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Abstract

Convolution is one of the most essential components of architectures used in
computer vision. As machine learning moves towards reducing the expert bias
and learning it from data, a natural next step seems to be learning convolution-like
structures from scratch. This, however, has proven elusive. For example, current
state-of-the-art architecture search algorithms use convolution as one of the existing
modules rather than learning it from data. In an attempt to understand the inductive
bias that gives rise to convolutions, we investigate minimum description length as a
guiding principle and show that in some settings, it can indeed be indicative of the
performance of architectures. To find architectures with small description length,
we propose β-LASSO, a simple variant of LASSO algorithm that, when applied
on fully-connected networks for image classification tasks, learns architectures
with local connections and achieves state-of-the-art accuracies for training fully-
connected nets on CIFAR-10 (85.19%), CIFAR-100 (59.56%) and SVHN (94.07%)
bridging the gap between fully-connected and convolutional nets.

1 Introduction

Since its inception, machine learning has moved from inserting expert knowledge as explicit inductive
bias toward general-purpose methods that learn these biases from data, a trend significantly accelerated
by the advent of deep learning [16]. This trend is pronounced in areas such as computer vision [14],
speech recognition [1], natural language processing [31] and computational biology [31]. In computer
vision, for example, tools such as deformable part models [9], SIFT features [21] and Gabor filters [22]
have all been replaced with deep convolutional architectures. Crucially, in certain cases, these general-
purpose models learn similar biases to the ones present in the traditional, expert-designed tools.

Gabor filters in convolutional nets are a prime example of this phenomenon: convolutional networks
learn Gabor-like filters in their first layer [38]. However, simply replacing the first convolutional
layer by a Gabor filter worsens performance, showing that the learned parameters differ from the
Gabor filter in a helpful way. A natural analogy can then be drawn between Gabor filters and the
use of convolution itself: convolution is a ‘hand-designed’ bias which expresses local connectivity
and weight sharing. Is it possible to learn these convolutional biases from scratch, the same way
convolutional networks learn to express Gabor filters?

Reducing inductive bias requires more data, more computation, and larger models—consider replacing
a convolutional network with a fully-connected one with the same expressive capacity. Therefore it
is important to reduce the bias in a way that does not damage the efficiency significantly, keeping
only the core bias which enables high performance. Is there a core inductive bias that gives rise to
local connectivity and weight sharing when applied to images, enabling the success of convolutions?
The answer to this question would enable the design of algorithms which can learn, e.g., to apply
convolutions to images, and apply more appropriate biases for other types of data.
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Current research in architecture search is an example of efforts to reduce inductive bias but often
without explicitly substituting the inductive bias with a simpler one [41, 29, 34]. However, searching
without a guidance makes the search computationally expensive. Consequently, the current tech-
niques in architecture search are not able to find convolutional networks from scratch and only take
convolution layer as a building block and focus on learning the interaction of the blocks.

Related Work Previous work attempted to understand or improve the gap between convolutional
and fully-connected networks. Perhaps the most related work is Urban et al. [36], titled “Do deep
convolutional nets really need to be deep and convolutional?” (the abstract begins “Yes, they
do.”). Urban et al. [36] demonstrate empirically that even when trained with distillation techniques,
fully-connected networks achieve subpar performance on CIFAR10, with a best-reported accuracy
of 74.3%. Our work, however, suggests a different view, with results that significantly bridge this
gap between fully-connected and convolutional networks. In another attempt, Mocanu et al. [23]
proposed sparse evolutionary training, achieving 74.84% accuracy on CIFAR-10. Fernando et al.
[10] also proposes an evolution-based approach but they only evaluate their approach on MNIST
dataset. To the best of our knowledge, the highest accuracy achieved by fully-connected networks
on CIFAR-10 is 78.62% [20], achieved through heavy data augmentation and pre-training with a
zero-bias auto-encoder.

