Appendix: Fast, Accurate, and Simple Models for Tabular Data
via Augmented Distillation

A Methods Details

We not only adopt the AutoGluon? predictor as our teacher for distillation, but our experiments also
use the AutoGluon implementation of each individual model type (NN, RF, LightGBM, CatBoost) for
our student/BASE predictors®. Here we consider the same data preprocessing and hyperparameters
as AutoGluon uses by default, which have been demonstrated to be highly performant [1].

Unlike the RF/LightGBM/CatBoost models which are implemented in popular third party packages,
the NN model is implemented directly in AutoGluon, and offers numerous advantages for tabular
data over standard feedforward architectures [1]. This network uses a separate embedding layer for
each categorical feature which helps the network separately learn about each of these variables before
their representations are blended together by fully-connected layers [59, 63]. The network employs
skip connections for improved gradient flow, with both shallow and deep paths connecting the input
to the output [54].

Note that all of our student classifiers produce valid predicted probabilities: our neural network
student employs a sigmoid output layer to constrain its outputs to [0, 1] in binary classification, and
the random forest multiclass students never output negative values (these models do not extrapolate)
so we can simply re-normalize their output vectors to have unit-sum.

A.1 Architecture of our Pseudolikelihood Self-Attention Model

The input layer of our self-attention network applies a linear embedding operation followed by
positional encoding. Each internal layer of the network is a Transformer block, which includes two
sub-blocks: a multi-head self-attention mechanism and a position-wise fully connected feedforward
block [22]. Each of these sub-blocks is wrapped with layer normalization and a residual connection.
Here different positions correspond to different features (columns of the table). The output layer of
this network produces a mixture of multivariate Gaussians with diagonal covariance, where the final
position-wise feedforward block outputs for each feature ¢ both the mean/variance of each Gaussian
component (L, ox) as well as the mixing components (Ag). In order to make sure that all input
features are on a similar scale, all features are rescaled to mean-zero unit-variance before being fed
into our network (and we apply the inverse transform after Gibbs sampling).

Positional encoding is essential for the model to know which value was taken by which feature.
For example, without positional encoding: z(!) = 1,23 = 0 vs. 2 = 0,2 = 1 would
lead to similar self-attention input for the third feature 2:(3) without positional encoding. Thus the
representations of our model would suffer, as would its estimated conditional distributions. Here
we employ the same sin/cos positional encodings used by Vaswani et al. [22], treating the table
column-index of each feature analogously to word positions in a sentence.

Tabular data can contain both numerical and categorical features. In order to have a simple, unified
model that can deal with both feature types, we represent categorical features numerically using
dequantization [24]. This involves adding uniform noise an the ordered integer encoding of the
categories to make these features look numerical to our network. The noise can be inverted via
rounding to ensure that discrete categories are produced by our Gibbs sampler (i.e. re-quantization).
Dequantization has been successfully employed in a number of deep architectures that otherwise
operate on continuous data [62, 65, 67], and allows us to avoid having to employ heterogeneous
output layers and unwieldy one-hot enodings.

Table S1 shows our network’s hyper-parameters that are used for the experiments in this paper. It
is worth noting that we did not conduct any hyper-parameter search to find the best-performing
architectures and models. Instead, we simply utilize two different networks: Small and Large. The
Small network is used whenever the training dataset has less than 15000 examples and we otherwise
use the Large network. Their only differences are in batch sizes and the width of their hidden layers,

"https://github.com/awslabs/autogluon/
3 Although we selected AutoGluon as the AutoML tool for this paper’s experiments, we emphasize that none
of our distillation methodology is specific to AutoGluon teachers/students.

https://github.com/awslabs/autogluon/

all other details such as training procedure, regularization, evaluation protocol, etc. are the same. We
utilize two different models in order to avoid overfitting small datasets, and the Small network can
also be more efficiently trained. We use Adam to optimize the parameters of our network [51].

Small Large

Gaussian mixture components 100 100
Number of layers 4 4
Multi-head attention heads 8 8
Hidden unit size 32 128
Mini-batch size 16 256
Dropout 0.1 0.1
Learning rate 3E-4 3E-4
Weight decay 1E-6 1E-6
Gradient clipping norm 5 5

Table S1: Hyper-parameters of our self-attention models.

