
An efficient nonconvex reformulation of stagewise
convex optimization problems

Rudy Bunel∗
DeepMind

rbunel@google.com

Oliver Hinder∗
Google Research, University of Pittsburgh

ohinder@pitt.edu

Srinadh Bhojanapalli
Google Research

bsrinadh@google.com

Krishnamurthy (Dj) Dvijotham
DeepMind

dvij@google.com

Abstract

Convex optimization problems with staged structure appear in several contexts,
including optimal control, verification of deep neural networks, and isotonic re-
gression. Off-the-shelf solvers can solve these problems but may scale poorly.
We develop a nonconvex reformulation designed to exploit this staged structure.
Our reformulation has only simple bound constraints, enabling solution via pro-
jected gradient methods and their accelerated variants. The method automatically
generates a sequence of primal and dual feasible solutions to the original convex
problem, making optimality certification easy. We establish theoretical properties
of the nonconvex formulation, showing that it is (almost) free of spurious local
minima and has the same global optimum as the convex problem. We modify PGD
to avoid spurious local minimizers so it always converges to the global minimizer.
For neural network verification, our approach obtains small duality gaps in only
a few gradient steps. Consequently, it can quickly solve large-scale verification
problems faster than both off-the-shelf and specialized solvers.

1 Introduction
This paper studies efficient algorithms for a particular class of stage-wise optimization problems:

minimize
(s,z)∈S×Rn

f(s, z) (1a)

s.t. µi(s, z1:i−1) ≤ zi ≤ ηi(s, z1:i−1) ∀i ∈ {1, . . . , n} (1b)

where n and m are positive integers, S ⊆ Rm, the function f has domain S ×Rn and range R, the
functions µi and ηi have domain S ×Ri−1 and range R. Given a vector z, we use the notation z1:i
to denote the vector [z1, . . . , zi]. We let z1:0 be a vector of length zero. Throughout the paper we
assume that η1, . . . , ηn are proper concave functions, f , µ1, . . . , µn are proper convex functions, and
S is a nonempty convex set.

Problems that fall into this problem class are ubiquitous. They appear in optimal control [1], finite
horizon Markov decision processes with cost function controlled by an adversary [2], generalized
Isotonic regression [3, 4], and verification of neural networks [5–7]. Details explaining how these
problems can be written in the form of (1) are given in Appendix A. Here we briefly outline how
neural network verification falls into (1b). Letting s represent the input image and z the activation
values, neural networks verification can be written (unconventionally) as

minimize
(s,z)∈S×Rn

f(s, z) s.t. zi = σ([s, z1:i−1] · wi),

∗Equal contribution
34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



for (sparse) weight vectors wi and activation function σ. A convex relaxation is created by picking
functions satisfying µi(s, z1:i−1) ≤ σi([s, z1:i−1] · wi) ≤ ηi(s, z1:i−1) for all s and z feasible to the
original problem. Solving these convex relaxations with traditional methods can be time consuming.
For example, Salman et al. [8] reports spending 22 CPU years to solve problems of this type in
order to evaluate the tightness of their proposed relaxation. Consequently, methods for solving these
relaxations faster are valuable.

1.1 Related work

1.1.1 Drawbacks of standard solvers for stagewise convex problems

Standard techniques for solving (1) can be split into two types: first-order methods and second-order
methods. These techniques do not exploit this stage-wise structure, and so they face limitations.

First-order methods: Methods such as mirror prox [9], primal-dual hybrid gradient (PDHG) [10],
augmented lagrangian methods [11], and subgradient methods [12] have cheap iterations (i.e., a
matrix-vector multiply) but may require many iterations to converge. For example,

minimize
x

− xn s.t. x1 ∈ [0, 1], −1 ≤ xi ≤ xi−1 ∀i ∈ {1, . . . , n− 1} (2)

is an instance of (1) with optimal solution at x = 1. However, this is the type of problem that exhibits
the worst-case performance of a first-order method. In particular, one can show (see Appendix B)
using the techniques of Nesterov [13, Section 2.1.2] it will take at least n− 1 iterations until methods
such as PDHG or mirror-prox obtain an iterate with x1 > 0 starting from x = 0. Furthermore,
existing first-order methods are unable to generate a sequence of primal feasible solutions. This
makes constructing duality gaps challenging. We could eliminate these constraints using a projection
operator, but in general this will require calling a second-order method at each iteration, making
iterations more expensive.

Second-order methods: Methods such as interior point and simplex methods rely on factorizing
a linear system, and can suffer from speed and memory problems on large-scale problems if the
sparsity pattern is not amenable to factorization. This issue, for example, occurs in the verification of
neural networks as dense layers force dense factorizations.

1.1.2 Other nonconvex reformulations of convex problems

Most research on nonconvex reformulations of convex problems is for semi-definite programs [14–
16]. In this work, the semi-definite variable is rewritten as the sum of low rank terms, forgoing
convexity but avoiding storing the full semi-definite variable. Compared with this line of research
our technique is unique for several reasons. Firstly, our primary motivation is speed of convergence
and obtaining certificates of optimality, rather than reducing memory or iteration cost. Secondly,
the landscape of our nonconvex reformulation is different. For example, it contains spurious local
minimizers (as opposed to saddle points) which we avoid via careful algorithm design.

