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Abstract

Most of the recent successful applications of neural networks have been based
on training with gradient descent updates. However, for some small networks,
other mirror descent updates learn provably more efficiently when the target is
sparse. We present a general framework for casting a mirror descent update as
a gradient descent update on a different set of parameters. In some cases, the
mirror descent reparameterization can be described as training a modified network
with standard backpropagation. The reparameterization framework is versatile
and covers a wide range of mirror descent updates, even cases where the domain
is constrained. Our construction for the reparameterization argument is done for
the continuous versions of the updates. Finding general criteria for the discrete
versions to closely track their continuous counterparts remains an interesting open
problem.

1 Introduction

Mirror descent (MD) [Nemirovski and Yudin, 1983, Kivinen and Warmuth, 1997] refers to a family
of updates which transform the parameters w 2 C from a convex domain C 2 Rd via a link function
(a.k.a. mirror map) f : C ! Rd before applying the descent step. The continuous-time mirror
descent (CMD) update, which can be seen as the limit case of (discrete-time) MD, corresponds to
the solution of the following ordinary differential equation (ODE) [Nemirovski and Yudin, 1983,
Warmuth and Jagota, 1998, Raginsky and Bouvrie, 2012]:

f(w(t + h)) � f(w(t))

h

h!0
=

•

f
�
w(t)

�
= �rL(w(t)) , (CMD) (1)

w(t + h) = f
�1

⇣
f(w(t)) � hrL(w(t))

⌘
. (MD) (2)

Here L denotes a differentiable real-valued loss and
•

f := @f
@t is the time derivative of the link function.

The vanilla discretized MD update is obtained by setting the step size to h. The main link functions
investigated in the past are f(w) = w and f(w) = log(w) leading to the gradient descent (GD)
and the unnormalized exponentiated gradient (EGU) family of updates.2 These two link functions
are associated with the squared Euclidean and the relative entropy divergences, respectively. For
example, the classical Perceptron and Winnow algorithms are motivated using the identity and log
links, respectively, when the loss is the hinge loss. A number of papers discuss the difference between
the two updates [Kivinen and Warmuth, 1997, Kivinen et al., 2006, Nie et al., 2016, Ghai et al.,
2020] and their rotational invariance properties have been explored in [Warmuth et al., 2014]. In

⇤An earlier version of this manuscript (with additional results on the matrix case) appeared as "Interpolating
Between Gradient Descent and Exponentiated Gradient Using Reparameterized Gradient Descent" as a preprint.

2The normalized version is called EG and the two-sided version EGU±. More about this later.
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particular, the Hadamard problem is a paradigmatic linear problem which shows that EGU can
converge drastically faster than GD when the instances are dense and the target weight vector is
sparse [Kivinen et al., 1997, Warmuth and Vishwanathan, 2005]. This property is linked to the
strong-convexity of the relative entropy w.r.t. the L1-norm3 [Shalev-Shwartz et al., 2012], which
motivates the discrete EGU update.

Contributions Although other MD updates can be drastically more efficient than GD updates on
certain classes of problems, it was assumed that such MD updates are not realizable using GD. In this
paper, we show that in fact a large number of MD updates (such as EGU, and those motivated by the
Burg and Inverse divergences) can be reparameterized as GD updates. Concretely, our contributions
can be summarized as follows.
• We cast continuous MD updates as minimizing a trade off between a Bregman momentum and the

loss. We also derive the dual, natural gradient, and the constrained versions of the updates.
• We then provide a general framework that allows reparameterizing one CMD update by another. It

requires the existence of a certain reparameterization function and a condition on the derivatives of
the two link functions as well as the reparameterization function.

• Specifically, we show that on certain problems, the implicit bias of the GD updates can be
controlled by considering a family of tempered updates (parameterized by a temperature ⌧ 2 R)
that interpolate between GD (with ⌧ = 0) and EGU (with ⌧ = 1), while covering a wider class of
updates.