Dataset Type Sample Size # Columns # Classes
amazon binary 32769 9 -
australian binary 690 14 -
miniboone binary 130064 50 -
adult binary 48842 14 -
blood binary 748 4 -
credit-g binary 1000 20 -
higgs binary 98050 28 -
jasmine binary 2984 144 -
nomao binary 34465 118 -
numerai28.6 binary 96320 21 -
phoneme binary 5404 5 -
sylvine binary 5124 20 -
covertype multiclass 581012 54 7
helena multiclass 65196 27 100
jannis multiclass 83733 54 4
volkert multiclass 58310 180 10
connect-4 multiclass 67557 42 3
jungle-chess multiclass 44819 6 3
mfeat-factors multiclass 2000 216 10
segment multiclass 2310 19 7
vehicle multiclass 846 18 4
boston regression 506 13 -
concrete regression 1030 8 -
energy regression 768 8 -
kin8nm regression 8192 8 -
naval regression 11934 16 -
power regression 9568 4 -
protein regression 45730 9 -
wine regression 1599 11 -
yacht regression 308 6 -

Table S2: Summary of 30 datasets considered in this work, listing the: type of prediction problem, size of the
data table, and number of classes for multiclass classification problems. The regression data (along with provided
train/test splits) were downloaded from: https://github.com/yaringal/DropoutUncertaintyExps. The
classification data (with provided train/test splits) were downloaded from: https://www.openml.org/s/218.
We initially considered additional classification datasets from Gijsbers et al. [39], but decided to not to include
those for which: it was trivial to get near 100% accuracy for many model types (so a teacher is unnecessary),
the data are dominated by missing values, the original data are extremely high-dimensional (d > 1000), or the
original data did not come from a table (e.g. Fashion-MNIST).

https://github.com/yaringal/DropoutUncertaintyExps
https://www.openml.org/s/218

B Experiment Details

We implemented knowledge distillation (KNOW) with classification targets modified as suggested
in Hinton et al. [5]. As suggested by Bucilua et al. [4], the distance metric in MUNGE is taken
to be the Euclidean distance between (rescaled) numerical features and the Hamming distance
between categorical features. Over all datasets, we performed a grid search over MUNGE'’s user-
specified parameters: the feature-resampling probability p and local variance parameter s, in order to
maximize validation accuracy of the student over p € {0.1,0.25,0.5,0.75}, s € {0.5,1.0,5.0}. For
the conditional tabular GAN, we used the original implementation available at: https://github.
com/sdv-dev/CTGAN.

On each dataset, we trained AutoGluon for up to 4 hours, and specified the same time-limit for H20-
AutoML and AutoSklearn. When running H20 and AutoSklearn on the 30 datasets, each AutoML
tool failed to produce predictions on 2 datasets, and we simply recorded the accuracy/latency achieved
by the other tool in this case (such failures are common in AutoML benchmarking, c.f. [1, 39]). Each
AutoML tool was run with all default arguments, except for AutoGluon: we additionally set the
argument auto_stack = True which instructs the system to maximize accuracy at all costs via
extensive stack ensembling. We used the same type of AWS EC2 instance (m5.2xlarge) for each
predictor to ensure fair comparison of inference times (each tool was run on separate EC2 instance
with no other running processes).

For evaluating our Gibbs samples, we computed the Maximum Mean Discrepancy with the mixture-
kernel [64], with bandwidths = [1, 2,4, 8, 16]. Our procedure to measure sample fidelity involved the
following steps: First we trained our FAST-DAD-Net to maximize pseudolikelihood over data in the
training fold. Next we applied Gibbs sampling to generate synthetic samples (initializing the Markov
chains at the training data as previously described). Subsequently we assembled a balanced dataset of
real (held-out) data from our validation fold which received label y = 1 and fake data comprised of
Gibbs samples which received label y = 0. A random forest was trained on this dataset, and then its
accuracy evaluated on another balanced dataset comprised of real data from our test fold (again with
label y = 1) and fake data comprised of a different set of Gibbs samples (labeled with y = 0). The
resulting ‘sample fidelity’ was defined as the distance between this RF accuracy and 0.5.

