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Abstract

Inspired by traffic routing applications, we consider the problem of finding the1

shortest path from a source s to a destination t in a graph, when the lengths of2

the edges are unknown. Instead, we are given hints or predictions of the edge3

lengths from a collection of ML models, trained possibly on historical data and4

other contexts in the network. Additionally, we assume that the true length of any5

candidate path can be obtained by probing an up-to-date snapshot of the network.6

However, each probe introduces a latency, and thus the goal is to minimize the7

number of probes while finding a near-optimal path with high probability. We8

formalize this problem and show assumptions under which it admits to efficient ap-9

proximation algorithms. We verify these assumptions and validate the performance10

of our algorithms on real data.11

1 Introduction12

Routing traffic is a prototypical example of using large scale ML for finding shortest paths in graphs13

where the state of the graph is constantly changing with time. Given the scale of the road network14

with billions of road segments around the world [Strano et al., 2017], and low latency requirements15

for the path search algorithms [Goldberg, 2007, Min and Wynter, 2011], integrating ML models that16

compute edge or path lengths into the path search algorithms is a challenging problem. Further, the17

architecture to serve route recommendations to users needs to deal with network data at different18

levels of granularity [Baum et al., 2016, Delling et al., 2017, 2018].19

Typically, the lengths, either for edges or paths, are computed by multiple ML models which use20

some combination of historical network statistics as well as current state of the network [Yang et al.,21

2004, de Fabritiis et al., 2008, Tchrakian et al., 2012]. These predicted lengths are then consumed by22

the path searcher to generate route recommendations. The details of the ML models are opaque to23

this path searcher. To handle any errors in the predicted lengths gracefully, the path searcher queries24

a real-time traffic source that keeps a more accurate representation of the network [Cebecauer et al.,25

2018] and gets updated at a much higher frequency and possibly on a much smaller fraction of the26

network than the ML predictions. However, access to the traffic server is expensive: it consumes27

critical time that affects the latency of serving the user request. Therefore, trading off between28

the number of probes to the traffic server and error in the predicted lengths becomes an important29

design decision in engineering an efficient and effective routing engine. Figure 1 summarizes the30

architecture.31

In this paper, we study the setting where a path searcher has access to multiple predictions for path32

lengths, potentially from multiple ML models. Using these predictions or hints, the searcher can33

query or probe a traffic server to get the accurate length for any path. The goal is to compute the34

shortest path between two end points with high probability using all the hints and a small a number35

of probes to the real-time traffic server.36
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1.1 Model and Results37

Figure 1: Architecture of a routing engine

For our theoretical results, we consider the prob-38

lem of routing from a source s to sink t in a spe-39

cialized network composed of n parallel edges40

between s and t, each edge of different length.41

Though this problem appears stylized, as we42

discuss below, our main empirical contribution43

is to show that the theory we develop for this44

problem can be applied to routing in real-world45

networks.46

Going back to our stylized network, the true47

length Lj of any edge j is unknown upfront.48

Each of m predictors (or experts) makes a pre-49

diction for each edge, where Pij denotes the50

prediction of expert i for edge j. We can probe51

any edge j (say via a traffic server) to obtain its true length Lj ; however, these probes consume server52

resources and incur latency, and are hence expensive. The goal is to devise a probing strategy that53

unearths the edge with minimum true length with as few probes as possible, with high probability.54

Arbitrary Prediction Errors. We first consider the model where the predictions of the experts can55

be arbitrary. Here, we cannot hope to recover the minimum length edge exactly unless we probe all56

edges. We show that overcoming this barrier requires that our algorithm makes an error that is at least57

the maximum error made by the best expert, as well as the maximum error on the minimum length58

edge. On the other hand, we show that such an error can be achieved without performing any probes.59

In essence, the model where experts can make arbitrary errors is too pessimistic and does not offer60

much insight into algorithm development. For lack of space, we present this result in Appendix A in61

the supplementary material.62

Stochastic Prediction Errors. In Section 2, we therefore assume the prediction errors of the experts63

are drawn randomly from known, independent distributions. In this case, by a simple application of64

Bayes’ rule, the predictions {Pij} induce a posterior distribution over the true lengths {Lj}, where65

the distributions for each edge are independent. In this case, we are given a bound δ on the probability66

that the minimum length edge found by probing is not the overall minimum length edge. We seek67

to minimize the expected number of probes needed to achieve this bound. Such a probing strategy68

could be adaptive, depending on the outcomes of the edges probed so far.69

Our main technical contribution is a reduction of the above problem to adaptive submodular maxi-70

mization, where the non-trivial aspect is the construction of an appropriate surrogate submodular71

function to capture the outcome of the probing process. Using this reduction, we show a simple72

greedy policy that probes a factor O(log2(n/δ)) more edges in expectation, and achieves a constant73

approximation to the probability δ that the chosen edge is not the overall best edge.74

