
A Proof of Lemma 10

Lemma 10. If Eq. (8) has one or multiple solutions, there must exist one with at most n non-zero
elements.

Proof. We prove by contradiction. Suppose on the contrary that every solution to Eq. (8) has at least
(n+ 1) non-zero elements. Let β0 denote a solution with the smallest number of non-zero elements.
Let A denote the set of indices of non-zero elements of β0. Then, we have |A| ≥ n+ 1. Below, we
will show that there must exist another solution to Eq. (8) with strictly fewer non-zero elements than
β0, which leads to a contradiction. Towards this end, note that since Xtrain has only n rows, the subset
of columns Xi, i ∈ A, must be linear dependent. Therefore, we can always find a non-empty set
B ∈ A and coefficients ci 6= 0 for i ∈ B such that∑

i∈B
ciXi = 0. (17)

Define βλ ∈ Rp for λ ∈ R such that

βλ[i] =

{
β0[i] + λci, if i ∈ B,
β0[i], otherwise.

Note that this definition is consistent with the definition of β0 when λ = 0. Thus, for any λ ∈ R, we
have

Xtrainβλ = Xtrainβ0 + λ

k∑
j=1

cjXbj

= Xtrainβ0 (by Eq. (17))
= Ytrain (since β0 satisfies the constraint of Eq. (8)). (18)

In other words, any βλ also satisfies the constraint of Eq. (8). Define

L :=

{
i ∈ B

∣∣∣∣∣ − β0[i]

ci
< 0

}
, U :=

{
i ∈ B

∣∣∣∣∣ − β0[i]

ci
> 0

}
,

LB :=

{
maxi∈L

(
−β0[i]

ci

)
, if L 6= ∅,

0, otherwise,

UB :=

{
mini∈U

(
−β0[i]

ci

)
, if U 6= ∅,

0, otherwise.

Base on those definitions, we immediately have the following two properties for the interval [LB, UB].
First, we must have [LB, UB] 6= ∅. This can be proved by contradiction. Suppose on the contrary
that [LB, UB] = ∅. Because by definition LB ≤ 0 and UB ≥ 0, we must have LB = UB = 0.
Because LB = 0, we must have L = ∅. Because UB = 0, we must have U = ∅. Thus, we
have B = L ∪ U = ∅, which contradicts the fact that B is not empty. We can thus conclude that
[LB, UB] 6= ∅. Second, for any λ ∈ (LB, UB), sign(β0[i] + λci) = sign(β0[i]) for all i ∈ B. This
is because

β0[i] + λci
β0[i]

= 1− λ
(
− ci
β0[i]

)
>

1− LB ·
(
− ci
β0[i]

)
≥ 0, if i ∈ L,

1− UB ·
(
− ci
β0[i]

)
≥ 0, if i ∈ U .

By the second property, we can show that ‖βλ‖1 is a linear function with respect to λ when λ ∈
[LB, UB]. Indeed, we can check that ‖βλ‖1 is continuous with respect to λ everywhere and its
derivative is a constant in λ ∈ (LB, UB), i.e.,

∂‖βλ‖1
∂λ

∣∣∣∣∣
λ∈(LB, UB)

=
∑
i∈B

ci · sign(β0[i] + λci) =
∑
i∈B

ci · sign(β0[i]). (19)
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By the first property, there are only three possible cases to consider.

Case 1: LB < 0 and UB > 0. By linearity, we have

min{‖βLB‖1, ‖βUB‖1} ≤ ‖β0‖1.

Thus, by Eq. (18), we know that either βLB or βUB (or both of them) is a solution of Eq. (8). By the
definitions of βλ, LB, and UB, we know that both βLB and βUB have a strictly smaller number of
non-zero elements than that of β0 when LB 6= 0 and UB 6= 0. This contradicts the assumption that
β0 has the smallest number of non-zero elements.

Case 2: LB < 0 and UB = 0. Since UB = 0, we have U = ∅, which implies that β0[i]/ci > 0 for
all i ∈ B, i.e., β0[i] and ci have the same sign for all i ∈ B. Thus, the value of Eq. (19) is positive,
i.e., ‖βλ‖1 is monotone increasing with respect to λ ∈ [LB, UB]. Thus, we have ‖βLB‖1 ≤ ‖β0‖1.
By Eq. (18), we know that βLB is a solution of Eq. (8). By the definitions of βλ and LB, we know
that βLB has a strictly smaller number of non-zero elements than that of β0 when LB 6= 0. This
contradicts the assumption that β0 has the smallest number of non-zero elements.

Case 3: LB = 0 and UB > 0. Similar to Case 2, we can show that βUB is a solution of Eq. (8) and
has a strictly smaller number of non-zero elements than that of β0. This contradicts the assumption
that β0 has the smallest number of non-zero elements.

In conclusion, all cases lead to a contradiction. The result of this lemma thus follows.

B An estimate of ‖εtrain‖2 (close to σ with high probability)

Lemma 11 (stated on pp. 1325 of [22]). Let U follow a chi-square distribution with D degrees of
freedom. For any positive x, we have

Pr
({
U −D ≥ 2

√
Dx+ 2x

})
≤ e−x,

Pr
({
D − U ≥ 2

√
Dx
})
≤ e−x.

Notice that n‖εtrain‖22/σ2 follows the chi-square distribution with n degrees of freedom. We thus
have

Pr
({
‖εtrain‖22 ≤ 2σ2

})
= 1− Pr

({
n‖εtrain‖22

σ2
≥ 2n

})
= 1− Pr

({
n‖εtrain‖22

σ2
− n ≥ n

})
.

Now we use the fact that

2

√
n

2−
√

3

2
n+ 2 · 2−

√
3

2
n =

√
n2(4− 2

√
3) + (2−

√
3)n

=

√
n2(
√

3− 1)2 + (2−
√

3)n

= (
√

3− 1)n+ (2−
√

3)n

= n.

We thus have

Pr
({
‖εtrain‖22 ≤ 2σ2

})
= 1− Pr

n‖εtrain‖22
σ2

− n ≥ 2

√
n

2−
√

3

2
n+ 2 · 2−

√
3

2
n




≥ 1− exp

(
−2−

√
3

2
n

)
(by Lemma 11 using x =

2−
√

3

2
n). (20)
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We also have

Pr

({
‖εtrain‖22 ≥

σ2

2

})
= 1− Pr

({
n‖εtrain‖22

σ2
≤ n

2

})
= 1− Pr

({
n− n‖εtrain‖22

σ2
≥ n

2

})
= 1− Pr

({
n− n‖εtrain‖22

σ2
≥ 2

√
n
n

16

})
≥ 1− exp

(
− n

16

)
(by Lemma 11 using x = n/16). (21)

In other words, when n is large, ‖εtrain‖22 should be close to σ2. As a result, in the rest of the paper,
we will use ‖εtrain‖22 as a surrogate for the noise level.

C Proof of Lemma 1 (distortion of β due to normalization of Xtrain is small)

From Eq. (6), it is easy to see that the amount of distortion of β depends on the size of Hi for those i

such that either β[i] or β̂
BP

[i] is non-zero. More precisely, we define the sets

A := {i : β[i] 6= 0} ∪ {i : β̂
BP

[i] 6= 0} = {1, 2, · · · , s} ∪ {i : β̂
BP

[i] 6= 0},
B := A \ {1, · · · , s}.

Notice that because ‖β̂
BP
‖0 = ‖β̂BP‖0 ≤ n, the number of elements inA satisfies |A| ≤ s+n. Thus,

the number of elements in B satisfies

|B| = |A \ {1, · · · , s}| = |A| − s ≤ s+ n− s = n. (22)

Then, we have

‖wBP‖22 = ‖β̂
BP
− β‖22 =

p∑
i=1

n(β̂BP[i]− β[i])2

‖Hi‖22

=
∑
i∈A

n(β̂BP[i]− β[i]2

‖Hi‖22

≤ n

mini∈A ‖Hi‖22

∑
i∈A

(β̂BP[i]− β[i])2

=
n

mini∈A ‖Hi‖22
‖β̂BP − β‖22

=
n

mini∈A ‖Hi‖22
‖wBP‖22. (23)

In the same way, we can get the other side of the bound:

‖wBP‖22 ≥
n

maxi∈A ‖Hi‖22
‖wBP‖22. (24)
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Similarly, for `1-norm, we have

‖wBP‖1 = ‖β̂
BP
− β‖1 =

p∑
i=1

√
n
∣∣∣β̂BP[i]− β[i]

∣∣∣
‖Hi‖2

=
∑
i∈A

√
n
∣∣∣β̂BP[i]− β[i]

∣∣∣
‖Hi‖2

≤
√
n

mini∈A ‖Hi‖2

∑
i∈A
|β̂BP[i]− β[i]|

=

√
n

mini∈A ‖Hi‖2
‖β̂BP − β‖1

=

√
n

mini∈A ‖Hi‖2
‖wBP‖1, (25)

as well as

‖wBP‖1 ≥
√
n

maxi∈A ‖Hi‖2
‖wBP‖1. (26)

It only remains to bound the minimum or maximum of ‖Hi‖22 over i ∈ A. Intuitively, for each i,
since E[‖Hi‖22] = n, ‖Hi‖22 should be close to n when n is large. However, here the difficulty is that
we do not know which elements i belong to A. If we were to account for all possible i = 1, 2, · · · , p,
when p is exponentially large in n, our bounds for the minimum and maximum of ‖Hi‖2 would
become very loose. Fortunately, for those i = s+ 1, · · · , p (i.e., outside of the true basis), we can
show that ‖Hi‖22 is independent of A. Using this fact, we can obtain a much tighter bound on the
minimum and maximum of ‖Hi‖22 on A. Towards this end, we first show the following lemma:

Lemma 12. β̂BP is independent of the size ‖Hi‖2 of Hi for i ∈ {s + 1, · · · , p}. In other words,
scaling any Hi by a non-zero value αi for any i ∈ {s+ 1, · · · , p} does not affect β̂BP.