In order to understand the inductive bias of convolutional networks, d’Ascoli et al. [5] embedded
convolutional networks in fully-connected architectures, finding that combinations of parameters
expressing convolutions comprise regions which are difficult to arrive at using SGD. Other works
have studied simplified versions of convolutions from a theoretical prospective [12, 3, 28]. Relatedly,
motivated by compression, many recent works [11, 18, 8, 6] study sparse neural networks; studying
their effectiveness on learning architectural bias from data would be an interesting direction.

Other recent interesting related work show variants of transformers are capable of succeeding in
vision tasks and learning locality connected patterns [4, 2]. In order to do so, one needs to provide the
pixel location as input which enables the attention mechanism to learn locality. Furthermore, it is not
clear that in order to learn convolutions such complex architecture is required. Finally, in a parallel
work Zhou et al. [40] proposed a method for meta-learning symmetries from data and showed that it
possible to use such method to meta-learn convolutional architectures from synthetic data.

Contributions: Our contributions in this paper are as follows:

• We introduce shallow (S-CONV) and deep (D-CONV) all-convolutional networks [33] with
desirable properties for studying convolutions. Through systematic experiments on S-CONV
and D-CONV and their locally connected and fully-connected counterparts, we make several
observations about the role of depth, local connectivity and weight sharing (Section 2):

– Local connectivity appears to have the greatest influence on performance.
– The main benefit of depth appears to be efficiency in terms of memory and computation.

Consequently, training shallow architectures with many more parameters for a long
time would compensate most of the lost performance due to lack of depth.

– The benefit of depth diminishes even further without weight-sharing.
• We look at Minimum Description Length (MDL) as a guiding principle to what architectures

generalize better (Section 3):
– Showing that MDL can be bounded by number of parameters, we argue and demonstrate

empirically that architecture families that need fewer parameters to fit a training set a
certain degree tend to generalize better in the over-parameterized regime.

– We prove an MDL-based generalization bound for architectures search which suggests
that the sparsity of the found architecture has great effect on generalization. However,
weight sharing is only effective if it has a simple structure.

• Inspired by MDL, we propose a training algorithm β-LASSO , a variant of LASSO with a more
aggressive soft-thresholding to find architectures with few parameters and hence, a small
description length. We present the following empirical findings for β-LASSO (Section 4):

– β-LASSO achieves state-of-the-art results on training fully connected networks on
CIFAR10, CIFAR-100 and SVHN tasks. The results are on par with the reported per-
formance of multi-layer convolutional networks around year 2013 [15, 37]. Moreover,
unlike convolutional networks, these results are invariant to permuting pixels.
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Figure 1: D-CONV and S-CONV architectures and their scaling: Left panel shows the architectures. Each
convolution or fully-connected layer (except the last one) has batch-normalization followed by ReLU activation.
The right panel indicates how the number of parameters in each architecture and their corresponding locally and
fully-connected scales with respect to the number of base channels (shown by α in the left panel) and image
dimension. The dotted black line is the maximum model size for training using 16-bits on a V100 GPU.

– We show that the learned networks have fewer parameters than their locally connected
counterparts. By visualizing the filters, we observe that β-LASSO has indeed learned lo-
cal connectivity but it has also learned to sample more sparsely in a local neighborhood
to increase the receptive field while keeping the number of parameters low.

– Somewhat related to the main goal of the paper, we trained ResNet18 with different ker-
nel sizes using β-LASSO and we observed that for all kernel sizes, β-LASSO improves
over SGD on CIFAR10, CIFAR-100 and SVHN datasets.

2 Disentangling Depth, Weight sharing and Local connectivity

To study the inductive bias of convolutions, we take a similar approach to d’Ascoli et al. [5], examining
two large hypothesis classes that encompass convolutional networks: locally-connected and fully-
connected networks. Given a convolutional network, its corresponding locally-connected version
features the same connectivity, but eliminates weight sharing. The corresponding fully-connected
network then adds connections between all nodes in adjacent layers. Functions expressible by
the fully-connected networks encompass those of locally-connected networks, which encompass
convolutional networks.