Empirical Validation. Our theoretical model assumes parallel edges whose lengths follow indepen-75

dent distributions. We can port such a model to real traffic networks where each s–t path in the traffic76

network maps to one of the parallel edges. The main issue that arises in path routing is that paths can77

overlap, and hence the path lengths can no longer be treated as independent random variables.78

In Section 3, we empirically demonstrate how to overcome these obstacles on real-world data, and79

reduce the overall probing problem to the parallel edge case. Towards this end, we analyze data from80

the NYC traffic network. We show that conditioned on knowing the length of one canonical path,81

the fluctuations in the lengths of the other paths are approximately independent. This reduces the82

problem subsequent to probing the canonical path to the parallel edge case. We simulate the greedy83

algorithm for the parallel edge case on our path data under the independence assumption, and show84

that with a small number of probes we are able to recover the optimal path in almost all instances,85

validating its performance in practice.86

1.2 Related Work87

Stochastic Probing. Stochastic models for probing independent distributions have a rich history88

in algorithm design, primarily due to applications in database query optimization [Munagala et al.,89
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2005, Deshpande et al., 2016, Liu et al., 2008] and wireless communication [Guha et al., 2006]. In90

these problems, we are given n independent distributions each of which can be probed at a certain91

cost, revealing its true value. These problems either have a bound on the number of probes, or seek92

to minimize the expected probing cost in order to optimize a certain objective over the probed and93

unprobed values. Of particular relevance is the question of adaptively probing at most k distributions94

to minimize the smallest value discovered among the probed distributions [Goel et al., 2006]. A95

related problem is the Pandora’s problem [Guha et al., 2006, Beyhaghi and Kleinberg, 2019] that96

seeks to maximize the largest value found minus the total probing cost spent in discovering the value.97

Typical approaches to solving these problem involve greedy strategies that are based on submodularity98

of objectives such as the maximum of a set of distributions. A general adaptive greedy algorithm99

for such problems, which probes the next distribution conditioned on the values seen so far, was100

presented in Golovin and Krause [2011]. The performance guarantee requires submodularity to hold101

for every realization of probed values so far.102

Our work is different from formulations considered in query optimization and wireless communication103

in that we seek to do more than simply approximate the smallest value found; instead we seek to find104

the true smallest value (had we probed all the distributions) with high probability. This makes a direct105

application of adaptive submodularity infeasible, and we make our main technical contribution of106

using a surrogate submodular function to model our objective.107

Stochastic Shortest Paths. Our work is also related to the body of literature on shortest paths108

under uncertainty. It is typically assumed that edge lengths follow known independent distributions.109

A canonical problem is to find an s–t path whose length is below a threshold L with highest110

probability. When the edge length distributions are Gaussian, Nikolova et al. [2006] present a quasi-111

polynomial time algorithm for this problem via connections to quasi-convex maximization. However,112

no generalization is known when the distributions are not Gaussian. A related probing problem is113

the Canadian Traveler Problem [Nikolova and Karger, 2008, Papadimitriou and Yannakakis, 1991],114

where the length of an edge is revealed when we reach one of its end-points. The goal is to find an115

adaptive routing policy from s to t that has minimum expected length; such a policy could backtrack116

on edges it has already seen. There are no efficient algorithms known for this problem, except under117

special assumptions such as no backtracking [Bnaya et al., 2009]. The difficulty is that though edge118

lengths are independent, the path lengths can be arbitrarily correlated and this can make the problem119

intractable in the worst case.120

In light of this worst-case difficulty, we take a more data-centric approach. We show that on realistic121

instances, the path lengths are roughly independent conditioned on knowing the length of one path.122

This reduces the problem to a simpler probing problem over independent distributions, and we extend123

machinery based on adaptive submodular function maximization to solve it.124

Online Problems with Hints. Adaptive or online algorithms with machine learning predictions125

has recently been popular for a variety of problem domains. Traditionally, in online algorithms,126

the future is assumed to be entirely unknown to the algorithm, which often results in pessimistic127

solutions. In contrast, recent research has focused on incorporating machine learning predictions in128

online algorithms to obtain more optimistic bounds if the predictions are correct, but preserve the129

robustness of the classic model in case the predictions turn out to be inaccurate. This model has been130

applied to a wide variety of problems including rent or buy problems [Purohit et al., 2018, Gollapudi131

and Panigrahi, 2019], caching [Lykouris and Vassilvtiskii, 2018], scheduling [Lattanzi et al., 2020],132

frequency estimation [Hsu et al., 2019], Bloom filters [Mitzenmacher, 2018], and so on.133