Proof. Suppose that Hi is scaled by any αi 6= 0 for any i ∈ {s+ 1, · · · , p}. We denote the new H
matrix by H′, i.e., H′i = αiHi for some i ∈ {s + 1, · · · , p}. By the normalization in Eq. (4), we
know that Xtrain does not change after this scaling. Further, because β[i] = 0 for i ∈ {s+ 1, · · · , p},
Ytrain is also unchanged. Therefore, the BP solution as defined in Eq. (8) will remain the same.

Let A ⊆ {1, · · · , p} denote any possible realization of the set A. By Lemma 12 and noting that all
Hi’s are i.i.d., we then get that, for any hi ∈ R, i = 1, · · · , p, and any fixed set C ⊆ {s+ 1, · · · , p},

Pr
({
A = A, ‖Hi‖22 ≥ hi, i = 1, · · · , s

} ∣∣∣ {‖Hi‖22 ≥ hi, for all i ∈ C
})

= Pr
({
A = A, ‖Hi‖22 ≥ hi, i = 1, · · · , s

})
. (27)

In other words, A and ‖Hi‖22, i = 1, · · · , s are independent of ‖Hi‖22, i = s + 1, · · · , p. Of
course, this is equivalent to stating that ‖Hi‖22, i = s+ 1, · · · , p are independent of A and ‖Hi‖22,
i = 1, · · · , s. More precisely, for any hi ∈ R, i = 1, · · · , p, and any fixed set C ⊆ {s+ 1, · · · , p},
we have

Pr
({
‖Hi‖22 ≥ hi, for all i ∈ C

} ∣∣∣ {A = A, ‖Hi‖22 ≥ hi, i = 1, · · · , s
})

=
Pr
({
A = A, ‖Hi‖22 ≥ hi, i = 1, · · · , s

} ∣∣∣ {‖Hi‖22 ≥ hi, for all i ∈ C
})

Pr ({A = A, ‖Hi‖22, i = 1, · · · , s})
· Pr

({
‖Hi‖22 ≥ hi, for all i ∈ C

})
(by Bayes’ Theorem)

= Pr
({
‖Hi‖22 ≥ hi, for all i ∈ C

})
(using Eq. (27)). (28)

Further, because all Hi’s are i.i.d., we have

Pr
({
‖Hi‖22 ≥ hi, for all i ∈ C

})
=
∏
i∈C

Pr
({
‖Hi‖22 ≥ hi

})
=
∏
i∈C

Pr
({
‖H1‖22 ≥ hi

})
.
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Substituting back to Eq. (28), we have

Pr
({
‖Hi‖22 ≥ hi, for all i ∈ C

} ∣∣∣ {A = A, ‖Hi‖22 ≥ hi, i = 1, · · · , s
})

=
∏
i∈C

Pr
({
‖H1‖22 ≥ hi

})
. (29)

We are now ready to bound the probability distribution of mini∈A ‖Hi‖22 in Eq. (23). Because
{1, · · · , s} ⊆ A, we have (recalling that B = A \ {1, · · · , s})

Pr

({
min
i∈A
‖Hi‖22 ≥

n

2

})
= Pr

(
∩
i∈A

{
‖Hi‖22 ≥

n

2

})
= Pr

({
‖Hi‖22 ≥

n

2
, i = 1, · · · , s

})
· Pr

(
∩
i∈B

{
‖Hi‖22 ≥

n

2

} ∣∣∣ {‖Hi‖22 ≥
n

2
, i = 1, · · · , s

})
=
(

1− Pr
({
‖H1‖22 ≥

n

2

}))s
· Pr

(
∩
i∈B

{
‖Hi‖22 ≥

n

2

} ∣∣∣ {‖Hi‖22 ≥
n

2
, i = 1, · · · , s

})
(30)

(because all Hi’s are i.i.d.).

We first study the second term of the right-hand-side of Eq. (30) by conditioning on A = A. For any
possible realization A of the set A, we have

Pr

(
∩
i∈B

{
‖Hi‖22 ≥

n

2

} ∣∣∣ {A = A, ‖Hi‖22 ≥
n

2
, i = 1, · · · , s

})
= Pr

(
∩

i∈A\{1,··· ,s}

{
‖Hi‖22 ≥

n

2

} ∣∣∣ {A = A, ‖Hi‖22 ≥
n

2
, i = 1, · · · , s

})
=

∏
i∈A\{1,··· ,s}

Pr
({
‖H1‖22 ≥

n

2

})
(by letting C = A \ {1, · · · , s} in Eq. (29))

≥
(

1− Pr
({
‖H1‖22 ≤

n

2

}))n
(by Eq. (22)). (31)

Since the right-hand-side of Eq. (31) is independent of A, we then conclude that

Pr

(
∩
i∈B

{
‖Hi‖22 ≥

n

2

} ∣∣∣ {‖Hi‖22 ≥
n

2
, i = 1, · · · , s

})
≥
(

1− Pr
({
‖H1‖22 ≤

n

2

}))n
.

Substituting back to Eq. (30), we have

Pr

({
min
i∈A
‖Hi‖22 ≥

n

2

})
≥
(

1− Pr
({
‖H1‖22 ≤

n

2

}))n+s
≥
(

1− Pr
({
‖H1‖22 ≤

n

2

}))2n
(assuming s ≤ n)

≥(1− e−n/16)2n (32)

≥1− 2n · e−n/16

=1− e−n/16+ln(2n), (33)

where in Eq. (32), we have used results for large deviation analysis on the probability of chi-square
distribution (similar to the analysis of getting Eq. (21) in Appendix B). Using similar ideas, we can
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also get

Pr

({
max
i∈A
‖Hi‖22 ≤ 2n

})
≥
(
1− Pr

({
‖H1‖22 ≥ 2n

}))2n
≥

(
1− exp

(
−2−

√
3

2
n

))2n

(similar to Eq. (20) in Appendix B)

≥ 1− 2n · exp

(
−2−

√
3

2
n

)

= 1− exp

(
−2−

√
3

2
n+ ln(2n)

)
. (34)

Applying Eq. (33) in Eq. (23) and applying Eq. (34) in Eq. (24), we conclude that

Pr
({
‖wBP‖2 ≤

√
2‖wBP‖2

})
= Pr

({
‖wBP‖22 ≤ 2‖wBP‖22

})
≥ 1− exp

(
− n

16
+ ln(2n)

)
,

Pr
({
‖wBP‖2 ≤

√
2‖wBP‖2

})
= Pr

({
‖wBP‖22 ≤ 2‖wBP‖22

})
≥ 1− exp

(
−2−

√
3

2
n+ ln(2n)

)
.

Applying Eq. (33) in Eq. (25) and applying Eq. (24) in Eq. (26), we conclude that

Pr
({
‖wBP‖1 ≤

√
2‖wBP‖1

})
≥ 1− exp

(
− n

16
+ ln(2n)

)
,

Pr
({
‖wBP‖1 ≤

√
2‖wBP‖1

})
≥ 1− exp

(
−2−

√
3

2
n+ ln(2n)

)
.

The result of Lemma 1 thus follows.

D Proof of Proposition 5 (relationship between ‖wBP‖1 and ‖wI‖1)

Proof. Since we focus on wBP, we rewrite BP in the form of wBP. Notice that

‖β̂BP‖1 = ‖wBP + β‖1 = ‖wBP
0 + β0‖1 + ‖wBP

1 ‖1.

Thus, we have

wBP = arg min
w

‖w0 + β0‖1 + ‖w1‖1

subject to Xtrainw = εtrain. (35)

Define G := Xtrain
TXtrain and let I be the p× p identity matrix. Let | · | denote the operation that

takes the component-wise absolute value of every element of a matrix. We have

‖εtrain‖22 = ‖Xtrainw
BP‖22

= (wBP)TGwBP

= ‖wBP‖22 + (wBP)T (G− I)wBP

≥ ‖wBP‖22 − |wBP|T |G− I||wBP|
(a)

≥ ‖wBP‖22 −M |wBP|T |1− I||wBP|
= (1 +M)‖wBP‖22 −M‖wBP‖21, (36)

18



where in step (a) 1 represents a p× p matrix with all elements equal to 1, and the step holds because
G has diagonal elements equal to 1 and off-diagonal elements no greater than M in absolute value.
Because wI also satisfies the constraint of (35), by the representation of wBP in (35), we have

‖wBP
0 + β0‖1 + ‖wBP

1 ‖1 ≤ ‖wI0 + β0‖1 + ‖wI1‖1.

By definition (12), we have wI0 = 0 and ‖wI1‖1 = ‖wI‖1. Thus, we have

‖wBP
0 + β0‖1 + ‖wBP

1 ‖1 ≤ ‖β0‖1 + ‖wI‖1.

By the triangle inequality, we have ‖β0‖1 − ‖wBP
0 + β0‖1 ≤ ‖wBP

0 ‖1. Thus, we obtain

‖wBP
1 ‖1 ≤ ‖β0‖1 − ‖wBP

0 + β0‖1 + ‖wI‖1
≤ ‖wBP

0 ‖1 + ‖wI‖1. (37)

We now use (36) and (37) to establish (15). Specifically, because wBP
0 ∈ Rs, we have

‖wBP
0 ‖22 ≥

1

s
‖wBP

0 ‖21.