We conclude the paper with a number of open problems for future research directions.

Previous work There has been an increasing amount of of interest recently in determining the
implicit bias of learning algorithms [Gunasekar et al., 2017, 2018, Vaskevicius et al., 2019]. Here,
we mainly focus on the MD updates. The special case of reparameterizing continuous EGU as
continuous GD was already known [Akin, 1979, Amid and Warmuth, 2020]. In this paper, we
develop a more general framework for reparameterizing one CMD update by another. We give a large
variety of examples for reparameterizing the CMD updates as continuous GD updates. The main new
examples we consider are based on the tempered versions of the relative entropy divergence [Amid
et al., 2019]. The main open problem regarding the CMD updates is whether the discretization of
the reparameterized updates track the discretization of the original (discretized) MD updates. The
strongest methodology for showing this would be to prove the same regret bounds for the discretized
reparameterized update as for the original. This has been done in a case-by-case basis for the EG
family [Amid and Warmuth, 2020]. For more discussion see the conclusion section, where we also
discuss how our reparameterization method allows exploring the effect of the structure of the neural
network on the implicit bias.

Some basic notation We use �, ↵, and superscript � for element-wise product, division, and
power, respectively. We let w(t) denote the weight or parameter vector as a function of time t.
Learning proceeds in steps. During step s, we start with weight vector w(sh) = ws and go to
w((s + 1)h) = ws+1 while processing a batch of examples. We also write the Jacobian of vector
valued function q as Jq and use HF to denote the Hessian of a scalar function F . Furthermore, we
let rwF (w(t)) denote the gradient of function F (w) evaluated at w(t) and often drop the subscript
w for conciseness.

2 Continuous-time Mirror Descent

For a strictly convex, continuously-differentiable function F : C ! R with convex domain C ✓ Rd,
the Bregman divergence between ew,w 2 C is defined as

DF ( ew,w) := F ( ew)�F (w)�f(w)>( ew�w) ,

where f := rF denotes the gradient of F , sometimes called the link function.4 Trading off the
divergence to the last parameter ws with the current loss lets us motivate the iterative mirror descent

3Whereas the squared Euclidean divergence (which motivates GD) is strongly-convex w.r.t. the L2-norm.
4The gradient of a scalar function is a special case of a Jacobian, and should therefore be denoted by

a row vector. However, in this paper we use the more common column vector notation for gradients, i.e.
rF (w) := ( @F

@w )>.
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(MD) updates [Nemirovski and Yudin, 1983, Kivinen and Warmuth, 1997]:

ws+1 = argmin
w

1/hDF (w,ws) + L(w) , (3)

where h > 0 is often called the learning rate. Solving for ws+1 yields the so-called prox or implicit
update [Rockafellar, 1976]:

f(ws+1) = f(ws) � hrL(ws+1) . (4)

This update is typically approximated by the following explicit update that uses the gradient at the
old parameter ws instead (denoted here as the MD update):

f(ws+1) = f(ws) � hrL(ws) . (MD) (5)

We now show that the CMD update (1) can be motivated similarly by replacing the Bregman
divergence in the minimization problem (3) with a “momentum” version which quantifies the rate
of change in the value of Bregman divergence as w(t) varies over time. For the convex function F ,
we define the Bregman momentum between w(t),w0 2 C as the time differential of the Bregman
divergence induced by F ,

•

DF (w(t),w0) =
•

F (w(t)) � f(w0)
> •
w(t) =

�
f(w(t)) � f(w0)

�> •
w(t) .