2 A nonconvex reformulation of stagewise convex problems
We now present the main technical contribution of this paper, i.e., a nonconvex reformulation of the
stagewise convex problems of the form (1) and an analysis of efficient projected gradient algorithms
applied to this formulation.

2.1 Assumptions

We begin by specifying assumptions we make on the objective and constraint functions in (1). Prior
to doing so, it will be useful to introduce the notion of a smooth function:
Definition 1. A function h : X → R is smooth if ∇h(x) exists and is continuous for all x ∈ X; h
is L-smooth if ‖∇h(x)−∇h(x′)‖2 ≤ L‖x− x′‖2,∀x, x′ ∈ X .
Assumption 1. Assume f, η1, . . . , ηn, µ1, . . . , µn are smooth functions.
Remark 1. If Assumption 1 fails to hold it is may be possible to approximate f, ηi and µi by smooth
functions [17]. It is also possible one could use a nonsmooth optimization method [18]. However, we
leave the study of these approaches to future work.

Let ΠS denote the projection operator onto the set S. Ideally, the cost of this projection is cheap (e.g.,
S is formed by simple bound constraints) as we will be running projected gradient descent (PGD)
and therefore routinely using projections.

2



Assumption 2. Assume S is a bounded set with diameter Ds = sups,ŝ∈S ‖s− ŝ‖2. Further assume
Z is a bounded set such that for every feasible solution (s, z) to (1) we have z ∈ Z. Define
Dz = supz,ẑ∈Z ‖ẑ − z‖2.

We remark that if η and µ are smooth, and S is bounded then there exists a set Z satisfying
Assumption 2. The primary reason for Assumption 2 is it will allow us to form lower bounds on the
optimal solution to (1). We will also find it useful to be able to readily construct upper bounds, i.e.,
feasible solutions to (1). This is captured by the following assumption.

Assumption 3. For all i ∈ {1, . . . , n}, if s ∈ S and µj(s, z1:j−1) ≤ zj ≤ ηj(s, z1:j−1) for
j ∈ {1, . . . , i− 1} then µi(s, z1:i−1) ≤ ηi(s, z1:i−1).

Assumption 3 is equivalent to stating that feasible solutions to (1) can be constructed inductively.
In particular, given we have a feasible solution to the first 1, . . . , i − 1 constraints we can find a
feasible solution for the ith constraint by picking any zi ∈ [µi(s, z1:i−1), ηi(s, z1:i−1)] which must
be a nonempty set by Assumption 3. All examples discussed in Appendix A satisfy Assumption 3.

2.2 A nonconvex reformulation

Our idea is to apply PGD to the following nonconvex reformulation of (1),

minimize
(s,z,θ)∈S×Rn×[0,1]n

f(s, z) (3a)

s.t. zi = (1− θi)µi(s, z1:i−1) + θiηi(s, z1:i−1) ∀i ∈ {1, . . . , n}. (3b)

The basis of this reformulation is that if µi(s, z1:i−1) ≤ zi ≤ ηi(s, z1:i−1) then zi is a convex
combination of µi(s, z1:i−1) and ηi(s, z1:i−1). This reformulation allows us to replace the z variables
with θ variables and replaces the constraints (1b) that are difficult to project onto with box constraints.
For conciseness we denote (3b) by

z ← FORWARD(s, θ).

Let us consider an alternative interpretation of (3) that explicitly replaces z with θ. Define ψn(s, z) :=
f(s, z) and recursively define ψi for all i ∈ {1, . . . , n} by

ψi−1(s, z1:i−1, θi:n) := ψi(s, z1:i−1, (1− θi)µi(s, z1:i−1) + θiηi(s, z1:i−1), θi+1:n).

Note that ψi−1 eliminates the variable zi from ψi by replacing it with (1 − θi)µi(s, z1:i−1) +
θiηi(s, z1:i−1). Using this notation, the reformulation (3) is equivalent to:

minimize
(s,θ)∈S×[0,1]n

ψ0(s, θ). (4)

For intuition consider the following example

S := [−1, 1], f(s1, z1) := z1, η1(s1) := 1− s21, µ1(s1) := s21 − 1. (5)

In Figure 1 we plot this example. Consider an arbitrary feasible point, e.g., z1 = 0.0, s1 = 0.5
and note that point can be written as a convex combination of a point on η and a point on µ. The
nonconvex reformulation does this explicitly with box constraints replacing nonlinear constraints.

Plot of original convex problem Plot of nonconvex reformulation ψ0(s1, θ1)

Figure 1: Comparison between original problem and reformulation.