Thus, we have

‖wBP‖22 ≥ ‖wBP
0 ‖22 ≥

1

s
‖wBP

0 ‖21. (38)

Applying Eq. (37), we have

‖wBP‖1 = ‖wBP
1 ‖1 + ‖wBP

0 ‖1 ≤ 2‖wBP
0 ‖1 + ‖wI‖1. (39)

Substituting Eq. (38) and Eq. (39) in Eq. (36), we have
1 +M

s
‖wBP

0 ‖21 −M(2‖wBP
0 ‖1 + ‖wI‖1)2 ≤ ‖εtrain‖22,

which can be rearranged into a quadratic inequality in ‖wBP
0 ‖1, i.e.,(

1 +M

s
− 4M

)
‖wBP

0 ‖21 − 4M‖wI‖1‖wBP
0 ‖1

−
(
M‖wI‖21 + ‖εtrain‖22

)
≤ 0.

Since K = 1+M
sM − 4 > 0, we have the leading coefficient 1+M

s − 4M = KM > 0. Solving this
quadratic inequality for ‖wBP

0 ‖1, we have

‖wBP
0 ‖1 ≤

4M‖wI‖1 +
√

(4M‖wI‖1)2 + 4KM (M‖wI‖21 + ‖εtrain‖22)

2KM

=
2‖wI‖1 +

√
4‖wI‖21 +K(‖wI‖21 + 1

M ‖εtrain‖22)

K
.

Plugging the result into Eq. (39), we have

‖wBP‖1 ≤
4‖wI1‖1 + 2

√
4‖wI‖21 +K(‖wI‖21 + 1

M ‖εtrain‖22)

K
+ ‖wI‖1.

This expression already provides an upper bound on ‖wBP‖1 in terms of M and ‖wI‖1. To obtain
an even simpler equation, combining 4‖wI‖1/K with ‖wI‖1, and breaking the square root apart by√
a+ b+ c ≤

√
a+
√
b+
√
c, we have

‖wBP‖1 ≤
K + 4

K
‖wI‖1 +

√(
4‖wI‖1
K

)2

+

√
4‖wI‖21
K

+

√
4‖εtrain‖22
MK

=

(
1 +

8

K
+ 2

√
1

K

)
‖wI‖1 +

2‖εtrain‖2√
KM

.

The result of the proposition thus follows.
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E Proof of Proposition 6 (relationship between ‖wBP‖2 and ‖wBP‖1)

Proof. In the proof of Proposition 5, we have already proven Eq. (36)4. By Eq. (36), we have

‖wBP‖2 ≤

√
‖εtrain‖22 +M‖wBP‖21

1 +M

≤
√
‖εtrain‖22 +M‖wBP‖21

≤‖εtrain‖2 +
√
M‖wBP‖1.

F Proof of Theorem 2 (upper bound of model error)

The proof consists three steps. In step 1, we verify the conditions for Proposition 8 and get the
estimation on ‖wI‖1 by Proposition 8. In step 2, we verify the conditions for Proposition 9 and
get the estimation on M by Proposition 9. In step 3, we combine results in steps 1 and 2 to prove
Theorem 2.

Step 1

We first verify that the conditions for Proposition 8 are satisfied. Towards this end, from the
assumption of Theorem 2 that

p ∈
[
(16n)4, exp

( n

1792s2

)]
,

we have

p ≥ (16n)4, (40)

and

p ≤ exp
( n

1792s2

)
≤ en/1792 (since s ≥ 1). (41)

Further, from the assumption of the theorem that s ≤
√

n
7168 ln(16n) , we have

n ≥ s2 · 7168 ln(16n) ≥ 7168 > 100 (since s ≥ 1 and n ≥ 1). (42)

Eq. (42) and Eq. (40) imply that the condition of Proposition 8 is satisfied. We thus have, from
Proposition 8, with probability at least 1− 2e−n/4,

‖wI‖1 ≤

√
1 +

3n/2

ln p
‖εtrain‖2.

From Eq. (41), we have

p ≤ en/1792 ≤ en/2

=⇒ 1 ≤ n/2

ln p
.

Therefore, we have

Pr

({
‖wI‖1 ≤

√
2n

ln p
‖εtrain‖2

})
≥ 1− 2e−n/4. (43)

4Notice that in the proof of Proposition 5, to get Eq. (36), we do not need K > 0.

20



Step 2

Note that Eq. (41) implies that the conditions of Proposition 9 is satisfied. We thus have, from
Proposition 9,

Pr

({
M ≤ 2

√
7

√
ln p

n

})
≥ 1− 2e− ln p − 2e−n/144. (44)

Step 3

In this step, we will combine results in steps 1 and 2 and proof the final result of Theorem 2. Towards
this end, notice that for any event A and any event B, we have

Pr ({A} ∩ {B}) = Pr ({A}) + Pr ({B})− Pr ({A} ∪ {B})
≥ Pr ({A}) + Pr ({B})− 1.

Thus, by Eq. (43) and Eq. (44), we have

Pr

({
‖wI‖1 ≤

√
2n

ln p
‖εtrain‖2

}
∩

{
M ≤ 2

√
7

√
ln p

n

})
(45)

≥ 1− 2e−n/4 − 2e− ln p − 2e−n/144

≥ 1− 6e− ln p (since ln p ≤ n/144 ≤ n/4 by Eq. (41))
= 1− 6/p.

It remains to show that the event in (45) implies Eq. (9). Towards this end, note that from M ≤
2
√

7
√

ln p
n , we have

K =
1 +M

sM
− 4 (by definition in Eq. (14))

≥ 1

sM
− 4. (46)

From the assumption of the theorem, we have

exp
( n

1792s2

)
≥ p

=⇒ n

1792s2
≥ ln p

=⇒ s ≤
√

n

1792 ln p
=

1

16
√

7

√
n

ln p
. (47)

Applying Eq. (47) to Eq. (46), we have

K ≥ 1

1
16
√
7

√
n

ln p · 2
√

7
√

ln p
n

− 4

= 8− 4 = 4.

Applying

M ≤ 2
√

7

√
ln p

n
, ‖wI‖1 ≤

√
2n

ln p
‖εtrain‖2, and K ≥ 4. (48)

to Corollary 7, we have

‖wBP‖2 ≤2‖εtrain‖2 +

√
2
√

7

(
ln p

n

)1/4

· 4 ·
√

2n

ln p
‖εtrain‖2

=

(
2 + 8

(
7n

ln p

)1/4
)
‖εtrain‖2.

The result of Theorem 2 thus follows.
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G Proof of Corollary 3 (descent floor)

Proof. For any a ≥ 1, we have

beac − ea/2 ≥ ea − ea/2 − 1 = ea/2(ea/2 − 1)− 1

≥
√
e(
√
e− 1)− 1 = e−

√
e− 1 ≈ 0.0696.

It implies that beac ≥ ea/2 for any a ≥ 1. Taking logarithm at both sides, we have ln beac ≥ a/2 for
any a ≥ 1. When s ≤

√
n

7168 ln(16n) , we have

n

1792s2
≥ 4 ln(16n) ≥ 1.

Thus, by the choice of p in the corollary, we have

ln p = ln
⌊
exp

( n

1792s2

)⌋
≥ n

3584s2
. (49)

Substituting Eq. (49) into Eq. (9), we have

‖wBP‖2
‖εtrain‖2

≤ 2 + 8
(
7× 3584s2

)1/4
= 2 + 32

√
14
√
s.

H Proof of Proposition 8 (upper bound of ‖wI‖1)

Recall that, by the definition of wI in Eq. (12), wI is independent of the first s columns of Xtrain. For
ease of exposition, let A denote a n× (p− s) sub-matrix of Xtrain that consists of the last (p− s)
columns, i.e.,

A := [Xs+1 Xs+2 · · · Xp].

Thus, ‖wI‖1 equals to the optimal objective value of

min
α∈Rp−s

‖α‖1 subject to Aα = εtrain. (50)

Let λ be a n × 1 vector that denotes the Lagrangian multiplier associated with the constraint
Aα = εtrain. Then, the Lagrangian of the problem (50) is

L(α, λ) := ‖α‖1 + λT (Aα− εtrain).

Thus, the dual problem is

max
λ

h(λ), (51)

where the dual objective function is given by

h(λ) = inf
α
L(α, λ).

Let Ai denote the i-th column of A. It is easy to verify that

h(λ) = inf
α
L(α, λ)

=

{
−∞ if there exists i such that |λTAi| > 1,

−λT εtrain otherwise.

Thus, the dual problem (51) is equivalent to

max
λ

λT (−εtrain)

subject to − 1 ≤ λTAi ≤ 1 for all i ∈ {1, 2, · · · , p− s}. (52)
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This dual formulation gives the following geometric interpretation. Consider the Rn space that λ and
Ai stay in. Since ‖Ai‖2 = 1, the constraint −1 ≤ λTAi ≤ 1 corresponds to the region between two
parallel hyperplanes that are tangent to a unit hyper-sphere at Ai and −Ai, respectively. Intuitively,
as p goes to infinity, there will be an infinite number of such hyperplanes. Since Ai is uniformly
random on the surface of a unit hyper-sphere, as p increases, more and more such random hyperplanes
“wrap" around the hyper-sphere. Eventually, the remaining feasible region becomes a unit ball. This
implies that the maximum value of the problem (52) becomes ‖εtrain‖2 when p goes to infinity and
the optimal λ is attained when λ∗ = −εtrain/‖εtrain‖2. Our result in Proposition 8 is also consistent
with this intuition that ‖wI‖1 → ‖εtrain‖2 as p→∞. Of course, the challenge of Proposition 8 is to
establish an upper bound of ‖wI‖1 even for finite p, which we will study below.

Another intuition from this geometric interpretation is that, among all Ai’s, those “close" to the
direction of ±εtrain matter most, because their corresponding hyperplanes are the ones that wrap the
unit hyper-sphere around the point λ∗ = −εtrain/‖εtrain‖2. Next, we construct an upper bound of (52)
by using q such “closest" Ai’s.

Specifically, for all i ∈ {1, 2, · · · , p− s}, we define

Bi :=

{
Ai if AT

i (−εtrain) ≥ 0,

−Ai otherwise.