https://github.com/sdv-dev/CTGAN
https://github.com/sdv-dev/CTGAN

C Additional Results
(A) Regression

0.901 L4
[J
5 0.89 ®
< ¢ °®
—g 0881 . o TEACHER
© 0.871 L e X ® GIB-1
S e BASE
' 0.86 ® H20
%’ 0.651 * x ® autosklearn
o
X i
0.84 * NeuralNet 4 CatBoost
0.831 _p- %+ LightGBM X RandForest
1074 1073 1072 1071t 100
Latency (Seconds / Prediction)
(B) Binary Classification (C) Multiclass Classification
84.5 84
[J Y [] L
([] 83 ®
84.0 *
4. 82
*) >81 &
>
g 83.5 o 8 ®
5 ¢ 3 80 *
S & <
<
X
83.01 & 79
P %
78 X
82.51 771 ¢
% ¢
104 1073 1072 1071 10° 1074 1073 1072 107t
Latency (Seconds / Prediction) Latency (Seconds / Prediction)

Figure S1: Test accuracy vs latency of individual models and AutoML ensembles, averaged over the: (A)
regression datasets, (B) binary classification datasets, (C) multiclass classification datasets. The GIB-1 and
BASE dots show performance of Selected model (out of the 4 types) on each dataset. Note that for binary
classification: the Selected BASE models are actually worse than individual RF/LightGBM models, presumably
due to overfitting of the validation set via the early-stopping criterion in NN/CatBoost. This issue appears to be
mitigated by distillation with augmented data. In multiclass classification, the distilled LightGBM models exhibit
worse latency than their BASE counterparts because distillation uses additional data and soft (probabilistic)
labels as targets, such that the underlying function to learn becomes more complex. Thus, the depth of its trees
grows since LightGBM does not limit it by default. The BASE/distilled latency could easily be matched by
restrictively setting the LightGBM depth/leaf-size hyperparameters to ensure equal-sized trees in these two
variants.

Table S3: Raw test accuracy (or percent of variation explained = R? - 100 for regression) under various
training/distillation strategies of the Selected best individual model (across all 4 model types) chosen based
on validation performance. The final column shows the performance of the ensemble-predictor produced by
AutoGluon (used as teacher in distillation). Datasets are colored by task: regression (black), binary classification
(blue), multiclass classification (red).

Dataset BASE KNOW MUNGE HUNGE GAN GIB-1 GIB-5 GIB-10 TEACHER
boston 91.84 90.11 90.25 91.54 92.02 9238 9321 92.62 92.09
concrete 9220 92.66 92.07 92.31 9233 9239 92.83 9256 92.82
energy 99.86 99.85 99.91 99.92 99.87 9993 99.92 99.92 99.93
kin8nm 9336 93.58 94.10 9382 9408 9396 9414 94.10 93.99
naval 99.74 99.75 99.81 99.78 99.49 99.70 99.68 99.71 99.97
power 96.62 96.97 96.60 96.86 96.07 96.61 96.62 96.51 97.15
protein 68.34 67.37 69.95 68.14 67.64 6996 69.07 68.01 74.33
wine 56.44 56.53 57.38 58.61 5642 59.27 57.80 58.49 60.74
yacht 99.24 99.55 99.88 99.92 99.93 9994 99.94 99.90 99.87
amazon 94.84 94.81 94.72 94.87 94.69 9490 94.81 94.81 94.96
australian 86.95 88.40 85.50 85.50 8550 88.40 86.95 85.50 86.95
miniboone 9450 94.71 94.77 9440 9444 9486 9444 94.64 94.88
adult 87.06 87.26 87.36 87.49 86.81 8636 86.67 86.73 87.59
blood 7333 7733 77.33 77.33 76.0 760 78.66 77.33 76.0
credit-g 71.0 78.0 78.0 76.0 75.0 80.0 80.0 77.0 79.0
higgs 72.14 73.14 73.53 72.83 7248 73.89 7336 73.18 73.83
jasmine 8294 8193 80.26 81.93 8193 8227 8127 8193 82.60
nomao 97.30 96.98 96.72 97.15 96.98 96.77 96.83 96.86 98.20
numerai28.6 51.12 50.36 51.78 50.78 51.23 52.05 51.11 51.59 51.10
phoneme 89.46 90.38 90.57 90.20 90.57 9149 9038 90.75 92.42
sylvine 93.56 93.37 94.15 9434 9239 93,56 9395 94.54 95.32
covertype 95.90 96.99 97.00 92.84 96.39 96.19 9648 96.06 97.66
helena 3829 40.70 40.26 39.44 3943 40.50 39.84 40.50 40.75
jannis 70.69 72.23 72.13 70.69 7175 7243 7228 7191 73.07
volkert 69.62 71.34 72.18 69.28 70.60 71.42 70.70 70.45 74.46

connect-4 84.87 86.10 86.27 84.35 8590 86.19 86.44 86.38 86.04
jungle-chess 87.59 91.78 9292 89.53 96.07 9337 9442 93.81 99.55

mfeat-factors ~ 98.0 97.0 97.5 97.5 98.0 98.5 98.5 98.5 98.0
segment 98.70 98.70 98.70 98.70 98.70 99.13 99.13 99.13 99.13
vehicle 83.52 77.64 88.23 87.05 83.52 88.23 87.05 87.05 85.88