In the context of probing for shortest paths, we assume each machine learning expert makes a134

prediction for the length of each edge. However, unlike prior work that admits positive results even135

when experts can make arbitrary errors, we show that if the experts can be arbitrarily inaccurate, the136

bounds we obtain for shortest paths are still too pessimistic. We therefore need to make stochastic137

assumptions on the accuracy of the experts themselves. In essence, this reduces to a stochastic138

probing problem where the distribution on edge lengths is induced by the noise distributions of the139

experts, and making any weaker assumptions on the experts leads to pessimistic bounds.140

2 Stochastic Prediction Error Model141

In this section, we consider the following simple, yet canonical, graph model. The graph consists of142

n parallel paths between s and t. We assume that there are m predictors (or experts) that predict a143
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length for each of the n edges. Pij denotes the ith expert’s prediction for the jth edge, and the true144

length of the edge is denoted by Lj .145

In Appendix A (see supplementary material), we consider the case where we do not have any146

assumptions on the predictions. In this case, we show lower bounds that make it difficult to obtain147

non-trivial algorithms. In particular, we present examples illustrating that if the predictions are148

adversarial, then probing does not offer much advantage.149

We now show that if we make stochastic assumptions on the predictions, specifically that a predictor’s150

error on each edge is randomly distributed (according to a known distribution, which can potentially151

be obtained from historic data), then an adaptive greedy probing strategy is provably effective.152

Stochastic Model. Our approach has two main steps. The first is to use the assumptions on the153

predictors’ errors to obtain a posterior distribution for the length of each path. Next, we develop a154

strategy for probing the paths that takes these distributions into account, and aims to maximize the155

probability of finding a near-minimal path with as few queries as possible.156

We assume there is a prior distribution Dj over the edge length of j. Given the true edge length Lj ,157

each expert outputs a prediction Pij = Lj + ηij , where the error ηij is drawn from a known indepen-158

dent distribution. Given the predictions {Pij}, we can use Bayes’ rule to compute a distribution Xj159

over the true length Lj for each edge j as:160

gj(L) = Pr[Xj = L] =

∏
i Pr [ηij = Pij − L] · Pr[Dj = L]∑

L′
∏
i Pr [ηij = Pij − L′] · Pr[Dj = L′]

In what follows, we will therefore ignore the predictions, and simply assume access to the conditional161

distributions Xj for each edge j. We denote by E the set of all edges, and assume |E| = n.162

2.1 Adaptive Probing Strategies163

We can thus formalize the probing question as follows: we have n paths between s and t. The length164

of path j is a random variable Xj with density function gj . Moreover, the {Xj}nj=1 are independent165

r.v.s. We assume for notational simplicity that Xj are also discrete with support Λ (all our arguments166

directly carry over to the continuous case). As all the paths are independent, we can view them as167

single edges, without loss of generality. When we probe/query an edge, we observe a realization of168

Xj . Our goals are the following: (a) make as few probes as possible, (b) maximize the probability of169

finding an edge that is within ε of minj Xj , where ε is a given accuracy parameter.170

Formally, a probing policy is described by a tree. At every step, we have a collection of observations171

(values of edges probed so far). Based on these values, a new edge is probed, and we see a realization172

of the length of that edge. At some point, the policy terminates (stops probing) and outputs the173

shortest edge seen so far. We say that a policy succeeds with parameters (ε, δ) if at any termination, if174

we denote by S the set of edges probed so far and by L the minimum probed edge length, we have:175

Pr

[
min
j /∈S

Xj ≤ L− ε
]
≤ δ ∀(S,L). (1)

Objective. Given ε, δ > 0, the goal is to find a probing policy π that succeeds with parameters176

(ε, δ), such that the expected number of probes is minimized. The expectation is over the realizations177

of the values of Xj . Our main result is the following:178

Theorem 2.1. Let ε, δ > 0 be given parameters, and suppose Xj are independent random variables179

whose distributions gj are known. Suppose there exists a probing strategy π∗ that succeeds with pa-180

rameters (ε, δ) and makes OPT probes in expectation. Then the adaptive greedy strategy (Algorithm 1)181

succeeds with parameters (ε, 3δ) and makes O(OPT · log(n/δ)) probes in expectation.182