Then, we sort Bi according to the inner product BT
i (−εtrain). Let B(1), · · · ,B(q) be the q < p− s

vectors with the largest inner products, i.e,

BT
(1)(−εtrain) ≥ BT

(2)(−εtrain) ≥ · · · ≥ BT
(q)(−εtrain) ≥ 0. (53)

We then relax the dual problem (52) to

max
λ

λT (−εtrain)

subject to λTB(i) ≤ 1 for all i ∈ {1, 2, · · · , q}. (54)

Note that the constraints in (54) are a subset of those in (52). Thus, the optimal objective value of
(54) is an upper bound on that of (52).

Figure 4: A 3-D geometric interpretation of Problem (54).

Fig. 4 gives an geometric interpretation of (54). In Fig. 4, the gray sphere centered at the origin
O denotes the unit hyper-sphere in Rn. The top (north pole) of the sphere O is denoted by the
point A. The north direction denotes the direction of (−εtrain). The vector

−→
OC denotes some B(i),

i ∈ {1, · · · , q − 1}. The green plane is tangent to the sphere O at the point C. Thus, the space
below the green plane denotes the feasible region defined by the constraint λTB(1) ≤ 1. The point D
denotes the intersection of the axis

−→
OA and the green plane. Similarly, the vector

−→
OF corresponds to

B(q). Note that its corresponding hyperplane (not drawn in Fig. 4) intersects the axis
−→
OA at a higher
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Figure 5: When all the points lie on some hemisphere, the objective value of Problem (56) can be
infinity λ takes the direction

−→
OF.

point E. This suggests that, by replacing the vector B(i) in each of the constraints of (54) by another
vector that has a smaller inner-product with (−εtrain), the optimal objective value of (54) will be even
higher. For example, in Fig. 4, the constraint corresponding to

−→
OC is replaced by that corresponding

to
−→
OB. This procedure is made precise below.

For each i ∈ {1, 2, · · · , q}, we define

C(i) :=

√
1−

(
BT

(q)
(−εtrain)

‖εtrain‖2

)2

√
1−

(
BT

(i)
(−εtrain)

‖εtrain‖2

)2
·

(
B(i) −

BT
(i)(−εtrain)

‖εtrain‖22
(−εtrain)

)

+
BT

(q)(−εtrain)

‖εtrain‖22
(−εtrain). (55)

By the definition of C(i), it is easy to verify that ‖C(i)‖2 = 1 and CT
(i)(−εtrain) = BT

(q)(−εtrain) ≤
BT

(i)(−εtrain), for all i ∈ {1, · · · , q}. Roughly speaking, C(i) is the point on the unit-hyper-sphere
that is along the same (vertical) longitude as B(i), but at the same (horizontal) latitude as B(q).

Then, we can construct another problem as follows:

max
λ

λT (−εtrain) subject to

λTC(i) ≤ 1, for all i ∈ {1, 2, · · · , q}. (56)

The following lemma shows that the solution to (56) is an upper bound on that of (54).
Lemma 13. The objective value of Problem (56) must be greater than or equal to that of Problem
(54).

See Appendix I.1 for the proof. We draw the geometric interpretation of the problem (56) in Fig. 5.
Vectors

−−→
OD1,

−−→
OD2, and

−−→
OD3 represent those vectors C(i). Since all C(i)’s have the same latitude,

points D1, D2, and D3 locate on one circle centered at point D (the circle is actually a hyper-sphere
in Rn−1). Therefore, tangent planes on those points have the same intersection point E with the axis
−→
OD.
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We wish to argue that the vector
−→
OE is the optimal λ for the problem (56). However, it is not always

the case. Specifically, when all those C(i)’s lie on some hemisphere in Rn−1, we can find a direction
λ such that λT (−εtrain) goes to infinity. For example, in Fig. 5, the direction

−→
OF corresponds to such

a direction of λ that λT (−εtrain) goes to infinity. Fortunately, when q is large enough, the probability
that all C(i)’s lie on some hemisphere in Rn−1 is very small. Towards this end, we can utilize the
following result from [35].

Lemma 14 (From [35]). Let N points be scattered uniformly at random on the surface of a sphere in
an n-dimensional space. Then, the probability that all the points lie on some hemisphere equals to

2−N+1
n−1∑
k=0

(
N − 1

k

)
.

Applying Lemma 14 to all q points C(1), · · · ,C(q) (represented by D1, D2, D3 in Fig. 5) on the
sphere in Rn−1, we can quantify the probability that the situation in Fig. 5 does not happen, in which
case we can then prove that the vector

−→
OE is the optimal λ for the problem (56). Lemma 15 below

summarizes this result.

Lemma 15. The problem (56) achieves the optimal objective value at

λ∗ =
−εtrain

BT
(q)(−εtrain)

with the probability at least

1− 2−q+1
n−2∑
i=0

(
q − 1

i

)
≥ 1− e−(q/4−n).

See Appendix I.2 for the proof. Letting q = 5n, and combining Lemmas 13 and 15, we have the
following corollary.

Corollary 16. The following holds

‖wI‖1 ≤
‖εtrain‖22

BT
(5n)(−εtrain)

with probability at least 1− e−n/4.

It only remains to bound B(i)(−εtrain). Using the fact that each Bi is i.i.d. and uniformly distributed
on the unit-hyper-hemisphere in Rn, we have the following result.

Lemma 17. When n ≥ 100 and p ≥ (16n)4, the following holds

B(5n)(−εtrain) ≥ ‖εtrain‖2√
1 + 3n/2

ln p

with probability at least 1− e−5n/4.

See Appendix I.3 for the proof. Combining Corollary 16 and Lemma 17, we then obtain Proposition
8.

I Proofs of supporting results in Appendix H

I.1 Proof of Lemma 13

The proof consists of two steps. In step 1, we will define an intermediate problem (57) below, and
show that problem (54) is equivalent to the problem (57). In step 2, we will show that the any feasible
λ for the problem (57) is also feasible for the problem (56). The conclusion of Lemma 13 thus
follows.
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For step 1, the intermediate problem is defined as follows.

max
λ

λT (−εtrain) subject to

λT (−εtrain) ≥ BT
(1)(−εtrain),

λTB(i) ≤ 1 for all i ∈ {1, 2, · · · , q}. (57)

In order to show that this problem is equivalent to (54), we use the following lemma.

Lemma 18. The value of the problem (54) is at least BT
(1)(−εtrain).

Proof. Because
∣∣∣BT

(1)Ai

∣∣∣ ≤ ‖B(1)‖2‖B(i)‖2 = 1 for all i ∈ {1, · · · , q}, B(1) is feasible for the
problem (54). The result of this lemma thus follows.

By this lemma, we can add an additional constraint λT (−εtrain) ≥ BT
(1)(−εtrain) to the problem (54)

without affecting its solution. This is exactly problem (57). Thus, the problem (54) is equivalent to
the intermediate problem (57), i.e., step 1 has been proven. Then, we move on to step 2. We will first
use Lemma 19 to show that if C(i) can be written in the form of

C(i) =
Bi + kεtrain

‖B(i) + kεtrain‖2
, (58)

for some k > 0 and CT
(i)εtrain ≤ 0 , then any λ that satisfies λTB(i) ≤ 1 and λT (−εtrain) ≥

BT
(1)(−εtrain) must also satisfies λTC(i) ≤ 1. After that, we use Lemma 21 to show that all C(i)’s

indeed can be expressed in this form. The conclusion of step 2 then follows. Towards this end,
Lemma 19 is as follows.

Lemma 19. For all i ∈ {1, 2, · · · , q}, for any λ that satisfy

λTBi ≤ 1,

λT (−εtrain) ≥ BT
(1)(−εtrain),

we must have

λT
Bi + kεtrain

‖Bi + kεtrain‖2
≤ 1,

for any k ≥ 0 that satisfies (Bi + kεtrain)T εtrain ≤ 0.

Proof. We have

λTBi + λT kεtrain

‖Bi + kεtrain‖2

(i)

≤ λTBi + BT
i kεtrain

‖Bi + kεtrain‖2
(ii)
=

1 + BT
i kεtrain

‖Bi + kεtrain‖2
(iii)

≤ BT
i

Bi + kεtrain

‖Bi + kεtrain‖2

(iv)

≤ ‖Bi‖2
‖Bi + kεtrain‖2
‖Bi + kεtrain‖2

(v)
= 1.

Here are reasons of each step: (i) By Eq. (53), we have λT (−εtrain) ≥ BT
(1)(−εtrain) ≥ BT

i (−εtrain).
Thus, we have λT kεtrain ≤ BT

i kεtrain; (ii) λTBi ≤ 1 by the assumption of the lemma; (iii) BT
i Bi = 1

by definition of Bi; (iv) Cauchy–Schwarz inequality; (v) ‖Bi‖2 = BT
i Bi = 1.

Then, it only remains to prove that all C(i)’s in Eq. (55) can be expressed in the specific form
described above in Eq. (58). Towards the end, we need the following lemma, which characterizes
important features of C(i).

Lemma 20. For any i ∈ {1, · · · , q}, we must have ‖C(i)‖2 = 1 ,and CT
(i)(−εtrain) = B(q)(−εtrain).
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Proof. It is easy to verify that CT
(i)(−εtrain) = BT

(q)(−εtrain). Here we show how to prove ‖C(i)‖2 =
1. Because (

B(i) −
BT

(i)(−εtrain)

‖εtrain‖22
(−εtrain)

)T
(−εtrain) = 0, (59)

we know that the first and the second term on the right hand side (RHS) of Eq. (55) are orthogonal.
Thus, we have

‖C(i)‖22 = ‖1st term on the RHS of Eq. (55)‖22 + ‖2nd term on the RHS of Eq. (55)‖22. (60)

By Eq. (59), we also have∥∥∥∥∥B
T
(i)(−εtrain)

‖εtrain‖22
(−εtrain)

∥∥∥∥∥
2

2

+

∥∥∥∥∥B(i) −
BT

(i)(−εtrain)

‖εtrain‖22
(−εtrain)

∥∥∥∥∥
2

2

= ‖B(i)‖22 = 1.