3



The function ψ0 is smooth (since it is the composition of smooth functions), and its gradient is
computable by backpropagation, i.e., ∇ψn = ∇f and for i = n, . . . , 1,

∇sψi−1 = ∇sψi +
∂ψi
∂zi

(θi∇sηi + (1− θi)∇sµi) (6a)

∂ψi−1
∂zj

=
∂ψi
∂zj

+
∂ψi
∂zi

(
θi
∂ηi
∂zj

+ (1− θi)
∂µi
∂zj

)
∀j ∈ {1, . . . , i− 1} (6b)

∂ψ0

∂θi
=
∂ψi
∂θi

=
∂ψi
∂zi

∂zi
∂θi

=
∂ψi
∂zi

(ηi − µi) (6c)

where we denote f = f(s, z), ψi = ψi(s, z1:i−1, θi:n), ηi = ηi(s, z1:i−1), and µi = µi(s, z1:i−1);
this abuse of notation, where we assume these functions are evaluated at (s, z, θ) unless specified
otherwise, will continue throughout the paper for the purposes of brevity. The subscript on ∇
specifies the arguments the derivative is with respect to, if it is left blank then we take the derivatives
with respect to all arguments. Therefore, one can apply PGD, or other related descent algorithm to
minimize ψ0. Moreover, the cost of computing the gradient via backpropagation is cheap (dominated
by the cost of evaluating ∇f , ∇η, and ∇µ). However, since ψ0 is nonconvex, it is unclear whether a
gradient based approach will find the global optimum.

We show that this is indeed the case in the following subsections: In section 2.3, we show that global
minima are preserved under the nonconvex reformulation. In section 2.4, show that nondegenerate
local optima are global optima and that projected gradient descent converges quickly to these. In
section 2.5, we show how to modify projected gradient descent to avoid convergence to degenerate
local optima and ensure convergence to a global optimum.

2.3 Nonconvex reformulation is equivalent to original convex problem

Before arguing that the local minimizers of (3) are equal to the global minimizers of (1), it is important
to confirm that the global minimizers are equivalent. Indeed, Theorem 1 confirms this.
Theorem 1. Any feasible solution to (1) corresponds to a feasible solution for (3) with the same
objective value. Furthermore, if µi ≤ ηi for all i ∈ {1, . . . , n} and (s, z) feasible to (3), then any
feasible solution to (3) corresponds to a feasible solution for (1) with the same objective value. In
which case, the global optimum of (3) is same as the global optimum of (1).

Proof. Consider any feasible solution (s, z) to (1). By setting θi = zi−µi

ηi−µi
(any θi ∈ [0, 1] suffices if

µi = ηi) we obtain a feasible solution to (3). On the other hand, if µi ≤ ηi then (3b) and θi ∈ [0, 1]
implies µi ≤ zi ≤ ηi.

Figure 2: Infeasible: Assumption 3 fails.

A sufficient condition for the premise of Theorem 1 to
hold is Assumption 3. As Figure 2 shows, if Assump-
tion 3 fails then the nonconvex reformulation can generate
infeasible solutions to the original convex optimization
problem (1b). Consider the example given by (5) except
with S := [−1.5, 1.5] instead of S := [−1, 1]. The set of
feasible solutions to (1) is enclosed by the two curves. At
s1 = 1.2 and θ = 1, µ(s1) > η(s1), which is infeasible.

2.4 Analysis of nondegenerate local optima

This section is devoted to proving that under a nondegen-
eracy assumption, the first-order stationary points of (3) are global minimizers. Degeneracy issues
arise when ηi = µi. In this situation, if θi changes, then z will remain the same, and therefore from
the perspective of the convex formulation, the solution is the same. However, from the perspective
of the function ψ0 there is an important difference. In particular, as θi changes the gradient of ψ0

changes. Consequently, certain values of θi may generate spurious local minimizers. Recall example
(5), i.e., S := [−1, 1], f(s1, z1) := z1, η1(s1) := 1− s21 and µ1(s1) := s21 − 1. In this instance,

ψ0 = θ1(1− s21) + (1− θ1)(s21 − 1) = (1− 2θ1)(s21 − 1),
∂ψ0

∂s1
= (1− 2θ1)(2s1 − 1).

As illustrated in Figure 3, the global minimizer is s1 = 0, θ = 0⇒ z1 = −1. If s1 ± 1 then for all
θ1 ∈ [0, 1] we have z1 = 0. Moreover, the points s1 ± 1, θ1 ∈ (0.5, 1] are spurious local minimizers.

4



To see this, note for all θ1 ∈ [0.5, 1], and s1 ∈ S that ψ0(s1, θ1) ≥ 0 = ψ0(1, θ1). In contrast, the
points s1 ± 1, θ ∈ [0, 0.5) are not local minimizers, because for s1 ± 1 and θ1 ∈ [0, 0.5) we have
∂ψ0

∂s1
> 0 implying that gradient descent steps move away from the boundary. We conclude that if

µi = ηi certain values of θi could be spurious local minimizers. We emphasize the word certain
because, as Section 2.5 details, there is always a value of θi that enables escape.