(A) Augmentation w Real Data (B) Augmentation w GIB-1

1.00 1.00
@ @
< ey
[8} 8]

$0.98 $0.98
[[
2 L

2096 20.96
© ©
& 2

-, 0.94 — NeuralNet ~.0.94
8 — LightGBM 5
3 — CatBoost 3
Q Q

0.92
2 0.92 — RandForest <L;:>

0 1 2 3 4 0 1 2 3 4
Amount of Augmented Data (xn) Amount of Augmented Data (xn)

Figure S2: Distillation performance when augmented data are: (A) additional real data points from the true
underlying distribution, (B) synthetic examples obtained from 1 round of our Gibbs sampling procedure. Here
we report average normalized test accuracy (R?) over the 3 largest regression datasets, with corresponding
standard errors indicated by vertical lines (our normalization rescales R* by the teacher’s R? on each dataset).
To obtain additional real data points for augmentation, we did the following: only 20% of the original training
set was adopted as the training data (accuracies obtained from this training data shown at 0 on x-axis). The rest
of the 80% held-out data was treated as unlabeled and used as augmented data for distillation (in increasing
multiples of the training sample-size n), following the same distillation procedure described in the main text.
The GIB-1 results are obtained by applying our FAST-DAD distillation procedure with only the 20% training
data (the 80% held-out data are entirely ignored, so our self-attention pseudolikelihood model is fit to relatively
little data). The AutoGluon teacher is also only fit to the same 20% of the training data. Panel (A) empirically
validates Lemma 1, showing that distillation becomes much more powerful with additional unlabeled data from
the true feature distribution. Distillation gains produced by augmenting with Gibbs samples do not match the
performance of augmenting with real data, suggesting superior generative models may further reduce this gap.

D Proof of Theorem 2

Here we discuss our refinement of Lemma 1 that formally describes how the number of steps of
Gibbs sampling affects the distillation of the student. Lemma 1 suggests that if we learn a probability
distribution ¢ using the data X,,, we might be able to reduce the variance term in the VC-bound at
the cost of a bias. We now characterize the situation when the Gibbs sampler with a steady-state
distribution ¢ is initialized at samples from p, namely the original training dataset X,,, and is run for
k steps. Intuitively, if k is large, the sampler provides data X/, that is diverse from X,, which leads
to stronger variance reduction. However it is also true that the samples X/, are not drawn from p
and therefore the teacher f suffers a covariate shift on these samples which leads to poor fitting of
the student g. This suggests there should be a sweet spot: the number of Gibbs sampling steps k
should lead to variance reduction but should not be so large as to cause a large covariate-shift/bias.
We capture this phenomenon in the following theorem. For simplicity, we only consider the special
case where m = n. Our proof can be generalized to m # n but the details of the underlying
symmetrization argument are more intricate (see comments in the proof). We stick to this special
case to elucidate the main point. The full theorem statement is repeated here for completeness.

Theorem 2 (Refinement of Lemma 1) Under the assumptions of Lemma 1, suppose that the student
g* is chosen to minimize Demy(f, 9, X, v X,) where X|, are n samples drawn after running the
Gibbs sampler initialized at samples from X, for k-steps. Then there exist constants V, c and 6 > 0
such that with probability at least 1 — § we have

4V (c+ Ag) —logd N
n

D(f?g*?p)gDeHIp(f7g*7XnUX;L)+\/ Ak~ (6)
The quantity Ay, = | T¥p — pl|rv is the total-variation distance between the true data distribution

p and the distribution of the sampler’s iterates after k steps, denoted by T[fp. The steady-state
distribution of the Gibbs sampler is denoted by q.

