+

6n√
(1− γ)

√
µ+

γσ

4
√
n

√
µ . (71)

Notice that there is slight difference in the last term in the right-hand side, which does not asymptoti-
cally change the bound. The underlying reason for this difference is the fact that [38] constructed the
vector v differently. In our case, we need to bound ‖(XS)−1/2v‖2, which we do as follows:

‖(XS)−1/2v‖2 ≤ ‖(XS)−1/2‖2 ‖v‖2 ≤
1

mini
√
xisi

γσµ

4
, (72)

where in the above expression we use the fact that ‖(XS)−1/2‖2 = 1
mini

√
xisi

. Now as (x,y, s) ∈
N (γ), we further have xisi ≥ (1− γ)µ for all i = 1 . . . n. Combining this with eqn. (72), we get

‖(XS)−1/2v‖2 ≤
γσµ

4
√

(1− γ)µ
=

γσ

4
√

1− γ
√
µ. (73)

On the other hand, [38] had a different construction of v for which ‖(XS)−1/2v‖2 = ‖f̃ (t)‖2 holds.
Therefore they had the following bound:

‖(XS)−1/2v‖2 = ‖f̃ (t)‖2 ≤
γσ

4
√
n

√
µ.

Also, note that after correcting the approximation error of the CG solver using v, the primal and dual
residuals r = (rp, rd) corresponding to an iterate (x,y, s) ∈ N (γ) always lie on the line segment
between zero and r(0). In other words, r = ηr(0) always holds for some η ∈ [0, 1]. This was formally
proven in Lemma 3.3 of [38].

The next lemma bounds the number of iterations that Algorithm 2 needs when started with an
infeasible point that is sufficiently positive.

Lemma 17 (Theorem 2.6 of [38]) Assume that the constants γ and σ are such that max{γ−1, (1−
γ)−1, σ−1, (1 − 5

4σ)−1} = O(1). Let the initial point (x0, s0,y0) satisfy (x0, s0) ≥ (x∗, s∗) for
some (x∗, s∗,y∗) ∈ S and ‖v‖2 ≤ γσµ

4 . Algorithm 2 generates an iterate (xk, sk,yk) satisfying
µk ≤ εµ0 and ‖rk‖2 ≤ ε‖r0‖2 after O(n2 log 1/ε) iterations.

Finally, Theorem 1 follows from Lemmas 13 and 17.

24

Appendix G Additional Notes on Experiments

Problem Size Sketch IPM w/ Precond. CG Stand. IPM w/ Unprec. CG IPM w/ Dir.
(m×N) w In. It. Out. It. κSk In. It. Out. It. κStan Out. It.

ARCENE (100× 10K) 200 30 50 38.09 1.1K 59 4.4× 108 50
DEXTER (300× 20K) 500 39 39 75.42 4.6K 39 7.6× 109 39
DrivFace (606× 6.4K) 1K 50 42 68.87 139K 43 17× 1012 42

Gene RNA (801× 20K) 2K 27 44 20.03 101K 208 4.7× 1012 44

Table 1: Comparison of (our) sketched IPM with CG, standard IPM with CG, and Standard IPM
with a direct solver, for the `1-SVM problem on UCI Machine Learning Repository [20] data
sets. Across all, τ = 10−9 and a relative error of 10−3 or less was achieved. We define κSk =
κ(Q−1/2AD2ATQ−1/2) and κStan = κ(AD2AT).

G.1 Support Vector Machines (SVMs)

The classical `1-SVM problem is as follows. We consider the task of fitting an SVM to data pairs
S = {(xi, yi)}mi=1, where xi ∈ RN and yi ∈ {+1,−1} is a label for each data pair. Here, m is the
number of training points, and N is the feature dimension. The SVM problem with an `1 regularizer
has the following form.

minimize
w

‖w‖1 (74)

subject to yi(w
Txi + b′) ≥ 1, ∀i ∈ [m].

This problem can be written as an LP by introducing the variables w+ and w−, where w = w+−w−.
The objective becomes

∑n
j w

+
j + w−j , and we constrain w+

i ≥ 0 and w−i ≥ 0. Note that the size of
the constraint matrix in the LP becomes (m× (2N + 1)), where m is the number of training points,
and N is the feature dimension.

G.2 Random Data

We generate random synthetic instances of linear programs as follows. To generate A ∈ Rm×n, we
set aij ∼i.i.d. U(0, 1) with probability p and aij = 0 otherwise. We then add min{m,n} i.i.d. draws
from U(0, 1) to the main diagonal, to ensure each row of A has at least one nonzero entry. We set
b = Ax+ 0.1z, where x and z are random vectors drawn from N(0, 1). Finally, we set c ∼ N(0, 1).

G.3 Real Data Descriptions

The following is how we made use a gene expression cancer RNA-Sequencing data set, taken from
the UCI Machine Learning repository. It is part of the RNA-Seq (HiSeq) PANCAN data set [49], and
is a random extraction of gene expressions from patients who have different types of tumors: BRCA,
KIRC, COAD, LUAD and PRAD. We considered the binary classification task of identifying BRCA
versus other types.

The following is how we made use of the DrivFace data set taken from the UCI Machine Learning
repository. In the DrivFace data set, each sample corresponds to an image of a human subject, taken
while driving in real scenarios. Each image is labeled as corresponding to one of 3 possible gaze
directions (left, straight, or right). We considered the binary classification task of identifying two
different gaze directions: (straight, or to either side left or right).

G.4 Additional Experiments

Here we include additional experiments. Figure 2 illustrates the convergence and conditioning
behavior for the DEXTER data set. We see a similar behavior as found for the ARCENE data set in
Figure 1. Figure 3 displays more results for the ARCENE data set.

25

0 10 20 30
Outer Iterations

101

102

103
In

ne
r C

G
Ite

ra
tio

ns

Stand. IPM
Sk. IPM w=500
Sk. IPM w=1000
Sk. IPM w=2000

(a)

0 10 20 30
Outer Iterations

102

104

106

108

1010

Co
nd

iti
on

 N
um

be
r Stand. IPM

Sk. IPM w=500
Sk. IPM w=1000
Sk. IPM w=2000

(b)

Figure 2: DEXTER data set: Our algorithm (Sk. IPM) requires an order of magnitude fewer
inner iterations than the Standard IPM with CG, at each outer iteration, as demonstrated in (a).
This is possible due to the improved conditioning of Q−1/2AD2ATQ−1/2 compared to AD2AT ,
demonstrated in (b). For all, tolCG = 10−5, τ = 10−9.

200 400 600 800 1000
Sketch Dim. w

10

15

20

25

30

In
ne

r I
te

ra
tio

ns

CG tol = 3e− 06
CG tol = 6e− 06
CG tol = 1e− 05
CG tol = 3e− 05

(a)

200 400 600 800 1000
Sketch Dim. w

101

κ(
Q

−1
/2
AD

2 A
T Q

−1
/2

) CG tol = 3e− 06
CG tol = 6e− 06
CG tol = 1e− 05
CG tol = 3e− 05

(b)

Figure 3: ARCENE data set: As w increases, (a) the number of inner iterations decreases, and is
relatively robust to tolCG, and, (b) the condition number decreases as well.

26