Notice that ∥∥∥∥∥B
T
(i)(−εtrain)

‖εtrain‖22
(−εtrain)

∥∥∥∥∥
2

=
BT

(i)(−εtrain)

‖εtrain‖2
.

Thus, we have ∥∥∥∥∥B(i) −
BT

(i)(−εtrain)

‖εtrain‖22
(−εtrain)

∥∥∥∥∥
2

=

√√√√1−

(
BT

(i)(−εtrain)

‖εtrain‖2

)2

.

Thus, we have

‖1st term on the RHS of Eq. (55)‖22 = 1−

(
BT

(q)(−εtrain)

‖εtrain‖2

)2

,

‖2nd term on the RHS of Eq. (55)‖22 =

(
BT

(q)(−εtrain)

‖εtrain‖2

)2

.

Applying those to Eq. (60), we then have ‖C(i)‖2 = 1.

Finally, the following lemma shows that C(i) can be written in the specific form in Eq. (58).

Lemma 21. Each C(i) defined in Eq. (55) satisfies that C(i)εtrain ≤ 0 and

C(i) =
B(i) + k(i)εtrain

‖B(i) + k(i)εtrain‖2
, (61)

where

k(i) =
BT

(i)(−εtrain)

‖εtrain‖22
−

√
1−

(
BT

(i)
(−εtrain)

‖εtrain‖2

)2

√
1−

(
BT

(q)
(−εtrain)

‖εtrain‖2

)2

BT
(q)(−εtrain)

‖εtrain‖22
≥ 0.

Proof. Using Eq. (59) again, we decompose B(i) into two parts: one in the direction of (−εtrain), the
other orthogonal to (−εtrain).

B(i) =
BT

(i)(−εtrain)

‖εtrain‖22
(−εtrain) +

(
B(i) −

BT
(i)(−εtrain)

‖εtrain‖22
(−εtrain)

)
.
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Thus, we have

B(i) + k(i)εtrain =

√
1−

(
BT

(i)
(−εtrain)

‖εtrain‖2

)2

√
1−

(
BT

(q)
(−εtrain)

‖εtrain‖2

)2

BT
(q)(−εtrain)

‖εtrain‖22
(−εtrain)

+

(
B(i) −

BT
(i)(−εtrain)

‖εtrain‖22
(−εtrain)

)
.

We then have √
1−

(
BT

(q)
(−εtrain)

‖εtrain‖2

)2

√
1−

(
BT

(i)
(−εtrain)

‖εtrain‖2

)2
· (B(i) + k(i)εtrain)

=

√
1−

(
BT

(q)
(−εtrain)

‖εtrain‖2

)2

√
1−

(
BT

(i)
(−εtrain)

‖εtrain‖2

)2
·

(
B(i) −

BT
(i)(−εtrain)

‖εtrain‖22
(−εtrain)

)

+
BT

(q)(−εtrain)

‖εtrain‖22
(−εtrain)

=C(i).

In other words, C(i) and B(i) + k(i)εtrain are along the same direction. Since ‖C(i)‖2 = 1, it must
then also be equal to a normalized version of B(i) + k(i)εtrain, i.e.,

B(i) + k(i)εtrain

‖B(i) + k(i)εtrain‖2
= C(i).

This verifies (61). Note that C(i)εtrain = B(q)εtrain ≤ 0 by Lemma 20. It then only remains to prove
k(i) ≥ 0. Towards this end, because of Eq. (53), we have

BT
(q)(−εtrain) ≤ BT

(i)(−εtrain)

=⇒

√
1−

(
BT

(i)
(−εtrain)

‖εtrain‖2

)2

√
1−

(
BT

(q)
(−εtrain)

‖εtrain‖2

)2
≤ 1.

Thus, we have

k(i) ≥
BT

(i)(−εtrain)

‖εtrain‖22
−

BT
(q)(−εtrain)

‖εtrain‖22
≥ 0.

The result of the lemma thus follows.

Combining Lemma 19 and Lemma 21, we have proven that if λT (−εtrain) ≥ BT
(1) and λTB(i) ≤ 1,

then λTC(i) ≤ 1. Therefore, we have shown step 2, i.e., any feasible λ for the problem (57) is also
feasible for the problem (56). The conclusion of Lemma 13 thus follows.
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I.2 Proof of Lemma 15

First, we show that λ∗ defined in the lemma is feasible for the problem (56). Towards this end,
note that because CT

(i)(−εtrain) = BT
(q)(−εtrain) (see Lemma 20) for all i ∈ {1, 2, · · · , q}, we have

λT∗C(i) = 1, which implies that λ∗ is feasible for the problem (56). Then, it remains to show that λ∗
is optimal for the problem (56) with probability at least 1− e−q/4−n.

Next, we will define an event A with probability no smaller than

1− 2−q+1
n−2∑
i=0

(
q − 1

i

)
, (62)

such that λ∗ is optimal whenever event A occurs. Towards this end, consider the null space of−εtrain,
which is defined as

ker(−εtrain) := {λ
∣∣ λT (−εtrain) = 0}.

We then decompose all C(i)’s into two components, one is in the direction of −εtrain, the other is in
the null space of −εtrain. Specifically, we have

C(i) =

(
C(i) −

CT
(i)(−εtrain)

‖εtrain‖22
(−εtrain)

)
+

CT
(i)(−εtrain)

‖εtrain‖22
(−εtrain)

=

(
C(i) −

CT
(q)(−εtrain)

‖εtrain‖22
(−εtrain)

)
+

CT
(q)(−εtrain)

‖εtrain‖22
(−εtrain), (63)

where in the last step we have used CT
(i)(−εtrain) = CT

(q)(−εtrain). For conciseness, we define

D(i) := C(i) −
CT

(q)(−εtrain)

‖εtrain‖22
(−εtrain).

Since ‖C(i)‖2 = 1 and C(i) is orthogonal to C(i) −D(i), we have

‖D(i)‖2 =
√
‖C(i)‖22 − ‖C(i) −D(i)‖22 =

√
1−

(
CT

(q)(−εtrain)
)2
.

Thus, D(i) has the same `2-norm for all i ∈ {1, · · · , q}. Therefore, D(1),D(2), · · · ,D(q) can be
viewed as q points in a sphere in the space ker(−εtrain), which has (n− 1) dimensions. By Lemma
21, we know that the projections of C(i) and B(i) to the space ker(−εtrain) have the same direction.
Because B(i)’s are uniformly distributed on the hemisphere in Rn, their projections to ker(−εtrain)
are also uniformly distributed. Therefore, D(i)’s are uniformly distributed on a (n− 1)-dim sphere.
By Lemma 14, with probability (62), there exists at least one of the vectors D(1),D(2), · · · ,D(q)

in any hemisphere. Let A denote this event with probability (62). Note that if we use a vector
γ ∈ ker(−εtrain) to represent the axis of any such hemisphere in Rn−1, then whether a vector
ζ ∈ ker(−εtrain) is on that hemisphere is totally determined by checking whether γT ζ > 0. Thus,
the event A is equivalent to, for any γ ∈ ker(−εtrain), there exists at least one of the vectors
D(1),D(2), · · · ,D(q) such that its inner product with γ is positive.

We now prove the following statement that λ∗ is optimal whenever event A occurs. We prove by
contradiction. Assume that event A occurs, suppose on the contrary that the maximum point is
achieved at λ = µ 6= λ∗ such that µT (−εtrain) > (λ∗)T (−εtrain). Since µ meets all constraints, we
have

(µ− λ∗)TC(i) = µTC(i) − 1 ≤ 0 for all i ∈ {1, · · · , q}. (64)
Comparing the objective values at µ and λ∗, we have

(µ− λ∗)T (−εtrain) > 0. (65)
Similar to the decomposition of C(i) in Eq. (63), we decompose (µ− λ∗) into two components: one
in the direction of −εtrain and the other in the null space of −εtrain. Specifically, we have

(µ− λ∗) =

(
(µ− λ∗)−

(µ− λ∗)T (−εtrain)

‖εtrain‖22
(−εtrain)

)
+

(µ− λ∗)T (−εtrain)

‖εtrain‖22
(−εtrain).
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Thus, we have

(µ− λ∗)TC(i)

=

(
(µ− λ∗)−

(µ− λ∗)T (−εtrain)

‖εtrain‖22
(−εtrain)

)T
·

(
C(i) −

CT
(q)(−εtrain)

‖εtrain‖22
(−εtrain)

)

+
1

‖εtrain‖22

(
(µ− λ∗)T (−εtrain)

) (
CT

(q)(−εtrain)
)
.

For conciseness, we define

δ := (µ− λ∗)−
(µ− λ∗)T (−εtrain)

‖εtrain‖22
(−εtrain).

We then have

(µ− λ∗)TC(i) = δTD(i) +
1

‖εtrain‖22

(
(µ− λ∗)T (−εtrain)

) (
CT

(q)(−εtrain)
)
≥ δTD(i), (66)

where the last inequality holds because (µ − λ∗)T (−εtrain) > 0 (by Eq. (65)) and CT
(q)(−εtrain) =

BT
(q)(−εtrain) ≥ 0 (by Lemma 20 and Eq. (53)). Since δ ∈ ker(−εtrain) and event A occurs, we can

therefore find a D(k) such that δTD(k) > 0. Letting i = k in Eq. (66), we then have

(µ− λ∗)TC(k) ≥ δTD(k) > 0,

which contradicts Eq. (64). Therefore, λ∗ must be optimal whenever event A occurs.