Theorem 1 (Main result #1). The CMD update5

•

f
�
w(t)

�
= �rL(w(t)) , with initial condition w(0) = w0,

is the solution of the following functional:

min
curve w(t)

n •

DF (w(t),w0) + L(w(t))
o
. (6)

Proof. Setting the derivatives w.r.t. w(t) to zero, we have

@

@w(t)

⇣�
f(w(t)) � f(w0)

�> •
w(t) + L(w(t))

⌘

= HF (w(t))
•
w(t) +

@
•
w(t)

@w(t)

�
f(w(t)) � f(w0)

�
+ rL(w(t))

=
•

f
�
w(t)

�
+ rL(w(t)) = 0 ,

where we use the fact that w(t) and
•
w(t) are independent variables6 [Burke, 1985], thus @

•
w(t)
@w(t)=0.

Note that the implicit update (4) and the explicit update (5) can both be realized as the backward
and the forward Euler approximations of (1), respectively, with step size h. Alternatively, (3) can be
obtained from (6) via a simple discretization of the momentum term (see Appendix C).

We can provide an alternative definition of Bregman momentum in terms of the dual of F function. If
F

⇤(w⇤) = supew2C
�
ew>

w
⇤�F (ew)

�
denotes the Fenchel dual of F and w = arg supew2C(ew>

w
⇤�

F (ew)), then the following relation holds between the pair of dual variables (w,w
⇤):

w = f
⇤(w⇤) , w

⇤ = f(w) , and f
⇤ = f

�1
. (7)

Taking the derivative of w(t) and w
⇤(t) w.r.t. t yields:

•
w(t) =

•

f
⇤�
w

⇤(t)
�

= HF⇤
�
w

⇤(t)
� •
w

⇤
(t) , (8)

•
w

⇤
(t) =

•

f
�
w(t)

�
= HF

�
w(t)

� •
w(t) . (9)

This pairing allows rewriting the Bregman momentum in its dual form:
•

DF (w(t),w0) =
•

DF⇤(w⇤
0 ,w

⇤(t)) = (w⇤(t) � w
⇤
0)

>
HF⇤(w⇤(t))

•
w

⇤
(t) . (10)

5An equivalent integral form of the CMD update is w(t) = f�1
⇣
f(ws)�

R t

z=s
rL(w(z)) dz

⌘
.

6That is, the value of one variable does not depend on changes in the other.
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An expanded derivation is given in Appendix A. Using (9), we can rewrite the CMD update (1) as
•
w(t) = �H

�1
F (w(t)) rL(w(t)) , (NGD) (11)

i.e. a natural gradient descent (NGD) update [Amari, 1998] w.r.t. the Riemannian metric HF . Using
rL(w) = HF⇤(w⇤)rw⇤L�f⇤(w⇤) and HF (w) = H

�1
F⇤ (w⇤), the CMD update (1) can be written

equivalently in the dual domain w
⇤ as an NGD update w.r.t. the Riemannian metric HF⇤ , or by

applying (8) as a CMD with the link f
⇤:

•
w

⇤
(t) = �H

�1
F⇤ (w⇤(t)) rw⇤L�f⇤(w⇤(t)) , (12)

•

f
⇤(w⇤(t)) = �rw⇤L�f⇤(w⇤(t)) . (13)

The equivalence of the primal-dual updates was already shown in [Warmuth and Jagota, 1998] for the
continuous case and in [Raskutti and Mukherjee, 2015] for the discrete case (where it only holds in
one direction). We will show that the equivalence relation is a special case of the reparameterization
theorem, introduced in the next section. In the following, we discuss the projected CMD updates for
the constrained setting.
Proposition 1. The CMD update with the additional constraint  

�
w(t)

�
= 0 for some function

 : Rd ! Rm s.t. {w 2 C| 
�
w(t)

�
= 0} is non-empty, amounts to the projected gradient update

•

f
�
w(t)

�
= �P (w(t))rL(w(t)) &

•

f
⇤(w⇤(t)) = �P (w(t))> rL�f⇤ (w⇤(t)) , (14)

where P := Id � J
>
 

�
J H

�1
F J

>
 

��1
J H

�1
F is the projection matrix onto the tangent space of

F at w(t) and J (w(t)). Equivalently, the update can be written as a projected natural gradient
descent update