2.2 Background: Adaptive Submodularity183

We use the adaptive submodularity framework of Golovin and Krause [2011]. We begin with some184

notation and definitions. Let E = {e1, e2, . . . , en} denote the n edges. Recall that Xj is the random185

variable denoting the length of ej . It has the density function gj .186

Definition 2.2 (Golovin and Krause [2011]). Let us define the following terms:187
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• A realization φ is an assignment of lengths to all the edges. Specifically, φ : E 7→ R, and188

the probability of this realization (since Xj are independent) is
∏
j Pr[Xj = φ(ej)].189

• An observation (or partial realization) ψ consists of a subset S of the edges along with190

their realized lengths. S is called the domain of ψ. Formally, we view ψ as a set of pairs191

(e, `), for e ∈ S (there is exactly one pair for each e ∈ S). Since only the smallest observed192

matters for many of our arguments, we sometimes write ψ = (S,L), where S is the queried193

set, and L is the minimum observed length.194

• We say that an observation ψ is consistent with a realization φ if φ(e) = ` for all pairs195

(e, `) ∈ ψ. We write this as ψ ∼ φ.196

• For two observations ψ = (S,L), ψ′ = (S′, L′), we say that ψ � ψ′ if every pair (e, `) in197

ψ is also in ψ′. This implies that S ⊆ S′ and L ≥ L′.198

The main quantity of interest is the function f : 2E × ΛE 7→ R (recall that Λ is the set of all possible199

edge lengths). Suppose we probed a subset S of edges, f(S, φ) denotes a “utility” we associate with200

the probes S for the realization φ. In our application, the value of f(S, φ) will only depend on S and201

the values φ(S); i.e., they do not depend on the lengths of the edges E \ S. Such a function satisfies202

the so-called self-certifying property, defined in Golovin and Krause [2011]. Formally, if we have a203

realization φ and an observation ψ = (S,L) that is consistent, f is said to have the self-certifying204

property if f(S, φ) = f(S, φ′) for all other realizations φ′ such that ψ ∼ φ′. This property holds, in205

particular, if f only depends on ψ (as will be the case for us).206

We consider functions f where for all realizations φ, f(∅, φ) = 0 and f(E, φ) = Q, for some207

parameter Q. In other words, if we make no queries, the utility is 0 and if all edges are queried,208

the utility is Q. The framework of Golovin and Krause [2011] aims to query a small set S, while209

achieving an f() value of Q. This turns out to be possible if f satisfies certain structural properties,210

that we now define.211

Definition 2.3 (Monotonicity). Let ψ be an observation with domain S, and let e 6∈ S and ` ∈ Λ.212

Define ψ′ = ψ ∪ {(e, `)}. f is said to be strongly adaptive monotone for all (e, `) as above, we have213

Eφ[f(S, φ) | ψ ∼ φ] ≤ Eφ[f(S ∪ {e}, φ) | ψ′ ∼ φ].

The expectations above are over all the φ that are consistent with the corresponding ψ. In the case214

when f is only dependent on ψ (as will be the case for us), the above is equivalent to f(ψ) ≤ f(ψ′).215

A second property we need is related to submodularity. Before defining this, let us introduce another216

notation. Let ψ and ψ′ be observations with domains S and S′ respectively, and let ψ � ψ′. Let217

e ∈ E \ S′. Define218

∆(e|ψ;ψ′) := Eφ
[
f(S ∪ {e}, φ)− f(S, φ) | ψ′ ∼ φ

]
.

The expectation runs over all φ consistent with ψ′. Since e /∈ S′, the expectation runs over all the219

realized lengths of the edge e. We can now define strong adaptive submodularity as follows:220

Definition 2.4. [Submodularity] A function f is strongly adaptive submodular if for all ψ,ψ′, e as221

above, we have ∆(e|ψ;ψ′) ≥ ∆(e|ψ′;ψ′). In other words, conditioned on a realization consistent222

with ψ′, the marginal increase in f is at least as large when e is probed in ψ compared to ψ′.223

Given the above definitions, the main result in Golovin and Krause [2011] is about the adaptive224

GREEDY algorithm: At each step, given an observation ψ = (S,L), probe the edge e /∈ S that225

maximizes ∆(ψ, e;ψ), stopping when f > Q− η for suitably chosen η.226

Consider all adaptive policies that only stop when f > Q− η, and among them, let π∗ minimize the227

expected number of probes. Let this optimal expected number of probes be denoted OPT.228