The nondegeneracy assumption we make is that for some γ ≥ 0 the set

Kγ(s, θ) :=

{
i ∈ {1, . . . , n} : z = Forward(s, θ),

ηi − µi ≤ γ, θi

(
∂ψi
∂zi

)+

+ (1− θi)
(
∂ψi
∂zi

)−
> 0

}
is empty, where (·)+ := max{·, 0} and (·)− := min{·, 0}. If the set K0(s, θ) is non-empty then any
coordinate i ∈ K0(s, θ) could be causing a spurious local minimizer. Values of γ strictly greater
than zero ensures that we do not get arbitrarily close to a degenerate point. We will show this
nondegeneracy assumption guarantees that first-order stationary points are global minimizers.

Plot of original convex problem Plot of nonconvex reformulation ψ0(s1, θ1)

Figure 3: Example of degeneracy causing spurious local minimizers when s1 ± 1.

While our nondegeneracy assumption holds it will suffice to run PGD which is defined as

(s+, θ+)← (s, θ) + argmin
d∈D(s,θ)

∇ψ0 · d+
L

2
‖d‖22,

where D(s, θ) := {d : (s, θ) + d ∈ S × [0, 1]n} is the set of feasible search directions and L
is the smoothness of ψ0 (see Definition 1). A useful fact is that PGD satisfies ψ0(s+, θ+) ≤
ψ0(s, θ)− δL(s, θ) for

δL(s, θ) := −minimize
d∈D(s,θ)

∇ψ0 · d+
L

2
‖d‖22.

See [19, Lemma 2.3.] for a proof. In other words, δL(s, θ) represents the minimum progress of
PGD. Once again for brevity we will denote δL(s, θ) by δL. Note that if δL is zero then we are at a
first-order stationary point of ψ0. The remainder of this section focuses on proving that δL provides
an upper bound on the optimality gap. To form this bound we use Lagrangian duality. In particular,
the Lagrangian of (1) is:

L(s, z, y) := f +

n∑
i=1

(y+i µi − y−i ηi − yizi)

where y+i = max{yi, 0}, and y−i = max{−yi, 0}. We will denote L(s, z, y) by L. Define,

∆(s, θ) :=

n∑
i=1

(yizi − y+i µi + y−i ηi) + sup
(ŝ,ẑ)∈S×Z

∇s,zL · (ŝ− s, ẑ − z) (7)

with z = FORWARD(s, θ) and yi = ∂ψi

∂zi
. If (s, z) is feasible to (1) we conclude ∆(s, θ) is a valid

duality gap, i.e., provides global guarantees, because by duality, convexity and (7),
f∗ ≥ inf

(ŝ,ẑ)∈S×Z
L(ŝ, ẑ, y) ≥ L+ inf

(ŝ,ẑ)∈S×Z
∇s,zL · (ŝ− s, ẑ − z) = f −∆(s, θ). (8)

5



To compute ∆(s, θ), one needs to be able to efficiently minimize a linear function over the set Z. For
this reason, one should choose Z to have a simple form (i.e., bound constraints).
Assumption 4. There exists a constant c > 0 such that ‖η−µ‖2 +Ds‖∇sη−∇sµ‖2 +Dz‖∇zη−
∇zµ‖2 ≤ c for all (s, z) that are feasible to (1b).

In Assumption 4, observe that ∇sη −∇sµ and ∇zη −∇zµ are matrices so ‖ · ‖2 is the spectral
norm. Also, note that Assumption 1 and 2 imply that Assumption 4 must hold. However, we add
Assumption 4 because it makes the constant c explicit.
Lemma 1 (Nondegenerate first-order stationary points are optimal). Suppose Assumption 2 and
4 hold. Suppose also that Kγ(s, θ) = ∅ with γ ∈ (0,∞), and that δL ≤ L/2. Then ∆(s, θ)2 ≤
L
(
Ds

√
2 + 2γ−1c

)2
δL.

In the nondegenerate case (i.e., Kγ(s, θ) = ∅), δL upper bounds ∆(s, θ). In particular, as Lemma 1
demonstrates small progress by gradient steps implies small duality gaps. The proof of Lemma 1
appears in Section C.1 and is technical. The core part of the proof of Lemma 1 is bounding
θiy

+
i + (1 − θi)y−i for yi = ∂ψi

∂zi
in terms of γ−1 and δL. When θiy+i + (1 − θi)y−i ≈ 0 one can

show that ∆(s, θ) ≈ supŝ∈S∇sL · (ŝ− s) ≈ supŝ∈S∇sψ · (ŝ− s) ≤ Ds

√
2LδL.

2.4.1 Analysis of projected gradient descent

Lemma 1 provides the tool we need to prove the convergence of PGD in the nondegenerate case. The
algorithm we analyze (Algorithm 1) includes termination checks for optimality. Furthermore, the
PGD steps can be replaced by any algorithm that makes at least as much function value reduction as
PGD would make in the worst-case. For example, gradient descent with a backtracking line search
and an Armijo rule [20, Chapter 3], or a safeguarded accelerated scheme [21] would suffice.