•
w(t)=�P

>
 (w(t))H�1

F (w(t))rL(w(t)) &
•
w

⇤
(t)=�P H

�1
F⇤ (w⇤(t))rL�f⇤(w⇤(t)). (15)

Example 1 ((Normalized) EG). The unnormalized EG update is motivated using the link function
f(w) = logw. Adding the linear constraint  (w) = w

>1 � 1 to the unnormalized EG update
results in the (normalized) EG update [Kivinen and Warmuth, 1997]. Since J (w) = 1> and
HF (w)�1 = diag(w), P = I � 11> diag(w)

1>diag(w)1 = I �1w> and the projected CMD update (15) (the
continuous EG update) and its NGD form become

•

log(w) = �(I � 1w>) rL(w) = �(rL(w) � 1w
>rL(w)) ,

•
w = �(diag(w)rL(w) � ww

>rL(w)) .

3 Reparameterization

We now establish the second main result of the paper.
Theorem 2 (Main result #2). Let F and G be strictly convex, continuously-differentiable functions
with domains in Rd and Rk, respectively, s.t. k � d. Let q : Rk ! Rd be a reparameterization
function expressing parameters w of F uniquely as q(u) where u lies in the domain of G. Then the
CMD update on parameter w for the convex function F (with link f(w) = rF (w)) and loss L(w),

•

f(w(t)) = �rL(w(t)) ,

coincides with the CMD update on parameters u for the convex function G (with link g(u) := rG(u))
and the composite loss L�q,

•
g(u(t)) = �ruL�q

�
u(t)

�
,

provided that w(0) = q(u(0)) and range(q) ✓ dom(F ) hold, and we have
H

�1
F (w) = Jq(u)H�1

G (u)Jq(u)>, for all w = q(u) .

Proof. Note that (dropping t for simplicity) we have
•
w = @w

@u

•
u = Jq(u)

•
u and ruL�q(u) =

Jq(u)>rL(w). The CMD update on u with the link function g(u) can be written in the NGD form
as

•
u = �H

�1
G (u)ruL�q(u). Thus,

•
u = �H

�1
G (u)Jq(u)> rwL(w) .

Multiplying by Jq(u) from the left yields
•
w = �Jq(u)H�1

G (u)Jq(u)>rwL(w) .

Comparing the result to (11) concludes the proof.
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In the following examples, we will mainly consider reparameterizing a CMD update with the link
function f(w) as a GD update on u, for which we have HG = Ik.
Example 2 (EGU as GD). The continuous-time EGU can be reparameterized as continuous GD
with the reparameterization function w = q(u) = 1/4u � u = 1/4u�2, i.e.

•

log(w) = �rL(w) equals
•
u = � rL�q (u)| {z }

ruL (1/4u�2)

= �1/2u � rL(w) .

This is proven by verifying the condition of Theorem 2:

Jq(u)Jq(u)> = 1/2 diag(u) (1/2 diag(u))> = diag(1/4u�2) = diag(w) = H
�1
F (w) .

Example 3 (Reduced EG in 2-dimension). Consider the 2-dimensional normalized weights w =
[!, 1 � !]> where 0  !  1. The normalized reduced EG update [Warmuth and Jagota, 1998] is
motivated by the link function f(w) = log w

1�w , thus HF (w) = 1
w + 1

1�w = 1
w(1�w) . This update

can be reparameterized as a GD update on u 2 R via ! = q(u) = 1/2(1 + sin(u)) i.e.
•

log(
w

1 � w
) = �rwL(w) equals

•
u = � ruL�q (u)| {z }

ruL
�
1/2(1+sin(u))

�
= �cos(u)

2
rL(w) .