One challenge in studying the inductive bias of convolutions is that the existence of other components
such as pooling and residual connections makes it difficult to isolate the effect of convolutions
in modern architectures. One solution is to simply remove those from the current architectures.
However, that would result is a considerable performance loss since the other design choices of
the architecture family were optimized with those components. Alternatively, one can construct an
all-convolutional network with a desirable performance. Springenberg et al. [33] have proposed a few
all-convolutional architectures with favorable performance. Unfortunately, these models cannot be
used for studying the convolution since fully-connected networks that can represent such architectures
are too large. Another way to resolve this is by scaling down the number of parameters in the
conventional architecture which unfortunately degrades the performance significantly. To this end,
below we propose two all-convolutional networks to overcome the discussed issues.

2.1 Introducing D-CONV and S-CONV for Studying Convolutions

In this work, we propose D-CONV and S-CONV, two all-convolutional networks that perform relatively
well on image classification tasks while also enjoying desirable scaling with respect to the number of
channels in the corresponding convolutional network and input image size. As shown in the left panel
of Figure 1, D-CONV has 8 convolutional layers followed by two fully-connected layers. However,
S-CONV has only one convolutional layer which is followed by two fully-connected layers. The right
panel in Figure 1 shows how the number of parameters of these models and their corresponding
locally-connected (D-LOCAL, S-LOCAL) and fully-connected (D-FC, S-FC) networks scale with
respect to the number of base channels (channels in the first convolutional layer) and the input image
size. D-FC has the highest number of parameters given the same number of base channels, which
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Figure 2: Performance scaling of different architectures. The left and middle panels show the test accuracy
of four architectures trained on CIFAR-10 and CIFAR-100 datasets. See the Appendix for SVHN plot and
experiment details. The right panel shows the maximum test accuracy of architectures in the over-parameterized
regime against the minimum number of parameters they need in order to achieve a certain training accuracy that
is fixed for each dataset.

means the largest D-CONV that can be studied will not have many based channels. On the other hand
S-FC has a better scaling which allows us to have more base channels in the corresponding S-CONV.
The other interesting observation is that the number of parameters in fully-connected networks
depends on the fourth power of the input image dimension (e.g. 32 for CIFAR-10). However, the
local and convolutional networks have a quadratic dependency on the image dimension. Note that the
quadratic dependency of D-CONV and S-CONV to the image size is due to of lack of global pooling.

Figure 2 compares the performance of D-CONV and S-CONV against ResNet18 [13], and a 3-layer
(2 hidden layers) fully-connected network with equal number of hidden units in each hidden layers
denoted by 3-FC. It is clear that on all tasks, the performance of D-CONV is comparable but slightly
worse than ResNet18 which is expected. Moreover, S-CONV has a performance which is significantly
better than fully-connected networks but worse than D-CONV .

Models
#param (M) CIFAR10 CIFAR100 SVHN

orig. FC-emb. 400 ep. 4000 ep. 400 ep. 4000 ep. 400 ep. 4000 ep.

D-CONV 1.45 256 88.84 89.79 63.73 62.26 95.65 95.86
D-LOCAL 3.42 256 86.13 86.07 58.58 55.71 95.71 95.85
D-FC 256 256 64.78 63.62 36.61 35.51 92.52 90.97

S-CONV 138 256 84.14 87.05 59.48 62.51 92.34 93.38
S-LOCAL 147 256 81.52 85.86 56.64 62.03 92.51 93.98
S-FC 256 256 72.77 78.63 47.72 51.43 88.64 91.80

3-FC 256 256 69.19 75.12 44.95 50.75 85.98 86.02

Table 1: Performance of D-CONV, S-CONV and their locally and fully-connected counterparts. The results
indicate that in this regime, the performance of S-LOCAL is comparable to that of D-LOCAL and S-CONV . Please
refer to Appendix for details of the training procedure.