Algorithm 1 Local search algorithm for minimizing ψ0 in the nondegenerate case.
1: function SIMPLE-PSI-MINIMIZATION(s1, θ1, ε)
2: Suppose ψ0 is L-smooth. Note L ∈ (0,∞) need not be known.
3: for k = 1, . . . ,∞ do
4: Termination checks:
5: if ∆(sk, θk) ≤ ε then
6: Found an ε-optimal solution:
7: return (sk, θk)
8: end if
9: Reduce the function at least as much as PGD would:

10: (sk+1, θk+1) ∈ {(s, θ) : ψ0(s, θ) ≤ ψ0(sk, θk)− δL(sk, θk)}
11: end for
12: end function

Theorem 2 (PGD converges to global minimizer under nondegeneracy assumption). Suppose As-
sumption 2, 3 and 4 hold. Suppose ψ0 is L-smooth, ε, γ ∈ (0,∞), (s1, θ1) ∈ S × [0, 1]n, and
Kγ(sk, θk) = ∅ for all iterates of the algorithm SIMPLE-PSI-MINIMIZATION(s1, θ1, ε). Then, the
algorithm terminates after at most

1 +
2∆(s1, θ1)

L
+
L
(
Ds

√
2 + 2cγ−1

)2
ε

iterations.

See Section C.2 for a proof of Theorem 2. The proof of Theorem 2 directly utilizes Lemma 1 using
standard techniques, almost identical to the proof of convergence for gradient descent in the convex
setting [13, Theorem 2.1.13].
Remark 2. It is worth discussing the premise in Theorem 2 that ψ0 is L-smooth. The composition
of smooth functions is smooth, implying ψ0 is smooth. Moreover, since S × [0, 1]n is a bounded set
we deduce that ψ0 is L-smooth for some L > 0. Therefore the premise that ψ0 is L-smooth is valid.
However, the value of L could be extremely large, for example, if ηi(s, z1:i−1) = µi(s, z1:i−1) =
2zi−1 for i > 1, η1(s) = µ1(s) = s1, and f(s, z) = 1

2z
2
n then ψ0(s, θ) = 1

2 (2ns)2 and L = 4n.
Note this occurs despite the fact that each component function is well-behaved (i.e., ηi, µi, f are
1-smooth and 2-Lipschitz with respect to the Euclidean norm).

6



Remark 3. Consider (2), the hard example for standard first-order methods. Note that starting from
the origin (i.e., x1 = 0, θ = 0), then for sufficiently large step size PGD on ψ0 will take exactly one
iteration to find the optimal solution (x1 = 1, θ = 1).
Remark 4. Suppose that we are solving a neural network verification problem (Section 3 and A.2).
Then this approach is strongly related to adversarial attack heuristics. In particular, freezing θ = 0
in SIMPLE-PSI-MINIMIZATION yields a typical gradient based attack on the network [22].

2.5 Analysis of degenerate local optima

Section 2.4 proved convergence of PGD to the global minimizer under a nondegeneracy assump-
tion (i.e., Kγ(sk, θk) = ∅). This section develops a variant of PGD that requires no degeneracy
assumptions but still converges to the global minimizer.

2.5.1 Escaping exact local minimizers

Our main result, presented in Section 2.5.2, proves convergence under minimal assumptions. The
key to the result is developing an algorithm for escaping basins of local minimizers. However, the
algorithm and analysis is very technical. To give intuition for it this section considers the easier case
of escaping exact local minimizers (Lemma 2).

The high level idea is illustrated in Figure 4b. Recall from Figure 3 that if we are at a spurious
local minimizer then the set Kγ(s, θ) must be nonempty. In particular, in this instance the set
K0(s, θ) = {1} is nonempty. In this setting, θ1 corresponds to an edge that we can move along where
ψ0(s, θ) is constant. ESCAPE-EXACT-LOCAL-MIN(s, θ) moves us along this edge from (s, θ) to
(s, θ̂) at which K0(s, θ̂) is empty and therefore we have escaped the local minimizer.

1: function ESCAPE-EXACT-LOCAL-MIN(s, θ)
2: z = FORWARD(s, θ), θ̂ ← copy(θ)
3: for i = n, . . . , 1 do
4: if i ∈ K0(s, θ1:i, θ̂i+1:n) then

5: θ̂i =

{
0 ∂ψi(s,z1:i,θ̂i+1:n)

∂zi
> 0

1 ∂ψi(s,z1:i,θ̂i+1:n)
∂zi

< 0
6: end if
7: end for
8: return (s, θ̂)
9: end function

(a) Algorithm
(b) The high level idea of the algorithm is shown by the
blue arrow.

Figure 4: An algorithm for escaping exact local minimizers

Lemma 2 (Escaping exact local minimizers). Suppose that Assumption 1 holds and let (s, θ̂) =

ESCAPE-EXACT-LOCAL-MIN(s, θ). Then FORWARD(s, θ) = FORWARD(s, θ̂), and K0(s, θ̂) = ∅.

Proof. By the definition of K0, if i ∈ K0(s, θ) then ηi = µi. Therefore FORWARD(s, θ1:i−1, θ̂i:n) =

FORWARD(s, θ1:i, θ̂i+1:n), and by induction FORWARD(s, θ) = FORWARD(s, θ̂).