This is verified by checking the condition of Theorem 2: Jq(u) = 1/2 cos(u) and

Jq(u)Jq(u)> =
1

4
cos2(u) =

1

2

�
1 + sin(u)

� 1

2

�
1 � sin(u)

�
= w(1 � w) = H

�1
F (w) .

Open problem The generalization of the reduced EG link function to d > 2 dimensions becomes
f(w) = log w

1�
Pd�1

i=1 wi
which utilizes the first (d � 1)-dimensions w s.t. [w>

, wd]> 2 �d�1.
Reparameterizing the CMD update using this link as CGD is open. The update can be reformulated
as

•
w = �

⇣
diag

�
1 ↵ w

�
+

1

1 �
Pd�1

i=1 wi

11>
⌘�1

rL(w) = �
�
diag(w) � ww

>�rL(w) .

We will give a d-dimensional version of EG using a projection onto a constraint in Example 6.
Example 4 (Burg updates as GD). The update associated with the negative Burg entropy F (w) =

�
Pd

i=1 logwi and link f(w) = �1 ↵ w is reparameterized as GD with w = q(u) := exp(u), i.e.
•

(�1 ↵ w) = �rL(w) equals
•
u = � rL�q (u)| {z }

ruL (exp(u))

= � exp(u)�rL(w) ,

This is verified by the condition of Theorem 2: HF (w) = diag(1 ↵ w)2, Jq(u) = diag(exp(u)),
and

Jq(u)Jq(u)> = diag(exp(u))2 = diag(w)2 = H
�1
F (w) .

Example 5 (EGU as Burg). The reparameterization step can be chained, and applied in reverse,
when the reparameterization function q is invertible. For instance, we can first apply the inverse repa-
rameterization of the Burg update as GD from Example 4, i.e. u = q

�1(w) = logw. Subsequently,
applying the reparameterization of EGU as GD from Example 2, i.e. v = q̃(u) = 1/4u�2, results in
the reparameterization of EGU update on v as Burg update on w, that is,

•

log(v) = �rL(v) equals
•

(�1 ↵ w) = � rwL�q̃�q�1(w)| {z }
rwL(1/4(logw)�2)

= �(log(w) ↵ (2w)) � rL(v) .

For completeness, we also provide the constrained reparameterized updates (proof in Appendix B).
Theorem 3. The constrained CMD update (14) coincides with the reparameterized projected gradient
update on the composite loss,

•
g
�
u(t)

�
= �P �q(u(t))ruL � q(u(t)) ,

where P �q := Ik � J
>
 �q

�
J �qH

�1
G J

>
 �q

��1
J �qH

�1
G is the projection matrix onto the tangent

space at u(t) and J �q(u) := J
>
q (u)J (w).
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Example 6 (EG as GD). We now extend the reparameterization of the EGU update as GD in
Example 2 to the normalized case in terms of a projected GD update. Combining q(u) = 1/4u�2

with (w) = 1>
w�1, we have J �q(u) = 1/2 diag(u)1> = 1/2u> and P �q(u) = I� 1/4uu>

1/4kuk2 =

I � 1/4uu>. Thus,
•
u = �

�
I � 1/4uu

>�ruL(1/4u�2) with w(t) = 1/4u(t)�2
,

equals the normalized EG update in Example 2. Note that similar ideas was explored in an evolution-
ary game theory context in [Sandholm, 2010].

4 Tempered Updates

Figure 1: log⌧ (x), for differ-
ent ⌧ � 0.

In this section, we consider a richer class of examples derived using
the tempered relative entropy divergence [Amid et al., 2019], pa-
rameterized by a temperature ⌧ 2 R. As we will see, the tempered
updates allow interpolating between many well-known cases. We
start with the tempered logarithm link function [Naudts, 2002]:

f⌧ (w) = log⌧ (w) =
1

1 � ⌧
(w1�⌧ � 1) , (16)

for w 2 Rd
�0 and ⌧ 2 R. The log⌧ function is shown in Figure 1 for

different values of ⌧ � 0. Note that ⌧ = 1 recovers the standard log
function as a limit point. The log⌧ (w) link function is the gradient
of the convex function

F⌧ (w) =
X

i

�
wi log⌧ wi +

1

2�⌧ (1 � w
2�⌧
i )

�
=

X

i

⇣ 1

(1�⌧)(2�⌧) w
2�⌧
i � 1

1�⌧ wi +
1

2�⌧

⌘
.