It only remains to show that the probability of event A given in Eq. (62) is at least 1− e−(q/4−n),
which is proven in the following Lemma 22.
Lemma 22.

1− 2−q+1
n−2∑
i=0

(
q − 1

i

)
≥ 1− e−(q/4−n).

The proof of Lemma 22 uses the following Chernoff bound.
Lemma 23 (Chernoff bound for binomial distribution, Theorem 4(ii) in [18]). Let X be a random
variable that follows the binomial distribution B(m, p), where m denotes the number of experiments
and p denotes the probability of success for each experiment. Then

Pr ({X ≤ (1− δ)mp}) ≤ exp

(
−δ

2mp

2

)
for all δ ∈ (0, 1).

Proof of Lemma 22: Consider a random variable X with binomial distribution B(q − 1, 1/2). We
have

Pr ({X ≤ n− 2}) = 2−q+1
n−2∑
i=0

(
q − 1

i

)
.

Let

δ = 1− 2(n− 2)

q − 1
, i.e., 1− δ =

2(n− 2)

q − 1
.

Applying Chernoff bound stated in the Lemma 23, we have

Pr ({X ≤ n− 2}) = Pr

({
X ≤ (1− δ) q − 1

2

})
≤ e−δ

2(q−1)/4.
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Also, we have

δ2(q − 1)/4 =
1

4

(
1− 2(n− 2)

q − 1

)2

(q − 1)

≥ 1

4

(
1− 4(n− 2)

q − 1

)
(q − 1)

=
1

4
(q − 1− 4(n− 2))

≥ q

4
− n.

Thus, we have

1− 2−q+1
n−2∑
i=0

(
q − 1

i

)
= 1− Pr ({x ≤ n− 2})

≥ 1− e−δ
2(q−1)/4

≥ 1− e−(q/4−n).
�

I.3 Proof of Lemma 17

The proof consists of three steps. Recall that BT
(5n)(−εtrain) ranks the 5n-th among all AT

i (−εtrain)’s
and AT

i εtrain’s. In step 1, we first estimate the probability distribution about AT
i (−εtrain). In step 2, we

use the result in step 1 to estimate BT
5n(−εtrain). In step 3, we relax and simplify the result in step 2 to

get the exact result of Lemma 17. Without loss of generality5, we let εtrain = [−‖εtrain‖2 0 · · · 0]T .
Thus, AT

i (−εtrain) = ‖εtrain‖2Ai1, where Aij denotes the j-th element of the i-th column of A.

Step 1

Notice that Ai (i.e., the i-th column of A) is a normalized Gaussian random vector. We use A′i to
denote the standard Gaussian random vector before the normalization, i.e., A′i is a n× 1 vector where
each element follows i.i.d. standard Gaussian distribution. Thus, we have

|Ai1| =
|A′i1|
‖A′i‖2

=
|A′i1|√

(A′i1)2 +
∑n
j=2(A′ij)

2
.

For any k > 1, we then have

Pr

({
1

|Ai1|
≤ k

})
= Pr

({
(A′i1)2 ≥

∑n
j=2(A′ij)

2

k2 − 1

})
. (67)

Notice that
∑n
j=2(A′ij)

2 follows the chi-square distribution with (n− 1) degrees of freedom. When
n is large,

∑n
j=2(A′ij)

2 should be around its mean value. Further, A′i1 follows standard Gaussian
distribution. Next, we use results of chi-square distribution and Gaussian distribution to estimate the
distribution of Ai1. The following lemma is useful for approximating a Gaussian distribution.
Lemma 24. When t ≥ 0, we have√

2/π e−t
2/2

t+
√
t2 + 4

≤ Φc(t) ≤
√

2/π e−t
2/2

t+
√
t2 + 8

π

,

where Φc(·) denotes the complementary cumulative distribution function (cdf) of standard Gaussian
distribution, i.e.,

Φc(t) =
1√
2π

∫ ∞
t

e−u
2/2du.

5Rotating εtrain around the origin is equivalent to rotating all columns of A. Since the distribution of Ai is
uniform on the unit hyper-sphere inRn, such rotation does not affect the objective of the problem (50).
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Proof. By (7.1.13) in [1], we know that

1

x+
√
x2 + 2

≤ ex
2

∫ ∞
x

e−y
2

dy ≤ 1

x+
√
x2 + 4

π

(x ≥ 0).

Let x = t/
√

2. We have

1

t√
2

+
√

t2

2 + 2
≤ et

2/2

∫ ∞
t√
2

e−y
2

dy ≤ 1

t√
2

+
√

t2

2 + 4
π

=⇒
√

2/π e−t
2/2

t+
√
t2 + 4

≤ 1√
π

∫ ∞
t√
2

e−y
2

dy ≤
√

2/π e−t
2/2

t+
√
t2 + 8

π

=⇒
√

2/π e−t
2/2

t+
√
t2 + 4

≤ 1√
2π

∫ ∞
t

e−
z2

2 dz ≤
√

2/π e−t
2/2

t+
√
t2 + 8

π

(let z :=
√

2y)

=⇒
√

2/π e−t
2/2

t+
√
t2 + 4

≤ Φc(t) ≤
√

2/π e−t
2/2

t+
√
t2 + 8

π

.

The result of this lemma thus follows.

The following lemma gives an estimate of the probability distribution of Ai1.
Lemma 25.

Pr

({
1

|Ai1|
≤ k

})
≥ 2

(
1− 1√

e

)√
2

π

e−t
2/2

t+
√
t2 + 4

, (68)

where

t =

√
n+
√

2
√
n− 1

k2 − 1
.

Proof. For any m > 0, we have

Pr

({
1

|Ai1|
≤ k

})
= Pr

({
(A′i1)2 ≥

∑n
j=2(A′ij)

2

k2 − 1

})

≥Pr

({
(A′i1)2 ≥

n− 1 + 2
√

(n− 1)m+ 2m

k2 − 1

})

· Pr


n∑
j=2

(A′ij)
2 ≤ n− 1 + 2

√
(n− 1)m+ 2m


 (since all A′ij’s are i.i.d.)

Notice that
∑n
j=2(A′ij)

2 follows chi-square distribution with (n− 1) degrees freedom. Applying
Lemma 11, we have

Pr

({
1

|Ai1|
≤ k

})
≥Pr

({
(A′i1)2 ≥

n− 1 + 2
√

(n− 1)m+ 2m

k2 − 1

})
· (1− e−m)

=2(1− e−m)Φc

√n− 1 + 2
√

(n− 1)m+ 2m

k2 − 1

 (69)

(since the distribution of Ai1 is symmetric with respect to 0).
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We now let m = 1/2 in Eq. (69). Then√
n− 1 + 2

√
(n− 1)m+ 2m

k2 − 1
=

√
n+

√
2(n− 1)

k2 − 1
= t.

Applying Lemma 24, the result of this lemma thus follows.

Step 2

Next, we estimate the distribution of BT
(5n)(−εtrain). We first introduce a lemma below, which will be

used later.

Lemma 26. If t ≥ 0.5, then t+
√
t2 + 4 < et+0.5.

Proof. Let f(t) = et+0.5 − (t+
√
t2 + 4). Then f(0.5) ≈ 0.157 > 0. We only need to prove that

df/dt ≥ 0 when t ≥ 0.5. Indeed, when t ≥ 0.5, we have

df(t)

dt
= et+0.5 − 1− t√

t2 + 4
≥ e− 1− 1 ≥ 0 (notice that t ≤

√
t2 + 4 for any t).

Now, we estimate BT
(5n)(−εtrain) by the following proposition.

Proposition 27. Let

C =
1

5

(
1− 1√

e

)√
2

π
≈ 0.063. (70)

When p− s ≥ ne9/8/C, the following holds.

‖εtrain‖2
BT

(5n)(−εtrain)
≤

√√√√√√1 +
n+
√

2
√
n− 1(√

2 ln C(p−s)
n − 1

)2 , (71)

with probability at least 1− e−5n/4.

(Notice that, by applying this proposition in Corollary 16, Eq. (71) already suggests an upper bound
of ‖wI‖1.)

Proof. For conciseness, we use ρ(n, k) to denote the right-hand-side of Eq. (68), i.e.,

ρ(n, k) = 10C
e−t

2/2

t+
√
t2 + 4

∣∣∣∣
t=

√
n+
√

2
√

n−1

k2−1

.

Let k take the value of the RHS of Eq. (71). Then, we have

t =

√
n+

√
2(n− 1)

k2 − 1

=

√√√√√√ n+
√

2(n− 1)

1 +
n+
√

2(n−1)(
2

√
ln

C(p−s)
n −1

)2 − 1

=

√
2 ln

C(p− s)
n

− 1. (72)
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Because p− s ≥ ne9/8/C, we have t ≥ 0.5. By Lemma 26, we have t+
√
t2 + 4 < et+0.5. Thus,

we have

ρ(n, k) ≥ 10C exp

(
− t

2

2
− t− 0.5

)
= 10C exp

(
−1

2
(t+ 1)2

)
= 10C

n

C(p− s)
(using Eq. (72))

=
10n

p− s
. (73)

By the definition of B(5n) and Eq. (53), we have

Pr ({Eq. (71)}) = Pr

({
#{i | i ∈ {1, 2, · · · , p− s}, 1

|Ai1|
≤ k} ≥ 5n

})
. (74)

Consider a random variable x following the binomial distribution B(p− s, ρ(n, k)). Since Ai1’s are
i.i.d. and Pr

({
1
|Ai1| ≤ k

})
≥ ρ(n, k), we must have

Eq. (74) ≥ Pr ({x ≥ 5n}) = 1− Pr ({x ≤ 5n− 1}) ≥ 1− Pr ({x ≤ 5n}) .