Theorem 2.5 (Golovin and Krause [2011]). Suppose f is self-certifying, strongly adaptive monotone,229

and strongly adaptive submodular. Further, suppose η is such that f(S, φ) > Q − η implies230

f(S, φ) = Q. Then GREEDY has expected number of probes at most O
(

OPT ·
(

ln
(
Q
η

)
+ 1
)2)

.231

2.3 Surrogate Submodular Function232

Let us now see how to apply the methods of Golovin and Krause [2011] to our setting. A natural233

way to define f is as follows: after querying S, the probability that none of the non-queried edges234

5



has a length significantly smaller than the minimum length of edges in S. Formally, f(S, φ) =235

1 − Pr[minej /∈S Xj ≤ L − ε], where L = mine∈S φ(e). This function satisfies the self-certifying236

property, since it does not depend on the realized lengths of edges not in S. However, it does not237

satisfy (strong) adaptive submodularity.238

Example 1. Consider two edges a, b. Suppose Xa is 1/4 w.p. 1/2 and 3/4 w.p. 1/2. Suppose239

Xb is 0 w.p. 1/2 and 1/2 w.p. 1/2. Now, consider the two observations ψ = ∅ (no queries) and240

ψ′ = {(b, 1/2)} (i.e., b was queried and the observed value is 1/2). Now, we have ∆(a|ψ;ψ′) = 1/4,241

while ∆(a|ψ′;ψ′) = 1/2. This violates Definition 2.4.242

To circumvent this problem, we use a linear surrogate function for which all the prerequisites for243

Theorem 2.5 hold. Recall that gj(`) = Pr[Xj = `] for all ` ∈ Λ, and that E = {e1, e2, . . . , en}. Let244

Hj(L) = Pr[Xj ≤ L− ε]. Given an observation ψ = (S,L) and a realization φ that is consistent,245

define the surrogate function f as:246

f(S, φ) = n−
∑
ej /∈S

Hj(L) = |S|+
∑
ej /∈S

(1−Hj(L)) . (2)

If no edges are probed, we set L = ∞, so that
∑
ej /∈S Hj(L) = n, and f(∅, φ) = 0 for all φ.247

Further, note that f(E, φ) = n for all φ. Also, we clearly have that f(S, φ) depends only on the248

values of φ(S), and thus f satisfies the self-certifying property. We now show that it also satisfies249

Definitions 2.3 and 2.4.250

Theorem 2.6. The function f in (2) is strongly adaptive monotone and strongly adaptive submodular.251

Proof. We first show submodularity. Let ψ0 = (S0, L0) and ψ1 = (S1, L1) be two observations252

such that ψ0 � ψ1. Thus S0 ⊆ S1 and L0 ≥ L1. Consider some edge ek ∈ E \ S1. Then, noting253

that f(S0, φ) depends only on ψ0 and not on the realized lengths of edges not in S0, we have:254

∆(k|ψ0;ψ1) =

n−∑
`

gk(`)
∑

ej /∈S0∪{ek}

Hj (min(L0, `))

−
n− ∑

ej /∈S0

Hj(L0)


= Hk(L0) +

∑
`≤L0

gk(`)

 ∑
ej /∈S0∪{ek}

(Hj(L0)−Hj(`))


Similarly, we have: ∆(ψ1, k;ψ1) = Hk(L1) +

∑
`≤L1

gk(`)
(∑

ej /∈S1∪{ek} (Hj(L1)−Hj(`))
)

.255

Since S0 ⊆ S1, the latter summation is over fewer terms j. Similarly, since L1 ≤ L0, the latter256

summation is also over fewer terms `. Since for L1 ≤ L0, we have Hj(L1) ≤ Hj(L0), each term257

in the latter summation is also smaller. Therefore, we have ∆(ψ0, k;ψ1) ≥ ∆(ψ1, k;ψ1) showing258

strong adaptive submodularity.259

To show monotonicity, consider an observation ψ = (S,L) and let e /∈ S and ` ∈ Λ. Define260

ψ′ = ψ ∪ {(e, `)}. Then we have261

Eφ[f(S, φ) | ψ ∼ φ] = n−
∑
ej 6∈S

Hj(L),

Eφ[f(S ∪ {e}, φ) | ψ′ ∼ φ] = n−
∑

ej 6∈S,ej 6=e

Hj(min(L, `)).