The convex function F⌧ induces the following tempered Bregman divergence7:

DF⌧( ew,w) =
X

i

⇣
ewi log⌧ ewi � ewi log⌧ wi � ew2�⌧

i � w
2�⌧
i

2 � ⌧

⌘

=
1

1 � ⌧

X

i

⇣ ew2�⌧
i � w

2�⌧
i

2 � ⌧
� ( ewi � wi)w

1�⌧
i

⌘
. (17)

For ⌧ = 0, we obtain the squared Euclidean divergence DF0( ew,w) = 1
2 k ew � wk22 and for ⌧ = 1,

the relative entropy DF1( ew,w) =
P

i( ewi log( ewi/wi) � ewi + wi) (See [Amid et al., 2019] for an
extensive list of examples).

In the following, we derive the CMD updates using the time derivative of (17) as the tempered
Bregman momentum. Notice that the link function log⌧ (x) is only defined for x � 0 when ⌧ > 0. In
order to have a weight w 2 Rd, we use the ±-trick [Kivinen and Warmuth, 1997] by maintaining
two non-negative weights w+ and w� and setting w = w+ �w�. We call this the tempered EGU±

⌧
updates, which contain the standard EGU± updates as a special case of ⌧ = 1. As our final main
result, we show that that continuous tempered EGU±

⌧ updates interpolate between continuous-time
GD and continuous EGU (for ⌧ 2 [0, 1]). Furthermore, these updates can be simulated by continuous
GD on a new set of parameters u using a simple reparameterization. We show that reparameterizing
the tempered updates as GD updates on the composite loss L�q changes the implicit bias of GD,
making the updates converge to the solution with the smallest L2�⌧ -norm for arbitrary ⌧ 2 [0, 1].

4.1 Tempered EGU and Reparameterization

We first introduce the generalization of the EGU update using the tempered Bregman divergence (17).
Let w(t) 2 Rd

�0. The tempered EGU update is motivated by

argmin
curve w(t)2Rd

�0

n •

DF⌧

�
w(t),w0

�
+ L(w(t))

o
.

This results in the CMD update
•

log⌧w(t) = �rL(w(t)) . (18)
7The second form is more commonly known as �-divergence [Cichocki and Amari, 2010] with � = 2� ⌧ .
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Output

|ui|
1

2��

|ui|
1

2��

Input

4

… …

Figure 2: A reparameterized linear
neuron where wi = |ui|

2
2�⌧ as a two-

layer sparse network: value of ⌧ = 0
reduces to GD while ⌧ = 1 simulates
the EGU update.

An equivalent integral version of this update is

w(t) = exp⌧
�
log⌧ w0 �

Z t

0
rwL(w(z)) dz

�
, (19)

where exp⌧ (x) := [1 + (1 � ⌧)x]
1

1�⌧

+ is the inverse of tem-
pered logarithm (16). Note that ⌧ = 1 is a limit case which
recovers the standard exp function and the update (18) be-
comes the standard EGU update. Additionally, the GD update
(on the non-negative orthant) is recovered at ⌧ = 0. As a
result, the tempered EGU⌧ update (18) interpolates between
GD and EGU for ⌧ 2 [0, 1] and generalizes beyond for values
of ⌧ > 1 and ⌧ < 0.8 We now show the reparameterization of
the tempered EGU⌧ update (18) as GD. This corresponds to
continuous-time gradient descent on the network of Figure 2.
Proposition 2 (Main result #3). The tempered continuous
EGU⌧ update can be reparameterized continuous-time GD
with the reparameterization function

w = q⌧ (u) =
�2 � ⌧

2

� 2
2�⌧ |u|�

2
2�⌧ , for u 2 Rd and ⌧ 6= 2 . (20)