Next, we show that i 6∈ K0(s, θ1:i−1, θ̂i:n). If i 6∈ K0(s, θ1:i, θ̂i+1:n) then θi = θ̂i so the result
trivially holds. On the other hand, if i ∈ K0(s, θ1:i, θ̂i+1:n) then by definition of θ̂i,

θ̂i

(
∂ψi(s, z1:i, θ̂i+1:n)

∂zi

)+

+ (1− θ̂i)
(
∂ψi(s, z1:i, θ̂i+1:n)

∂zi

)−
= 0 (9)

which implies i 6∈ K0(s, θ1:i−1, θ̂i:n). Further note that FORWARD(s, θ1:i−1, θ̂i:n) =

FORWARD(s, θ1:i, θ̂i+1:n) implies if j ≤ i and j 6∈ K0(s, θ1:j−1, θ̂j:n) then j 6∈ K0(s, θ1:i−1, θ̂i:n).
By induction we deduce K0(s, θ1:i−1, θ̂i:n) ⊆ {1, . . . , i− 1} and hence K0(s, θ̂) is empty.

A critical feature of ESCAPE-EXACT-LOCAL-MIN(s, θ) is that we work backwards (i.e., i = n, . . . , 1
rather than i = 1, . . . , n). This is critical because if we work forwards instead of backwards then (9)

7



would become

θ̂i

(
∂ψi(s, z1:i, θi+1:n)

∂zi

)+

+ (1− θ̂i)
(
∂ψi(s, z1:i, θi+1:n)

∂zi

)−
= 0

which, due to the replacement of θ with θ̂ inside ψi, is insufficient to establish K0(s, θ̂) is empty.

Finally, we remark that gi := ∂ψi(s,z1:i,θ̂i+1:n)
∂zi

can be computed via the recursion

gi ←
∂f

∂zi
+

n∑
j=i+1

gj

(
θ̂j
∂ηj
∂zi

+ (1− θ̂j)
∂µj
∂zi

)
,

and therefore calling ESCAPE-EXACT-LOCAL-MIN takes the same time as computing ∇θψ0.

2.5.2 Escaping the basin of a local minimizer

If we modify SIMPLE-PSI-MINIMIZATION to run ESCAPE-EXACT-LOCAL-MIN(s, θ) whenever
the set K0(sk, θk) is nonempty then we would escape exact local minimizers. However, that does
not exclude the possibility of asymptotically converging to a local minimizer. Therefore we need
a method that will escape the basin of a local minimizer. In particular, we must be able to change
the value of the θi variables with i ∈ Kγ(s, θ) for γ > 0. This, however, introduces technical
complications because if ηi > µi then as we change θi the value of zi:n could change.

Due to these technical complications we defer the algorithm and analysis to Appendix D, and
informally state the main result here. The proof of Theorem 3 appears in Appendix D.1. The
discussion given in Remark 2 also applies to Theorem 3 and means that the constant C could be large.
Theorem 3. Suppose that Assumptions 1, 2, and 3 hold. Then there exists an algorithm obtaining an
ε-duality gap after Cε−3 + 1 computations of ∇ψ0 where C is a problem dependent constant.

3 Experiments
We evaluate our method on robustness verification of models trained on CIFAR10 [23]. We benchmark
on three sizes of networks trained with adversarial training [24]. The tiny network has two fully
connected layers, with 100 units in the hidden layer. The small network has two convolutional layers,
and two fully connected layers, with a total of 8308 hidden units. The medium network has four
convolutional layers followed by three fully connected layers, with a total of 46912 hidden units.

Verification of these networks is relaxed to a stage-wise convex problem (Appendix A.2). We
compare three strategies for solving this relaxation: (i) NonConvex, our nonconvex reformulation
using SIMPLE-PSI-MINIMIZATION augmented with momentum and backtracking linesearch, (ii)
DeepVerify [6] (DV) that performs Lagrangian relaxation on the bound computation problem, (iii) a
direct encoding of the relaxation into CVXPY [28], with SCS [26] and ECOS [27] backends2. We

2We also ran tests on an internal primal-dual hybrid gradient implementation. It was not remotely competitive
(failing to converge after 100,000 iterations on trialed instances) so we did not include it in the results.

ReLU Activation Average Bound Runtime (ms)

Tiny Small Medium Tiny Small Medium

IBP [25] 17.0 743 2.4e+6 5.5 3.1 3.3

DeepVerify [6] 13.7 544 1.6e+6 349 711 1.1e+3
NonConvex (Ours) 5.68 434.9 1.5e+6 91.2 177 175

CVXPY (SCS) [26] 5.64 - - 1.7e+5 - -
CVXPY (ECOS) [27]5.64 - - 4.3e+4 - -

SoftPlus Activation Average Bound Runtime (ms)

Tiny Small Medium Tiny Small Medium

IBP [25] 18.3 6.5e+3 2.0e+9 4 2.5 3.3

DeepVerify [6] 13.7 5.1e+3 1.5e+9 414 855 1.7e+3
NonConvex (Ours) 5.97 3.93e+3 1.3e+9 7.8 65 214

CVXPY (SCS) [26] 5.97 - - 2.9e+5 - -

Table 1: Benchmark
For each model, we report the
average bound achieved on the
adversarial objective and the av-
erage runtime in milliseconds
to obtain it, over the CIFAR-
10 test set. IBP [25] does not
perform any optimization so
it has an extremely small run-
time but the bounds it generates
are much weaker. The off-the-
shelf solvers are significantly
slower than the first-order meth-
ods DeepVerify and NonCon-
vex and were not feasible to run
beyond the tiny network.