It only remains to show that Pr ({x ≤ 5n}) ≤ e−5n/4. Applying Lemma 23, we have

Pr ({x ≤ 5n}) = Pr ({x ≤ (1− δ)(p− s)ρ(n, k)})

≤e−δ
2(p−s)ρ(n,k)/2, (75)

where

δ = 1− 5n

(p− s)ρ(n, k)
(so 5n = (1− δ)(p− s)ρ(n, k)).

Since (p− s)ρ(n, k) ≥ 10n by Eq. (73), we must have δ ≥ 0.5. Substituting into Eq. (75), we have
Pr ({x ≤ 5n}) ≤ exp(−0.52 · (10n)/2) = e−5n/4.

Step 3

Notice that by utilizing Proposition 27 and Corollary 16, we already have an upper bound on ‖wI‖1.
To get the simpler form in Lemma 17, we only need to use the following lemma to simplify the
expression in Proposition 27.

Lemma 28. When n ≥ 100 and p ≥ (16n)4, we must have

RHS of Eq. (71) ≤

√
1 +

3n/2

ln p
.

Proof. Because n > 100 and p ≥ (16n)4, we have p ≥ 1012. Thus, we ahave

ln p ≥ 25 (since ln 10 ≈ 2.3 > 25/12)

=⇒
√

ln p− 2 ≥ 3

=⇒
√

ln p− 2 ≥
√

3 ln 2 + 6 (since ln 2 < 1)

=⇒ 1

2

(√
ln p− 2

)2
≥ 3

2
ln 2 + 3

=⇒ 3

2
(ln p− ln 2) ≥ ln p+ 2

√
ln p+ 1 (by expanding the square and rearranging terms)

=⇒
√

ln p+ 1 ≤
√

3

2

√
ln p− ln 2 (by taking square root on both sides).
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Because s ≤ n and p ≥ (16n)4 ≥ 2n, we have ln(p− s) ≥ ln(p− n) ≥ ln(p/2). Thus, we have

√
ln p+ 1 ≤

√
3

2

√
ln(p− s). (76)

We still use C defined in Eq. (70). We have

p ≥ (16n)4 =⇒ p ≥
( n
C

)4
+ n+

(
(16n)4 −

( n
C

)4
− n

)
. (77)

Note that

(16n)4 −
( n
C

)4
− n =n

(
n3

(
164 −

(
1

C

)4
)
− 1

)

≥n
(
n3 − 1

)
(because 164 −

(
1

C

)4

≈ 164 −
(

1

0.063

)4

> 1)

≥0 (because n ≥ 1).

Applying it in Eq. (77), we have

p− n ≥
( n
C

)4
=⇒ p− s ≥

( n
C

)4
(because s ≤ n)

=⇒ (p− s)−3
(
C

n

)4

(p− s)4 ≥ 1

=⇒ − 3 ln(p− s) + 4 ln
C(p− s)

n
≥ 0

=⇒ 2 ln
C(p− s)

n
≥ 3

2
ln(p− s)

=⇒ 2 ln
C(p− s)

n
≥ (
√

ln p+ 1)2 (by Eq. (76))

=⇒

(√
2 ln

C(p− s)
n

− 1

)2

≥ ln p. (78)

When n ≥ 100, we always have

n− 1 ≤ n2

8

=⇒
√

2
√
n− 1 ≤ n

2
. (79)

Substituting Eq. (78) and Eq. (79) into the RHS of Eq. (71), the conclusion of this lemma thus
follows.

J Proof of Proposition 9 (upper bound of M )

For conciseness, we define Gij := XT
i Xj . According to the normalization in Eq. (4), we have

Gij :=
HT
i Hj

‖Hi‖2‖Hj‖2
.

Our proof consists of four steps. In step 1, we relate the tail probability of any |Gij | (where i 6= j) to
the tail probability of HT

i Hj . In step 2, we estimate the tail probability of HT
i Hj . In step 3, we use

union bound to estimate the cdf of M , so that we can get an upper bound on M with high probability.
In step 4, we simplify the result derived in step 3.
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Step 1: Relating the tail probability of |Gij | to that of HT
i Hj .

For any i 6= j, we have

Pr ({|Gij | > a})

= Pr

({
|Gij | > a, ‖Hi‖2 ≥

√
n

2
, ‖Hj‖2 ≥

√
n

2

})
+ Pr

({
|Gij | > a,

(
‖Hi‖2 <

√
n

2
or ‖Hj‖2 <

√
n

2

)})
. (80)

The first term can be bounded by

Pr

({
|Gij | > a, ‖Hi‖2 ≥

√
n

2
, ‖Hj‖2 ≥

√
n

2

})
≤ Pr

({
|HT

i Hj | >
na

2

})
,

because

|Gij | > a, ‖Hi‖2 ≥
√
n

2
, ‖Hj‖2 ≥

√
n

2
=⇒ |HT

i Hj | >
na

2
.

Thus, we have, from Eq. (80),

Pr ({|Gij | > a}) ≤ Pr
({
|HT

i Hj | >
na

2

})
+ Pr

({
‖Hi‖2 <

√
n

2

})
+ Pr

({
‖Hj‖2 <

√
n

2

})
(81)

= 2 Pr
({

HT
i Hj >

na

2

})
+ 2 Pr

({
‖Hi‖2 <

√
n

2

})
,

where the last equality is because the distribution of HT
i Hj is symmetric around 0, and Hj has the

same distribution as Hi. Notice that ‖Hi‖22 follows chi-square distribution with n degrees of freedom.
By Lemma 11 (using x = n/16), we have

Pr

({
‖Hi‖2 <

√
n

2

})
= Pr

({
‖Hi‖22 <

n

2

})
≤ e−n/16.

Thus, we have

Pr ({|Gij | > a}) ≤ 2 Pr
({

HT
i Hj >

na

2

})
+ 2e−n/16. (82)

Step 2: Estimating the tail probability of HT
i Hj .

Notice that HT
i Hj is the sum of product of two Gaussian random variables. We will use the Chernoff

bound to estimate its tail probability. Towards this end, we first calculate the moment generating
function (M.G.F) of the product of two Gaussian random variables.

Lemma 29. If X and Y are two independent standard Gaussian random variables, then the M.G.F
of XY is

E[etXY ] =
1√

1− t2
,

for any t2 < 1.
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Proof.

E[etXY ]

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

etxye−
x2+y2

2 dxdy

=
1√
2π

∫ ∞
−∞

e−
x2

2 (1−t2)
(

1√
2π

∫ ∞
−∞

e−
(y−tx)2

2 dy

)
dx

=
1√
2π

∫ ∞
−∞

e−
x2

2 (1−t2)dx

=
1√

1− t2
.

We introduce the following lemma that helps in our calculation later.
Lemma 30. For any x > 0,

arg max
t∈(0,1)

(
tx+

n

2
ln(1− t2)

)
=
−n+

√
n2 + 4x2

2x
.

Proof. Let

f(t) = tx+
n

2
ln(1− t2), t ∈ (0, 1).

Then, we have

df(t)

dt
= x− nt

1− t2
.

Letting df(t)/dt = 0, we have exactly one solution in (0, 1) given by

t =
−n+

√
n2 + 4x2

2x
.

Notice that df(t)/dt is monotone decreasing with respect to t and thus f(t) is concave on (0, 1). The
result of this lemma thus follows.

We then use the Chernoff bound to estimate HT
i Hj in the following lemma.

Lemma 31.

Pr
({

HT
i Hj >

na

2

})
≤ exp

(
−n

2

(
at+ ln

2t

a

))
,

where

t =
−1 +

√
1 + a2

a
.

Proof. Notice that

HT
i Hj =

n∑
k=1

HikHjk =

n∑
k=1

Zk,

where Zk := HikHjk. Using the Chernoff bound, we have

Pr
({

HT
i Hj > x

})
≤min

t>0
e−tx

n∏
k=1

E[etZk ]
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Since each Zk is the product of two independent standard Gaussian variable, using Lemma 30, we
have, for any x > 0,

Pr
({

HT
i Hj > x

})
≤min

t>0
e−tx(1− t2)−

n
2

= min
t∈(0,1)

e−tx(1− t2)−
n
2

= min
t∈(0,1)

e−tx−
n
2 ln(1−t2)

= exp
(
−tx− n

2
ln(1− t2)

) ∣∣∣∣
t=
−n+
√

n2+4x2

2x

(by Lemma 30)

= exp
(
−tx− n

2
ln(nt/x)

) ∣∣∣∣
t=
−n+
√

n2+4x2

2x

,

where the last equality is because t = (−n+
√
n2 + 4x2)/2x is one solution of the quadratic

equation in t that xt2 + nt− x = 0 (which implies 1− t2 = nt/x).

Letting x = na
2 , we get t = (−1 +

√
1 + a2)/a, and

exp
(
−tx− n

2
ln(nt/x)

)
= exp

(
−nat

2
− n

2
ln

2t

a

)
= exp

(
−n

2

(
at+ ln

2t

a

))
.

The result of this lemma thus follows.

Step 3: Estimating the distribution of M .

Since M is defined as the maximum of all |Gij | for i 6= j, we use the union bound to estimate the
distribution of M in the following proposition.
Proposition 32.

Pr

({
M ≤ 2

√
6

√
ln p

n

(
6 ln p

n
+ 1

)})
≥ 1− 2e− ln p − 2e−n/16+2 ln p.

To prove Proposition 32, we introduce a technique lemma first.
Lemma 33. For any x > 0, we must have

lnx ≥ 1− 1

x
.

Proof. We define a function

f(x) := lnx− (1− 1

x
), x > 0.

It suffices to show that min f(x) = 0. We have

df(x)

dx
=

1

x
− 1

x2
=
x− 1

x2
.