2.2 Empirical Investigation

In this section, we disentangle the effect of depth, weight sharing and local connectivity. Table 1
reports the test accuracy of D-CONV, S-CONV, their counterparts and 3-FC on three datasets. For each
architecture, the base channels is chosen such that the corresponding fully-connected network has
roughly 256 million parameters. First note that with that constraint, deep convolutional and locally
connected architectures have much smaller number of parameters compare to others. Moreover,
for both deep and shallow architectures, there is not a considerable difference in the number of
parameters of the convolutional and locally connected networks. Please refer to Figure 1 for the
scaling of each architecture. For each experiment, the results for training 400 and 4000 epochs are
reported. Several observations can be made from Table 1:
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1. Importance of locality: For both deep and shallow architectures and across all three
datasets, the gap between a locally connected network and its corresponding fully-connected
version is much higher than that between convolutional and locally-connected networks.
That suggests that the main benefit of convolutions comes from local connectivity.

2. Shallow architectures eventually catch up to deep ones (mostly): While training longer
for deep architectures does not seem to improve the performance, it significantly does so in
the case of shallow architectures across all datasets. As a result, the gap between deep and
shallow architectures shrinks significantly after training for 4000 epochs.

3. Without weight sharing, the benefit of depth disappears: S-FC outperforms D-FC in all
experiments. Moreover, when training for 4000 epochs, none of D-LOCAL and S-LOCAL
have clear advantage over each other.

4. Structure of fully-connected network matters: S-FC outperforms 3-FC and D-FC in all
experiments by a considerable margin. Even more interesting is that S-FC and 3-FC have
the same number of parameters and depth but S-FC has much more hidden units in the first
layer compare to 3-FC. Please see the appendix for the exact details.

The results in Table 1 suggests that S-CONV performs comparably to D-CONV and the gap between
S-CONV and S-LOCAL is negligible compare to the gap between S-LOCAL and S-FC . Therefore, in
the rest of the paper, we try to bridge the gap between the performance of S-FC and S-LOCAL .

3 Minimum Description Length as a Guiding Principle

In this section, we take a short break from experiments and look at the minimum description length
as a way to explain the differences in the performance of architectures and a guiding principle for
finding models that generalize well. Consider the supervised learning setup where given an input
data x ∈ X , we want to predict a label y ∈ Y under the common assumption that the pair (x,y)
are generated from a distribution D. Let S = {(x1,yn) . . . , (xm,ym)} be a training set sampled
i.i.d from D and ` : Y × Y → R be a loss function. The task is then to learn a function/hypothesis
h : X → Y with low population loss LD(h) = E(x,y)∼D [`(h(x),y)] also known as generalization
error. In order to find the hypothesis h, we start by picking a hypothesis classH (eg. linear classifiers,
neural networks of a certain family, etc.) and a learning algorithm A. Finally, A(S,H) returns a
hypothesis h which will be used for prediction. The learning algorithm usually finds a hypothesis
among the ones that have low sample loss LS = 1

m

∑
(x,y)∈S `(h(x),y).

A fundamental question in learning concerns the generalization gap between the training error and
the generalization error. One way to think about generalization is to think of a hypothesis as an
explanation for association of label y to input data x (eg. given a picture and the label “dog”, the
hypothesis is an explanation of what makes this picture, a picture of a dog). The Occam’s razor
principle provides an intuitive way of thinking about generalization of a hypothesis [32]:

A short explanation tends to be more valid than a long explanation.

The above philosophical message can indeed be formalized as follows:

Theorem 1. (32, Theorem 7.7) Let H be a hypothesis class and d : H → {0, 1}∗ be a prefix-free
description language forH. Then for any distribution D, sample size m, and probability δ > 0, with
probability 1− δ over the choice of S ∼ Dm we have that for any h ∈ H

LD(h) ≤ LS(h) +
√
|d(h)|+ log(2/δ)

2m
(1)

where |d(h)| is the length of d(h).