The latter summation is over one less edge, and moreover, Hj(min(L, `)) ≤ Hj(L). Therefore, the262

latter summation is at most as large as the former, which implies the condition in Definition 2.3.263

2.4 The GREEDY Algorithm264

We now show how to use the surrogate f above to prove Theorem 2.1. We start with the following265

claim that helps us relate the success criterion in the algorithm with f defined in (2).266
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Claim 1 (Proved in Appendix B in supplementary material). Let δ ≤ 1/2 and let ψ = (S,L) be267

an observation. For any S,L, we have Pr[minej /∈S Xj ≤ L − ε] ≤
∑
ej /∈S Hj(L). Moreover, if268

Pr[minej /∈S Xj ≤ L− ε] ≤ δ, then
∑
ej /∈S Hj(L) ≤ 2δ.269

We now show how to use Theorem 2.5 to prove our main result, Theorem 2.1. To apply Theorem 2.5270

directly, we need an η such that f(S, φ) > Q− η implies that f(S, φ) = Q (recall that Q is the the271

maximum value, f(E, φ)). To achieve this, we need to discretize f . We do so by discretizing the272

values of H (only for the purposes of computing f , we do not modify the distributions gj). Define273

Ĥj(L) to be Hj(L), rounded down to the nearest multiple of δ
n , where δ is the parameter from274

Theorem 2.1. Define Q = n− 3δ, and let275

f̂(S, φ) = min

Q, n−∑
ej 6∈S

Ĥj(L)

 , where L = min
e∈S

φ(e) as before.

Note that whenever f̂(S, φ) ≤ Q, we have |f̂(S, φ)− f(S, φ)| < δ (because the error in each of the276

Ĥ terms is < δ/n). We are now ready to state GREEDY in Algorithm 1. (Note that f̂(S, φ) can be277

computed just using ψ when checking the condition of the while loop.)278

Algorithm 1 Greedy probing

1: Input: Probability density functions {gj}nj=1 for edges, Hj(L) as defined, parameters ε, δ
2: S ← ∅, ψ = ∅
3: Define Ĥj(L) as Hj(L) rounded down to nearest multiple of δ/n, for all L
4: while f̂(S, φ) ≤ Q− η do
5: Find ej 6∈ S that maximizes ∆(j|ψ;ψ) (where ∆ measures change in f̂ )
6: Probe the length of ej to get value `. Add (ej , `) to ψ
7: end while
8: Return S

Finally, using the above machinery, we complete the analysis by proving Theorem 2.1 in Appendix B279

in supplementary material.280

3 Routing in Traffic Networks: Model and Experiments281

The main assumption in Section 2 was that the lengths of the parallel paths are independent. This282

allowed us to find the distributions gj(L) independently for different paths, by taking into account283

the predictions. In practice, congestion on one path causes users to take alternate paths which also284

tend to get congested, and this may violate independence. However, we observe that once we probe285

and determine the (true) length of one of the paths, the fluctuations in the lengths of the other are286

independent. We first present the model and subsequently demonstrate its validity on real data.287

Model for Traffic Networks. Specifically, we designate one canonical path, which typically is the288

one that has the smallest travel time under free flow conditions (i.e., without any traffic congestion).289

We show that, once the length of the canonical path is probed, the lengths of the other paths have290

very low correlation. In other words, to a fairly good approximation, the dependencies among path291

lengths can be captured using a tree graphical model of depth two.292

Formally, let s, t be the source and destination, and let P1,P2, . . . ,Pm be a collection of paths, where293

P1 is the canonical path. Let Xj be the random variable that denotes the length of Pj . Then for any294

length `, the random variables {(Xj | X1 = `)} are all independent.295

3.1 Experiments and Evaluation296

We now use a dataset of link travel times in New York City to motivate the above model, and evaluate297

the performance of our greedy algorithm. This dataset contains hourly average traffic speeds on298

road segments throughout New York City. It covers four years of traffic estimates in New York City299

estimated from approximately 700 million taxi trips from 2010-2013 [Donovan and Work, 2017].300
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(a) (b) (c)

Figure 2: An example of three alternate routes for a query in the New York road network. Routes (b)
and (c) have independent travel times after conditioning on the travel time of the canonical route (a).

0 5 · 10−2 0.1 0.15 0.2 0.25

0’-10’

10’20’

20’-30’

30’-40’

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

0-30%

30-60%

60-90%

Figure 3: Pearson correlation coefficient between the lengths of two paths plotted by the length of the
canonical path (left) and the overlap between them (right).