That is
•

log⌧ (w) = �rL(w) equals
•
u = � rL�q⌧ (u)| {z }
ruL

��
2�⌧
2

� 2
2�⌧ |u|�

2
2�⌧

�
= � sign(u)�

⇣2 � ⌧

2

⌘ ⌧
2�⌧|u|�

⌧
2�⌧ �rL(w).

Proof. This is verified by checking the condition of Theorem 2. The lhs is
(HF⌧ (w)(w))�1 = (Jlog⌧

(w))�1= (diag(w)�⌧ )�1 = diag(w)⌧ .

Note that the Jacobian of q⌧ is

Jq⌧ (u) =
⇣2 � ⌧

2

⌘ ⌧
2�⌧

diag
�
sign(u) � |u|�

⌧
2�⌧

�
= diag(sign(u) � q⌧ (u)�

⌧
2 ).

Thus the rhs Jq⌧ (u)J>
q⌧ (u) of the condition equals diag

�
w

�⌧� as well.

4.2 Minimum-norm Solutions

We apply the (reparameterized) tempered EGU±
⌧ update on the underdetermined linear regression

problem. For this, we first consider the ±-trick on (18), in which we set w(t) = w+(t) � w�(t)
where

•

log⌧w+(t) = �rwL(w(t)) ,
•

log⌧w�(t) = +rwL(w(t)) . (21)
Note that using the ±-trick, we have w(t) 2 Rn. We call the updates (21) the tempered EGU±

⌧ . The
reparameterization of the tempered EGU±

⌧ updates as GD can be written by applying Proposition 2,
•
u+(t) = �ru+L

�
q⌧ (u+(t)) � q⌧ (u�(t))

�
,

•
u�(t) = �ru�L

�
q⌧ (u+(t)) � q⌧ (u�(t))

�
, (22)

and setting w(t) = q⌧ (u+(t)) � q⌧ (u�(t)).

The strong convexity of the F⌧ function w.r.t. the L2�⌧ -norm (see [Amid et al., 2019]) suggests that
the updates motivated by the tempered Bregman divergence (17) yield the minimum L2�⌧ -norm
solution in certain settings. We verify this by considering the following underdetermined linear
regression problem. Let {xn, yn}Nn=1 where xn 2 Rd

, yn 2 R denote the set of input-output pairs
and let X 2 RN⇥d with N < d be the design matrix for which the n-th row is equal to x

>
n . Also,

let y 2 RN denote the vector of targets. Consider the tempered EGU±
⌧ updates (21) on the weights

w(t) = w+(t) �w�(t) where w+(t),w�(t) � 0 and w+(0) = w�(0) = w0. Following (19), we
have

w+(t) = exp⌧
�
log⌧ w0 �

Z t

0
X

>
�(z) dz

�
, w�(t) = exp⌧

�
log⌧ w0 +

Z t

0
X

>
�(z) dz

�
,

where �(t) = X
�
w+(t) � w�(t)

�
.

8For example, ⌧ = 2 corresponds to the Burg updates (Example 4).
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Theorem 4. Consider the underdetermined linear regression problem where N < d. Let E = {w 2
Rd|Xw = y} be the set of solutions with zero error. Given w(1) 2 E , then the tempered EGU±

⌧
updates (21) with temperature 0  ⌧  1 and initial solution w0 = ↵1 � 0 converge to the minimum
L2�⌧ -norm solution in E in the limit ↵ ! 0.