The above theorem connects the generalization gap of a hypothesis to its description length using
a prefix-free description language, i.e. for any two distinct h and h′, d(h) is not a prefix of d(h′).
Importantly, the description language should be chosen before observing the training set. The simplest
form of a prefix free description language is the bit representation of the parameters. If a model has
n parameters each of which stored in b bits, then the total number of bits to describe a model is nb.
Furthermore, note that this is prefix-free because all hypotheses have the same description length.
According to this language, the generalization gap is simply controlled by the number of parameters.
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Empirical investigations on generalization of over-parameterized models suggest that the number
of parameters is a very loose upper bound on the capacity [17, 27, 39, 7, 25] (or in MDL language,
it is not a compact encoding). However, it is possible that the number of parameters is a compact
encoding in the under-parameterized regime but some other encoding becomes optimal in the over-
parameterized regime. One empirical observation about many neural network architectures is that with
a well-chosen approach to scale the number of parameters, one can expect that over-parametrization
does not make a superior architecture inferior. While this is not always the case, it might be enough
to distinguish architectures that have very different inductive biases. For example, the left two panels
of Figure 2 show the performance plots of different architectures do not cross each other across the
scale. This was also the central observation used in architecture search by Tan and Le [34].

When the ordering of architectures with the same number of parameters based on their test perfor-
mance is the same for any number of parameters (similar to the left two panels of Figure 2), the per-
formance in under-parameterized regime can be indicative of the performance in over-parameterized
regime and hence if an architecture can fit the training data with fewer number of parameters, that
most likely translate to the superiority of the architecture in the over-parameterized regime. In the
right panel of Figure 2, we can see that it is indeed the case for all 4 architectures and 3 datasets that
we study in this work. ResNet18 requires least number of parameters to fit any dataset while the next
ones are D-CONV, S-CONV and 3-FC respectively and this is the exact order in terms of generalization
performance in over-parameterized regime where models have around 1 billion parameters.

MDL-based generalization bound for architecture search Theorem 1 gives a bound on the
description length of a hypothesis and we discussed how it can be bounded by number of parameters.
What if the learning algorithm searches over many architectures and finds one with small number of
parameters? In this case, the active parameters can be denoted as the parameters with non-zero values
and the parameter sharing can be modeled as parameters with the same value. Does the performance
then only depend on the number of parameters of the final architecture? How does the search space
come to the picture and how does weight sharing affect the performance? Let b be the number of
bits used to present each parameter (usually 16 or 32) and n be the maximum number of allowed
parameters in the architectures found by the architecture algorithm. Also, let k be the number of
parameters in the architecture found by the architecture search algorithm. The next theorem shows
how the generalization gap can be bounded in this case.

Theorem 2. Let Rb ⊂ R be a b-bit presentation of real numbers (|Rb| = 2b), F be a class of
parameterized functions fw where w ∈ Rnb , G = {g : [n] → [k]|k ≤ n} be all possible mappings
from numbers 1 . . . n to 1 . . . k for any k ≤ n and d : G → {0, 1}∗ a be prefix-free description
language for G. For any distribution D, sample size m, and δ > 0, with probability 1− δ over the
choice of S ∼ Dm, for any fw ∈ F:

LD(fw) ≤ LS(fw) +

√
kb+ |d(g)|+ log(2n/δ)

2m
(2)

where |d(g)| is the length of d(g) and wi = pg(i) for some p ∈ Rkb . Moreover, there exists a prefix
free language d such that for any g ∈ G, |d(g)| ≤ ‖w‖0 log(kn) + 2 log(n).