Proof Let g be the steady-state distribution of the Gibbs sampler with a linear operator 77, that
denotes the one-step transition kernel. Under general conditions [66], the distribution of the iterates
of the sampler converges to this steady-state distribution as k — oo, i.e.,

. k.o
fom Tiv = a

from any initial distribution v. Explicit rates are available for this convergence [33]: there exist
constants A € (0, 1) and ¢(g) such that

ITFp — qllrv < clg)AF. (7)

where ||v — pl|rv := 2sup {|v(A) — u(A)| : A € B(X)} denotes the total-variation norm; the set
B(X) is the Borel o-algebra of the domain X. These rates are sharp for some parametric models [56].
We use the following shorthand to denote, T(fp, the density obtained after applying the one-step
transition kernel £ times.

¢ = T(f p.

Suppose that the Gibbs sampler initialized at p runs for & steps and we then sample a dataset X/, of n
samples from the resultant distribution T(fp:

The samples in X/, are correlated with those already in X,. The student is fit to this dataset X,, U X/,
where the samples are not independent (we don’t have X,, 3 « L 2’ € X)) or identically distributed
(r ~pand ' ~ T(fp). Characterizing generalization performance is difficult for this scenario and
requires strong assumptions, c.f. [55], but we can we make the following helpful simplification.

Assumption 1 The number of Gibbs steps k is large enough for the samples in X,, and X, to be
statistically independent.

Note that this does not imply that the samples are identically distributed, they still come from
distributions p and T(fp respectively. Since £ is the product of the number of rounds of Gibbs
sampling and the dimensionality of the data (d), achieving approximate independence does not
necessarily require a large number of Gibbs rounds.

We now employ a bound by Jonathan Baxter [32] that studies the generalization performance of a
model g when it sees data from a mixture of two different, possibly correlated, distributions, p and
q". This is a uniform-convergence bound and follows via a two-step symmetrization argument where
the second step involves separate permutations of the samples in datasets X,, and X/,. The same
technique as that of [32] also works if we draw more data X, from the new distribution than the
original dataset X,, i.e., if m > n. However the details are intricate and we stick to this special
m = n case to elucidate the main point.

For all functions g € G, in particular for g* = argmin, Demp(f, g, Xn U X},), the following holds
with probability at least 1 — §:

<f, 7p+q > < Demp(f19, Xn 0 X)) + €
c N(e,G?)

if n=—lo
2 %8 1)
where c is a constant. The quantity N (e, H) is the e-net covering number of the hypothesis class H
under a given metric m [32]. According to Baxter’s result, for our case with two tasks, p and q*,
we are interested in computing the covering number for H = G x G and the metric m between two
functions in g, ¢’ € G? as

®)

m(g.9') f|d 1), f(21)) + d(g(@2), f(22)) — d(g' (1), f(21)) — d(g' (x2), f(22))] dp(1) dg" (z2).

with the labels f(x;) given by the teacher. Our hypothesis class on the two tasks is the Cartesian
product of the hypothesis class G. Haussler’s theorem [60] gives an upper bound on the covering
number in terms of the VC-dimension

log N (e, H) < 2V log(c/e).)

where V4 is the VC-dimension [68] of #, ¢ > 1 is a constant, and log N (¢, H) is also called the
metric entropy.

Observe that the left-hand side in (8) can be written as

(f, ,p”) D(f,9,p) + fd) d(¢* —p). (10)

Let us define
A= | T¥p = pllrv.

We next analyze the metric m(g, g’) where we note that again ¢* = T(f p.
m(g,9') < f|d(9($)7f($)) —d(g'(x), f(=))] dp(z)
+ 3 [lato(@). @) — dig @), @] d (T - 1) (@)

< J |d(g(x), f(2)) = d(g'(x), f(2))] dp(z) + | T3P — pllrv-
Similarly we also have
f |d(g(x), f(x)) = d(g' (), f ()| dp(z) — | Typ = pllrv < m(g.9)-
In other words, the distance m(g, g') on the Cartesian space G2 can be upper bounded by the distance

between g, ¢’ on the original space G up to an additive term Ay, that increases with the number of
steps k of Gibbs sampling.