8



100 101 102

Iterations

10−2

10−1

100

R
el

at
iv

e
D

ua
lit

y
G

ap
NonConvexBound
DeepVerifyBound

0.5 1.0
Time (in s)

10−2

10−1

100

R
el

at
iv

e
D

ua
lit

y
G

ap

NonConvexBound
DeepVerifyBound

(a) Evolution of the relative duality gap as a function of time or number
of iteration, for the NonConvex and DeepVerify Solver.

0 20 40
Iterations

10−1

100

D
is

ta
nc

e
to

co
rn

er

Min
1th percentile
5th percentile
10th percentile

(b) Distribution of distance to po-
tentially degenerate points.

Figure 5: Evaluation on the Medium-sized network with SoftPlus activation function

terminate (i) after 50 iteration or when the relative duality gap is less than 10−2, (ii) after 500 iterations
or when its dual value is larger than the final value of NonConvex (NC) (details in Appendix F).

Table 1 shows that, compared with the specialized first-order method DV, our method is faster by a
factor between 3 and 50 depending on the network architecture, and always produces tighter bounds.
As the two methods solve problems that have the same optimal value, we hypothesize that the
discrepancy is because the Lagrangian relaxation of DV contains an inner-maximization problem that
makes its objective extremely non-smooth, slowing convergence.

In most problems, DV reaches the imposed iterations limit before convergence. This is quantified in
Table 2 where we show that beyond the tiny network, DV does not reach a small enough dual gap to
achieve early stopping. On the other hand, we observe that for NC, the scale of the network does not
significantly impact the required number of iterations. Figure 5a shows an example of the evolution
of the computed bound, where we can see that the objective of DV plateaus, while NC converges in
few iterations. Since the time per iteration for both methods is roughly the same, our runtime is lower.

After a single iteration, the duality gap achieved by our method is considerably smaller. The variables
of DV exist on an unbounded feasible domain and appropriate initial values are therefore difficult to
estimate, leading to large initial duality gap. Our method does not suffer from this problem, as all
our variables are constrained between 0 and 1, and we can therefore initialize them all to 0.5, which
empirically gives us good performance.

Early stopping % Avg iteration count

DV NC DV NC

Tiny ReLU 37% 73% 384 18
Small ReLU 0% 97% 500 9
Medium ReLU 63% 100% 284 5

Tiny SoftPlus 14 % 100% 467 4
Small SoftPlus 0 % 100% 500 7
Medium SoftPlus 0 % 59% 500 25

Table 2: Proportion of bound computations on CIFAR-
10 where the algorithm converges within the iteration
budget, and average number of iterations.

Nondegeneracy in practice. In Section 2.4, we
described a simple version of our algorithm un-
der the assumption that the algorithm does not
enter a degenerate region. In the context of Neu-
ral Network verification, due to the structure of
the problem, the only possibility for a small gap
between ηi − µi is at the boundary of the fea-
sible domain of the convex hull relaxation of
activation. Even points close to the corner are
not necessarily degenerate as they also need to
satisfy a condition on the gradients. Through-
out optimization, we measure min{zi−li,ui−zi}

ui−li
where li and ui are lower and upper bounds on
zi (corresponding to the corners), as shown in Figure 5b. We can observe that this value is strictly
positive for all i which means we are not entering the degenerate region. This explains why, for these
problems, SIMPLE-PSI-MINIMIZATION was able to converge to good solutions.

Conclusion: We have developed a novel algorithm for a class of stage-wise convex optimization
problems. Our experiments showed that our algorithm is efficient at solving standard relaxations
of neural network verification problems. We believe that these results will generalize to stronger
relaxations [29], as well as other stage-wise convex problems such as those arising in optimal control
and generalized isotonic regression.

9



Broader Impact
Our work leads to new scalable algorithms for verifying properties of neural networks and solve
certain kinds of structured regression problems. On the positive side, these can have an impact in
terms of better methods to evaluate the reliability and trustworthiness of state of the art deep learning
systems, thereby catching any unseen failure modes and preventing undesirable consequences of
deep learning models. On the negative sign, the algorithms are agnostic to the type of properties
being verified and may facilitate abuses by allowing attackers to verify that their attacks can reliabily
induces specific failure modes in a deep learning model. Further, any applications of these techniques
is reliant on carefully designing desirable specifications or properties of a deep learning model - if this
is not done carefully, even systems that are verifiable with these algorithms may exhibit undesirable
behavior (arising from bias in the data or the specification).