Testing Independence Assumption. For 1, 000 randomly sampled source-destination queries, we301

generate candidate paths using the plateau alternates method [Abraham et al., 2010]. For each one,302

we condition on the true length of the canonical path and compute the absolute value of the Pearson303

correlation coefficient between an arbitrary pair of (non-canonical) paths. Averaging over 1, 000304

such iterations gives 0.11 for the average absolute value of the correlation coefficient, thus providing305

evidence of weak correlation. Moreover, we show that the coefficient remains largely constant as the306

canonical path length and the overlap between the paths vary. Details are given in Figure 3, and we307

present an example of such alternate paths in Figure 2.308

# Alternates 10 20 30 40
# Probes (δ∗ = 0.01) 2.42 3.67 5.03 9.54
# Probes (δ∗ = 0.1) 1.75 2.43 2.95 4.02

Table 1: The average number of probes made by
GREEDY for different numbers of candidate paths.

Performance of GREEDY. Finally, we evaluate309

the GREEDY algorithm on this data. We use two310

different values for parameter δ∗: δ∗ = 0.1 and311

δ∗ = 0.01. We set ε = 0, so that we seek an312

exact shortest path with probability 1− δ∗. We313

almost always recover the optimal path in the314

set with a small number of probes. Specifically,315

with δ∗ = 0.01, the algorithm successfully iden-316

tified the optimal path in all 1, 000 iterations,317

whereas with δ∗ = 0.1, it did so in 966 of them.318

For comparison, Dijkstra using historical averages recovers the optimal path in 565 of the instances.319

Table 1 shows the dependence of number of probes changes on the number of alternates available320

as δ∗ changes. We note that it was not possible to identify all edge lengths with a small number of321

probes as, on average, 88% of the candidate paths had a unique subpath.322

4 Conclusion323

In this paper, we presented a simple model and algorithm for probing for a shortest path with machine324

learnt advice. We validated the model assumption and algorithm on real-world data. As future work,325

we will study how to incorporate weaker stochastic assumptions, such as the edge independence326

model in Nikolova et al. [2006], as well as weaker models of expert advice than the assumption that327

the errors are independent and stochastic. Of particular interest is combining our results with sample328

complexity bounds for learning the error distributions.329
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Broader Impact330

Our work has consequences to the design and implementation of algorithms in large-scale traffic331

routing applications. Our model is simple and easily applicable to settings where expert advice can332

be used to refine the choice of routes. At the same time, we make a methodological contribution by333

showing that for the canonical objective of probing to find the best value with high probability has a334

submodular surrogate that enables an efficient greedy probing strategy.335
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A Non-stochastic Predictions409

In this section, we consider the case where we do not have any assumptions on the predictions. In410

this case, we show lower bounds that make it difficult to obtain non-trivial algorithms. This motivates411

the stochastic model that we will present in Section 2.412

Recall that the graph consists of n parallel paths between s and t. We assume that there are m413

predictors (or experts) that predict a length for each of the n edges. Pij denotes the ith expert’s414

prediction for the jth edge, and the true length of the edge is denoted by Lj .415

Competing with the best predictor. If none of the predictors give useful information about the416

true lengths Lj , it is clear that one needs to probe Ω(n) edges in order to find the shortest one. Thus,417

we need to assume that at least one of the predictors has small error. However, this is not sufficient,418

as the following example shows.419

Example 2. Suppose n = m, and suppose that the ith expert predicts length 0 for the ith edge and420

length 1 for all the other edges. I.e., Pii = 0 and Pij = 1 for all i 6= j. Suppose that the true lengths421

are Lj∗ = 0 for some unknown j∗ and Lj = 1 for the rest of the edges.422

In the example above, the j∗th expert has a perfect prediction for every edge. But without making423

Ω(n) queries, it is impossible for any (potentially randomized) algorithm to find j∗, or equivalently,424

to achieve any non-trivial additive or multiplicative guarantee.425

Error or the best edge (γ). Intuitively, the example above is difficult because there are many426

experts that have a large prediction error on the best edge (in hindsight). Consider the quantity427

γ := max
i∈[m]

|Pij∗ − Lj∗ |.

Even in the case of a single expert, the quantity γ is a lower bound on the additive error that any428

algorithm making o(n) queries can achieve. To see this, suppose we only have one expert (m = 1),429

and suppose that the predictions for all the edges is 1, and γ = 1. Suppose that the true lengths are 1430

for all the edges except j∗, for which Lj∗ = 0. Finding j∗ clearly requires Ω(n) queries.431

One may hope that if we have more experts, the presence of experts who have small error on j∗ can432

help identifying j∗. But the following simple example shows that this is not possible.433

Example 3. Suppse expert 1 predicts P1j = 1 for all j, and suppose that the other experts predict434

{0, 1} uniformly at random for every edge. The true lengths are Lj∗ = 0 for some unknown j∗ and435

Lj = 1 for all other j.436

The same Ω(n) probe bound applies to this example, even though many (roughly m/2) experts437

predict the right value for Lj∗ .438

Error of best expert. A second quantity we consider is439

∆ := min
i

max
j∈[n]

|Pij − Lj |.