The proof is given in the appendix. The above theorem shows that the capacity of the learned model is
bounded by two terms: number bits to present the parameters of the learned architecture (kb) and the
description length of the weight sharing (d(g). This is rewarding for finding architectures with small
number of non-zero weights because in that case the generalization gap would mostly depend on the
number of non-zero parameters (using d(g) ≤ ‖w‖0 log(kn) + 2 log(n)). However, in the case of
weight sharing, the picture is very different. The bound suggests that the generalization gap depends
on the description length of the weight sharing and that could in worst case depend on the number of
non-zero parameters if there is no structure. Otherwise, when weight-sharing is structured, it can
be encoded more efficiently and the generalization could potentially only depend on the number of
parameters of the final model found by the architecture search. This suggests that simply encouraging
parameter values to be close to each other does not improve generalization unless there is a structure
in place. Therefore, we leave this for future work and focus on learning networks with small number
of non-zero weights in the rest of the paper which seemed to be the most important element based on
our empirical investigation in Section 2.2.
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Algorithm 1 β-LASSO

Parameters: f(θ): stochastic objective function with parameters θ, θ0: the initial parameter vector,
λ: coefficient of `1 regularizer, β: threshold coefficient, η: learning rate, τ : number of updates

1: for t = 1 to τ do
2: θt ← θt−1 − η(∇θf(θt−1) + λ sign(θt−1))
3: θt ← θt (|θt| ≥ βλ)+
4: Return θt

4 β-LASSO : Learning Local Connectivity from Scratch

In the previous section, we discussed that if a learning algorithm can find an architecture with a small
number of non-zero weights, then the generalization gap of that architecture would mostly depend on
the number of non-zero weights and the dependence on the number of original parameters would
be only logarithmic. This is very encouraging. On the other hand, we know from our empirical
investigation in Section 2.2 that locally connected networks perform considerably better than fully-
connected ones. Is it possible to find locally connected networks by simply encouraging sparse
connections when training on images? Could such networks bridge the gap between performance of
fully-connected and convolutional networks?

We are interested in architectures with small number of parameters. In order to achieve this, we try
the simplest form of encouraging the sparsity by adding an `1 regularizer. In particular, we propose
β-LASSO , a simple algorithm that is very similar to LASSO [35] except it has an extra parameter that
allows for more aggressive soft thresholding. The algorithm is shown in Algorithm 1.

4.1 Training fully-connected Networks

Table 2 compares the performance of S-FC trained with β-LASSO to state-of-the-art methods in
training fully-connected networks. The results show a significant improvement over previous work
even considering complex methods such distillation or pretraining. Moreover, there is only very small
gap between performance of S-FC trained with β-LASSO and its locally connected and convolutional
counterparts. However, note that unlike S-CONV and S-LOCAL, the performance of S-FC is invariant
to permuting the pixels which is a considerable advantage when little is known about the structure of
data. To put these results to perspective, these accuracies are on par with best results for convolutional
networks in 2013 [15, 37]. We fix β in the experiments but tune the regularization parameter λ for
each datasets. We also observed that having higher λ for the layer that corresponds to the convolution,
improves the performance which is aligned with our understanding that such a layer could benefit the
most from sparsity.

Model Training Method CIFAR-10 CIFAR-100 SVHN

S-CONV SGD 87.05 62.51 93.38
S-LOCAL SGD 85.86 62.03 93.98

MLP [26] SGD (no Augmentation) 58.1 - 84.3
MLP [24] Adam/RMSProp 72.2 39.3 -
MLP [23] SET(Sparse Evolutionary Training) 74.84 - -
MLP [36] deep convolutional teacher 74.3 - -
MLP [20] unsupervised pretraining with ZAE 78.62 - -

MLP (3-FC) SGD 75.12 50.75 86.02
MLP (S-FC) SGD 78.63 51.43 91.80
MLP (S-FC) β-LASSO (β = 0) 82.45 55.58 93.80
MLP (S-FC) β-LASSO (β = 1) 82.52 55.96 93.66
MLP (S-FC) β-LASSO (β = 50) 85.19 59.56 94.07