Acknowledgments and Disclosure of Funding
We thank Miles Lubin for establishing the connections between the authors and helpful feedback on
the paper. We’d also like to thank Ross Anderson, Christian Tjandraatmadja, and Juan Pablo Vielma
for helpful discussions.

References
[1] Frank L Lewis, Draguna Vrabie, and Vassilis L Syrmos. Optimal control. John Wiley & Sons,

2012.

[2] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence of cost
functions controlled by an adversary. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pages 536–543, 2003.

[3] David Gamarnik and Julia Gaudio. Sparse high-dimensional isotonic regression. In Advances
in Neural Information Processing Systems, pages 12852–12862, 2019.

[4] Ronny Luss, Saharon Rosset, Moni Shahar, et al. Efficient regularized isotonic regression with
application to gene–gene interaction search. The Annals of Applied Statistics, 6(1):253–283,
2012.

[5] Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda. A
unified view of piecewise linear neural network verification. Advances in Neural Information
Processing Systems, 2018.

[6] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and Pushmeet
Kohli. A dual approach to scalable verification of deep networks. UAI, 2018.

[7] Eric Wong and J Zico Kolter. Provable defenses against adversarial examples via the convex
outer adversarial polytope. ICML, 2018.

[8] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex
relaxation barrier to tight robustness verification of neural networks. Advances in Neural
Information Processing Systems, 2019.

[9] Arkadi Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequali-
ties with lipschitz continuous monotone operators and smooth convex-concave saddle point
problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[10] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40(1):120–145,
2011.

[11] Andrew R Conn, Nick Gould, and Ph L Toint. Numerical experiments with the LANCELOT
package (release a) for large-scale nonlinear optimization. Mathematical Programming, 73(1):
73, 1996.

[12] Naum Zuselevich Shor. Minimization methods for non-differentiable functions, volume 3.
Springer Science & Business Media, 2012.

10



[13] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87.
Springer Science & Business Media, 2013.

[14] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex Burer-Monteiro ap-
proach works on smooth semidefinite programs. In Advances in Neural Information Processing
Systems, pages 2757–2765, 2016.

[15] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):329–357,
2003.

[16] Samuel Burer and Renato DC Monteiro. Local minima and convergence in low-rank semidefinite
programming. Mathematical Programming, 103(3):427–444, 2005.

[17] Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical programming, 103
(1):127–152, 2005.

[18] Damek Davis and Dmitriy Drusvyatskiy. Stochastic subgradient method converges at the rate
O(k−1/4) on weakly convex functions. arXiv preprint arXiv:1802.02988, 2018.

[19] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[20] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Science & Business
Media, 2006.

[21] Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex program-
ming. In Advances in neural information processing systems, pages 379–387, 2015.

[22] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. International Conference on
Learning Representations, 2013.

[23] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[24] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. ICLR, 2018.

[25] Sven Gowal, Krishnamurthy (Dj) Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin,
Jonathan Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. Scalable verified
training for provably robust image classification. ICCV, 2019.

[26] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via
operator splitting and homogeneous self-dual embedding. Journal of Optimization Theory and
Applications, 169(3):1042–1068, 2016.

[27] Alexander Domahidi, Eric Chu, and Stephen Boyd. Ecos: An socp solver for embedded systems.
European Control Conference (ECC), 2013.

[28] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. JMLR, 2016.

[29] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma.
Strong mixed-integer programming formulations for trained neural networks. Mathematical
Programming, pages 1–37, 2020.

[30] L Lasdon, S Mitter, and A Waren. The conjugate gradient method for optimal control problems.
IEEE Transactions on Automatic Control, 12(2):132–138, 1967.

[31] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient SMT solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97–117. Springer, 2017.

11



[32] Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet
Kohli, Philip HS Torr, and M Pawan Kumar. Lagrangian decomposition for neural network
verification. UAI, 2020.

[33] Moonkyung Ryu, Yinlam Chow, Ross Anderson, Christian Tjandraatmadja, and Craig Boutilier.
CAQL: Continuous action Q-learning. ICLR, 2020.

[34] Matthew Rosencrantz, Geoffrey Gordon, and Sebastian Thrun. Locating moving entities in
indoor environments with teams of mobile robots. In Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, pages 233–240, 2003.

[35] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika, 29(1):1–27, 1964.

[36] Guillaume Obozinski, Gert Lanckriet, Charles Grant, Michael I Jordan, and William Stafford
Noble. Consistent probabilistic outputs for protein function prediction. Genome Biology, 9(1):
S6, 2008.

[37] Michael J Best and Nilotpal Chakravarti. Active set algorithms for isotonic regression; a
unifying framework. Mathematical Programming, 47(1-3):425–439, 1990.

[38] Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for
the saddle point problems. arXiv preprint arXiv:1912.07481, 2019.

[39] Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for
convex-concave bilinear saddle-point problems. Mathematical Programming, pages 1–35,
2019.

[40] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends
in Machine Learning, 8:231–357, 2015.

[41] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

12