∆ being small corresponds to the existence of an expert whose error on all the edges is small. While440

this is a strong assumption, we see that it is necessary. Even if m = 1 (single expert), the following441

example illustrates that achieving an error smaller than ∆ requires Ω(n) queries.442

Example 4. Suppose expert 1 predicts P1j = 0 for 1 ≤ j ≤ n/2, and predicts P1j = 1 for j > n/2.443

Suppose that the true lengths are all 1 except for Lj∗ = 0 for some unknown j∗ ≤ n/2.444

Here, the predictions are perfect on half the edges, but we still need Ω(n) queries to find j∗ (i.e., to445

find the best edge up to an error < ∆(= 1)).446

Remark. The examples show that γ and ∆ are both necessary terms in the error bound of any447

algorithm with a sub-linear number of queries. The two terms are qualitatively different: γ captures448

the error incurred because the predictors “over-predicted” the cost on the optimal edge, while ∆449

captures the error incurred because the predictors under-predicted the cost of non-optimal edges.450

If we allow both the terms in the error bound, we do not need any queries to achieve a good routing.451

1



Routing without probes. Consider simply using the edge j that has the minimum value of452

maxi Pij . For the best edge j∗, this quantity is ≤ Lj∗ + γ, by assumption. Suppose j is the453

edge that we output. Since there exists an expert i∗ whose error on that edge is ≤ ∆, we have that454

Lj ≤ Pi∗j + ∆ ≤ Lj∗ + γ + ∆.455

The examples and the algorithm above show that probing does not offer much power when predictions456

can be arbitrary. Moreover, there are limitations on how close we can get to the optimal edge length.457

B Omitted Proofs458

B.1 Proof of Claim 1459

The first part of the claim follows by a simple union bound:∑
ej /∈S

Hj(L) =
∑
ej /∈S

Pr[Xj ≤ L− ε] ≥ Pr
[
∪ej /∈S (Xj ≤ L− ε)

]
= Pr[min

ej /∈S
Xj ≤ L− ε]

To see the second part, note that since Hj(L) = Pr[Xj ≤ L− ε],

δ = Pr[min
ej /∈S

Xj ≤ L− ε] = 1−
∏
ej /∈S

(1−Hj(L)) ≥ 1− e−
∑

ej /∈S Hj(L).

Therefore,
e
−

∑
ej /∈S Hj(L) ≥ 1− δ =⇒

∑
ej /∈S

Hj(L) ≤ − ln(1− δ) ≤ 2δ,

where the final inequality holds when δ ≤ 1/2.460

B.2 Proof of Theorem 2.1461

We begin by noting that Claim 1 lets us relate a policy that maximizes f̂ to an edge probing policy462

that succeeds with parameters (ε, δ), as defined in Eq. (1), and vice versa. Consider any edge probing463

policy π that succeeds with parameters (ε, δ). In other words, whenever the procedure terminates,464

we have a set of edges S with minimum edge length L that satisfies (1). Using Claim 1, this implies465

that f(S, φ) ≥ n − 2δ for all realizations φ consistent with the edge observations. Thus, we have466

f̂(S, φ) = Q when the procedure terminates. I.e., π is also a valid policy for maximizing f̂ (in the467

sense of Theorem 2.5).468

Conversely, consider a policy that aims to maximize f̂ and achieve f̂ > Q − η. It terminates469

when f̂(S, φ) = Q, because of our discretization. This implies that f(S, φ) ≥ n − 4δ, or that470 ∑
ej 6∈S Hj(L) ≤ 4δ. Using Claim 1, this means that the policy succeeds with parameters (ε, 4δ) for471

edge probing.472

Next, we note that the function f̂ is also self-cerifying, strongly adaptive monotone, and strongly473

adaptive submodular. This follows because the proofs only relied on the monotonicty of H (which474

also holds for Ĥ) and the fact that summations involve fewer terms (which continues to hold). Thus,475

Theorem 2.5 applies to Algorithm 1, and using the above connection between policies for edge476

probing and policies for maximizing f̂ , we conclude that Algorithm 1 succeeds with parameters477

(ε, 4δ), and that the expected number of queries is OPT · O
(

log
(
Q
η

)
+ 1
)2

. This completes the478

proof.479
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