Table 2: Comparing the performance S-FC trained with β-LASSO to other methods for training fully-connected
networks. Please see the appendix for details of the training procedure.
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Figure 3: Number of non-zero parameters in different layers of S-FC trained with β-LASSO . The left
panel indicates that even though the first layers of S-CONV and S-LOCAL have much fewer number of parameters
(red dashed lines) compare to S-FC , the number of non-zero parameters in trained S-FC is between that of
S-LOCAL and S-CONV . The middle and right panels show the same quantity for the second and third layers
of S-FC which have the same parametrization as S-CONV and S-LOCAL . The plots suggest that β-LASSO
encourages the weights of the second layer to be much sparser but the last layer remains dense.
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Figure 4: Comparing first layer filters of S-FC trained with β-LASSO to that of S-FC and S-LOCAL trained with
SGD. The filters learned by SGD training of S-FC are dense but locally correlated. However, the filters learned
when trained with β-LASSO are locally connected in a similar way to S-LOCAL . Furthermore, it seems that the
network has learned that nearby pixels have similar information and therefore to get more information while
remaining local, it learns to look at a sparse sampling of a local neighborhood.

Furthermore, to see if β-LASSO succeeds in learning architectures that are as sparse as S-LOCAL, we
measure the number of non-zero weights in each layer separately. The results are shown in Figure 3.
The left panel corresponds to the first layer which is convolutional in S-CONV and locally connected
in S-LOCAL but fully-connected in S-FC . As you can see, the solution found by β-LASSO has less
nonzero parameters than the number of parameters in S-LOCAL and has only slightly more parameters
than S-CONV even though S-CONV is benefiting from weight-sharing. The middle and left plots show
that in other layers, the solution found by β-LASSO is still sparse but less so in the final layer.

Our further investigation into the learned filters resulted in surprising results that is shown in Figure 4.
S-FC trained with SGD learned filters that are very dense but with locally correlated values. However,
the same network trained with β-LASSO learns a completely different set of filters. The filters learned
by β-LASSO are sparse and locally connected in a similar fashion to S-LOCAL filters. Moreover, it
appears that the networks trained with β-LASSO have learned that immediate pixels have little new
information. In order to benefit from larger receptive fields while remaining local and sparse, these
networks have learned filters that seem like a sparse sampling of a local neighborhood in the image.
This encouraging finding validates that by using a learning algorithm with better inductive bias, one
can start from an architecture without much bias and learn it from data.
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Figure 5: Performance of ResNet18 trained with different kernel sizes.

4.2 Training Convolutional Networks with Larger Kernel Size

Slightly deviating from our main goal, we tried training ResNet18 with different kernel sizes using
β-LASSO and compare it with SGD. Figure 5 shows that β-LASSO improves over SGD for all kernel
sizes across all datasets. The improvement is predictably more so when kernel size is large since
β-LASSO would learn to adjust it automatically. These results again confirm that β-LASSO can be
used in many different settings to adoptively learn the structure.

5 Discussion and Future Work

In this work, we studied the inductive bias of convolutional networks through empirical investigations
and MDL theory. We proposed a simple algorithm called β-LASSO that significantly improves
training of fully-connected networks. β-LASSO does not have any specific inductive bias related
to images. For example, permuting all pixels in our experiments does not change the performance
of β-LASSO. It is therefore interesting to see if β-LASSO can be used in other contexts such as
natural language processing or in domains such as computational biology where the data is structured
but our knowledge of the structure of the data is much more limited compare to computer vision.
Another promising direction is to improve efficiency of β-LASSO to benefit from sparsity for faster
computation and less memory usage. The current implementation does not benefit from sparsity in
terms of memory or computation. In order to scale up β-LASSO to be able to handle larger networks
and input data dimensions, these barriers should be removed. Finally, we want to emphasize general
purpose algorithms such as β-LASSO that are able to learn the structure become even more promising
as training larger models become more accessible.

Broader Impact

This work studies inductive bias of convolutions and proposes an algorithm to learn local connectivity
from data. Since this work aims to improve a fundamental aspect of deep learning, we believe it does
not have immediate negative societal consequences. In the long term, making progress on general
purpose algorithms allows machine learning engineers to spend less time on architecture design and
more on other aspects of learning algorithms.
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