Next observe that we have an upper bound on the metric entropy
log N(c,G*) < 2log N(c, 6) (1n

if the two datasets X, and X/, are iid. If the datasets are not iid, using the calculation for m(g, ¢)
above, computing the size of the e-net for G2 is effectively the same as changing € on the right hand
side of (11) to

€ =e— Ay

A
- (%)
€
Plugging the previous two expressions into (9) implies

log N(e,G?) < 2log N(¢,G)
s (£ (1))

=4V <10g(c/6) + A) + o((Ag/€)?). (12)

The approximation above is valid if we additionally assume A « e. We have thus shown that there
exists a constant V' such that with probability at least 1 — ¢:

4V(c+ Ag) —lo (5
D(f,g*,p)<Demp(f,g*,XnuX,’L)+\/ (nk g Jd (z)) d(p — ¢~)
4V(c+ Ay) —logé
<Dcmp<f,g*,xnux;1)+\/ . LY (13)

The inequality follows because

Ud(f(acxg*(x))d ") <Ud<p—qk>

since d(-,-) < 1. Recall k is the number of Gibbs sampling steps, ¢ is a constant, and
g* = argmin Demp(f, 9, Xn U X,). |
g

<2|p— ¢ |rv

We provide some additional comments on this result. Note that Ay, — ||p — ¢||Tv as k — 00, so it
increases with the number of Gibbs sampling steps k. We can draw a large number of samples n
from ¢* to reduce the second term in the bound. Using a large k is both computationally inefficient
and may also cause a bias given by the additive term of Ay (third term), if the stationary distribution
q of our Gibbs sampler poorly approximates p. As our pseudolikelihood model is fit to limited data
in practice, it is thus better to draw a large number of samples from earlier steps, i.e. using only a few
steps of Gibbs sampling from each training datum instead of running a long chain. Among all k that
produce samples which are approximately independent of the original training data, we would like to
use the smallest.

The experiments in our paper empirically show that, on an average over many datasets, running the
Gibbs sampler for 1-5 rounds (one round involves performing a Gibbs step for every conditional in
the pseudolikelihood) works better than running it for longer. Note that if we employ fewer steps than
even a single round of Gibbs sampling, the augmented data will be highly dependent on the training
data as some features will not have been resampled, thus diminishing the effective sample size of the
student’s distillation dataset. It is also readily seen from the above bound that if the Gibbs sampler
is initialized at a distribution other than p, we would need a large number of steps k before the bias
term || — p||pv is adequately small.

Additional References for the Appendix

[32] J. Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149-198, 2000.

[4] C. Bucilua, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
535-541, 2006.

[54] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado,
W. Chai, M. Ispir, et al. Wide & deep learning for recommender systems. In Proceedings of the
1st workshop on deep learning for recommender systems, pages 7-10, 2016.

[55] Y. Dagan, C. Daskalakis, N. Dikkala, and S. Jayanti. Learning from weakly dependent data
under Dobrushin’s condition. arXiv preprint arXiv:1906.09247, 2019.

[56] P. Diaconis, K. Khare, and L. Saloff-Coste. Gibbs sampling, conjugate priors and coupling.
Sankhya A, 72(1):136-169, 2010.

[1] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and A. Smola. AutoGluon-
Tabular: Robust and accurate AutoML for structured data. arXiv preprint arXiv:2003.06505,
2020.

[39] P. Gijsbers, E. LeDell, J. Thomas, S. Poirier, B. Bischl, and J. Vanschoren. An open source
AutoML benchmark. In ICML Workshop on Automated Machine Learning, 2019.

[59] C. Guo and F. Berkhahn. Entity embeddings of categorical variables. arXiv preprint
arXiv:1604.06737, 2016.

[60] D. Haussler. Probably approximately correct learning. University of California, Santa Cruz,
Computer Research Laboratory, 1990.

[5] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. NIPS Deep
Learning and Representation Learning Workshop, 2015.

[62] E. Hoogeboom, T. S. Cohen, and J. M. Tomczak. Learning discrete distributions by dequantiza-
tion. arXiv preprint arXiv:2001.11235, 2020.

[63] J. Howard and S. Gugger. fastai: A layered api for deep learning. arXiv preprint
arXiv:2002.04688, 2020.

[64] C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Péczos. Mmd gan: Towards deeper
understanding of moment matching network. In Advances in Neural Information Processing
Systems, pages 2203-2213, 2017.

[65] X. Ma, X. Kong, S. Zhang, and E. Hovy. Macow: Masked convolutional generative flow. In
Advances in Neural Information Processing Systems, pages 5891-5900, 2019.

[66] C.Robert and G. Casella. Monte Carlo statistical methods. Springer Science & Business Media,
2013.

[67] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. In
International Conference on Learning Representations, 2016.

[68] V.N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. In Measures of complexity, pages 11-30. Springer, 2015.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

[33] N.-Y. Wang, L. Wu, et al. Convergence rate and concentration inequalities for gibbs sampling
in high dimension. Bernoulli, 20(4):1698-1716, 2014.

10