Proof. We show that the solution of the tempered EGU±
⌧ satisfies the dual feasibility and complemen-

tary slackness KKT conditions for the following optimization problem (omitting t for simplicity):
min

w+,w�
kw+ � w�k2�⌧2�⌧ , for 0  ⌧  1, s.t. X(w+ � w�) = y and w+,w� � 0 .

Imposing the constraints using a set of Lagrange multipliers ⌫+,⌫� � 0 and � 2 R, we have

min
w

sup
⌫+,⌫��0,�

n
kw+ � w�k2�⌧2�⌧ + �

> �
X(w+ � w�) � y

�
� w

>
+⌫+ � w

>
�⌫�

o
.

The set of KKT conditions are8
<

:

w+,w� � 0 , Xw = y ,

+ sign(w) � |w|�(1�⌧) � X
>
� � 0 , � sign(w) � |w|�(1�⌧) + X

>
� � 0 ,�

sign(w) � |w|�(1�⌧) � X
>
�
�

� w+ = 0 ,
�
sign(w) � |w|�(1�⌧) � X

>
�
�

� w� = 0 ,

where w = w+ � w�. The first condition is imposed by the form of the updates and the second
condition is satisfied by the assumption at t ! 1. Using w0 = ↵1 with ↵ ! 0, we have

w+(t) = exp⌧
�

� 1

1 � ⌧
�

Z t

0
X

>
�(z) dz

�
=

⇥
� (1 � ⌧)X>

Z t

0
�(z)

⇤� 1
1�⌧

+
,

w�(t) = exp⌧
�

� 1

1 � ⌧
+

Z t

0
X

>
�(z) dz

�
=

⇥
+ (1 � ⌧)X>

Z t

0
�(z)

⇤� 1
1�⌧

+
.

Setting � = �(1 � ⌧)
R1
0 �(z) satisfies the remaining KKT conditions.

Corollary 1. Under the assumptions of Theorem 4, the reparameterized tempered EGU±
⌧ updates (22)

also recover the minimum L2�⌧ -norm solution where w(t) = q⌧ (u+(t)) � q⌧ (u�(t)).

This corollary shows that reparameterizing the loss in terms of the parameters u changes the implicit
bias of the GD updates. Similar results were observed before in terms of sparse signal recovery [Vaske-
vicius et al., 2019] and matrix factorization [Gunasekar et al., 2017]. Here, we show that this is a
direct result of the dynamics induced by the reparameterization Theorem 2.

5 Conclusion and Future Work

In this paper, we motivated the continuous-time mirror descent updates and provided a general frame-
work for reparameterizing these updates. We also introduced the tempered EGU±

⌧ updates and its
reparameterizations. The tempered EGU±

⌧ updates include the two commonly used gradient descent
and exponentiated gradient updates, and interpolations between them. For the underdetermined linear
regression problem we showed that under certain conditions, the tempered EGU±

⌧ updates converge
to the minimum L2�⌧ -norm solution. The current work leads to many interesting future directions:

• The focus is this paper was to develop the reparameterization method in full generality. Our repa-
rameterization equivalence theorem holds only in the continuous-time and the equivalence relation
breaks down after discretization. However, in many important cases the discretized reparameterized
updates closely track the discretized original updates [Amid and Warmuth, 2020]. This was done
by proving the same on-line worst case regret bounds for the discretized reparameterized updates
as the originals. A key research direction is to find general conditions for which this is true.

• Perhaps the most important application of the current work is reparameterizing the weights of deep
neural networks for achieving sparse solutions or obtaining an implicit form of regularization that
mimics a trade-off between the ridge and lasso methods (e.g. elastic net regularization [Zou and
Hastie, 2005]). Here the key open question is the following: Are sparse networks (as in Figure 2)
necessary, if the goal is to learn sample efficiently when the solution is sparse?9

• A general treatment of the convergence results for underdetermined linear regression should allow
any start vector. Also, developing a matrix form of the reparameterization theorem is left open.

9This has recently been proven in Warmuth et al. [2020].
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