Thus, f(x) is monotone decreasing in (0, 1) and monotone increasing in (1,∞). Thus, min f(x) =
f(1) = 0. The conclusion of this lemma thus follows.

We are now ready to prove Proposition 32.

Proof of Proposition 32: Applying Lemma 31 to Eq. (82), we have

Pr ({|Gij | > a}) ≤ 2 exp

(
−n

2

(
at+ ln

2t

a

))
+ 2e−n/16, (83)

where

t =
−1 +

√
1 + a2

a
. (84)
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Since M = maxi6=j |Gij |, we have
Pr ({M ≤ a})

=1− Pr

⋃
i 6=j

{|Gij | > a}


≥1−

∑
i 6=j

Pr ({|Gij | > a}) (by the union bound)

=1− p(p− 1) Pr ({|Gij | > a}) (since all Gij has the same distribution)

≥1− e2 ln p Pr ({|Gij | > a})
≥1− 2e−n/16+2 ln p

− 2 exp

(
−n

2

(
at+ ln

2t

a
− 4 ln p

n

))
(by Eq. (83)). (85)

Let

a = 2
√

6

√
ln p

n

(
6 ln p

n
+ 1

)
. (86)

Substituting Eq. (86) into Eq. (84), we have

at = −1 +
√

1 + a2

= −1 +

√
1 +

24 ln p

n
+

(
12 ln p

n

)2

= −1 +

√(
12 ln p

n
+ 1

)2

=
12 ln p

n
. (87)

Thus, we have

ln
2t

a
= ln

2at

a2
= ln

2 · 12 ln p
n

24 · ln pn
(

6 ln p
n + 1

) = ln
1

6 ln p
n + 1

≥ 1−
(

6 ln p

n
+ 1

)
(by Lemma 33)

= −6 ln p

n
. (88)

By Eq. (87) and Eq. (88), we have

−n
2

(
at+ ln

2t

a
− 4 ln p

n

)
≤ −n

2

(
12 ln p

n
− 6 ln p

n
− 4 ln p

n

)
= − ln p.

Substituting into Eq. (85), the result of this proposition follows. �

Step 4: Simplifying the expression in Proposition 32.

By the assumption of Proposition 9 that p ≤ exp(n/36), we have
6 ln p

n
+ 1 ≤ 7

6
.

Thus, we have

2
√

6

√
ln p

n

(
6 ln p

n
+ 1

)
≤ 2
√

7

√
ln p

n
. (89)

We also have
−n
16

+ 2 ln p ≤ −n
16

+ 2 · n
36

= − n

144
. (90)

Applying Eq. (89) and Eq. (90) to Proposition 32, we then get Proposition 9.
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K Lower bounds

In this section, we first establish a lower bound on ‖wI‖1. This lower bound now only shows that our
upper bound in Prop. 8 is tight (up to a constant factor), but can also be used to derive a lower bound
on ‖wBP‖1. We will then use this lower bound on ‖wBP‖1 to prove Prop. 4 (i.e., the lower bound on
‖wBP‖2). As we discussed in the main body of the paper, although our bounds on ‖wBP‖2 are not
tight, the bounds on ‖wBP‖1 are in fact tight (up to a constant factor), which will be shown below.

K.1 Lower bound on ‖wI‖1

A trivial lower bound on ‖wI‖1 is ‖wI‖1 ≥ ‖εtrain‖2. To see this, letting wI(i) denote the i-th element
of wI , we have

‖εtrain‖2 = ‖Xtrainw
I‖2 =

∥∥∥∥∥
p∑
i=1

wI(i)Xi

∥∥∥∥∥
2

≤
p∑
i=1

|wI(i)| · ‖Xi‖2 = ‖wI‖1 (notice ‖Xi‖2 = 1).

Even by this trivial lower bound, we immediately know that our upper bound on ‖wI‖1 in Proposition
8 is accurate when p → ∞. Still, we can do better than this trivial lower bound, as shown in
Proposition 35 below.

Towards this end, following the construction of Problem (54), it is not hard to show that B(1), i.e.,
the vector that has the largest inner-product with (−εtrain), defines a lower bound for ‖wI‖1.

Lemma 34.

‖wI‖1 ≥
‖εtrain‖22

BT
(1)(−εtrain)

Proof. Let

λ∗ =
(−εtrain)

BT
(1)(−εtrain)

.

By the definition of B(1), for any i ∈ {1, 2, · · · , p− s}, we have

∣∣λT∗Ai

∣∣ =

∣∣AT
i εtrain

∣∣
|BT

(1)εtrain|
≤ 1.

In other words, λ∗ satisfies all constraints of the problem (52), which implies that the optimal
objective value of (52) is at least

λT∗ (−εtrain) =
‖εtrain‖22

BT
(1)(−εtrain)

.

The result of this lemma thus follows.

By bounding BT
(1)(−εtrain), we can show the following result.

Proposition 35. When p ≤ e(n−1)/16/n and n ≥ 17, then

‖wI‖1
‖εtrain‖2

≥
√

1 +
n

9 ln p

with probability at least 1− 3/n.

The proof is available in Appendix K.4. Comparing Proposition 8 with Proposition 35, we can see
that, with high probability, the upper and lower bounds of ‖w‖1 differ by at most a constant factor.
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K.2 Lower bounds on ‖wBP‖1 and ‖wBP‖2

Using Prop. 35, we can show the following lower bound on ‖wBP‖1.
Proposition 36 (lower bound on ‖wBP‖1). When p ≤ e(n−1)/16/n and n ≥ 17, then

‖wBP‖1 ≥
1

3

√
n

ln p
‖εtrain‖2

with probability at least 1− 3/n.

Proof. We define wJ as the solution to the following optimization problem:
min
w
‖w‖1, subject to Xtrainw = εtrain.

By definition, Xtrainw
BP = εtrain. Thus, we have ‖wBP‖1 ≥ ‖wJ‖1. To get a lower bound on ‖wJ‖1,

we can directly use the result in Proposition 35 because the definitions of wI and wJ are essentially
the same6. We then have,

‖wJ‖1 ≥
√

1 +
n

9 ln p
‖εtrain‖2 ≥

1

3

√
n

ln p
‖εtrain‖2

with probability at least 1− 3/n. The result of this proposition thus follows.

Next, we proceed to prove Proposition 4, i.e., the lower bound on ‖wBP‖2. Because ‖wBP‖0 =

‖β̂BP − β‖0 ≤ ‖β̂BP‖0 + ‖β‖0 ≤ n + s, we then have the following lower bound on ‖wBP‖2
assuming n ≥ s,

‖wBP‖2 ≥
‖wBP‖1√
n+ s

≥ ‖w
BP‖1√
2n

. (91)

Combining with Prop. 36, we have proved Prop. 4.

K.3 Tightness of the bounds on ‖wBP‖1

As we discussed in the main body of the paper, our upper and lower bounds on ‖wBP‖2 still have a
significant gap. Interesting, our bounds on ‖wBP‖1 are tight up to a constant factor, which may be of
independent interest. To show this, we first derive the following upper bound on ‖wBP‖1.

Proposition 37 (upper bound on ‖wBP‖1). When s ≤
√

n
7168 ln(16n) , if p ∈

[
(16n)4, exp

(
n

1792s2

)]
,

then

‖wBP‖1 ≤

(
4
√

2 +

√
1

2
√

7

)√
n

ln p
‖εtrain‖2,

with probability at least 1− 6/p.

Proof. Following the proof of Theorem 2 in Appendix F, we can still get that Eq. (48), i.e.,

M ≤ 2
√

7

√
ln p

n
, ‖wI‖1 ≤

√
2n

ln p
‖εtrain‖2, and K ≥ 4, (92)

hold with probability at least 1− 6/p. Applying Eq. (92) and Proposition 5, we have, with probability
at least 1− 6/p,

‖wBP‖1 ≤4‖wI‖1 +

√
1

2
√

7

(
n

ln p

)1/4

‖εtrain‖2

≤4

√
2n

ln p
‖εtrain‖2 +

√
1

2
√

7

(
n

ln p

)1/4

‖εtrain‖2

≤

(
4
√

2 +

√
1

2
√

7

)√
n

ln p
‖εtrain‖2,

where the last inequality is because n
ln p > 1, and therefore ( n

ln p )1/4 ≤ ( n
ln p )1/2.

6Notice that the proof of Proposition 35 does not require s > 0. Therefore, we can just let s = 0 so that wI

there becomes wJ .
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Comparing with Prop. 36, we can see that our upper and lower bounds on ‖wBP‖1 differ by at most a
constant factor.

K.4 Proof of Proposition 35

To prove Proposition 35, we will prove a slightly stronger result in Proposition 38 given below.
Proposition 38. When (p− s) ≤ e(n−1)/16/n and n ≥ 17, the following holds.

‖wI‖1
‖εtrain‖2

≥

√
1 +

n− 1

4 lnn+ 4 ln(p− s)
, (93)

with probability at least 1− 3/n.

To prove Proposition 38, we introduce a technical lemma first.
Lemma 39. For any x ∈ [0, 1), we have

ln(1− x) ≥ −x√
1− x

. (94)

Proof. Let

f(x) = ln(1− x) +
x√

1− x
.

Note that f(0) = 0. Thus, it suffices to show that df(x)/dx ≥ 0 when x ∈ [0, 1). Indeed, we have

df(x)

dx
=
−1

1− x
+

√
1− x− x −1

2
√
1−x

1− x

=
−
√

1− x+ 1− x+ x/2

(1− x)3/2

=
2− x− 2

√
1− x

2(1− x)3/2

=
(1−

√
1− x)2

2(1− x)3/2

≥0.

The result of this lemma thus follows.

We are now ready to prove Proposition 38.

Proof of Proposition 38: Because of Lemma 34, we only need to show that

‖εtrain‖2
BT

(1)(−εtrain)
≥

√
1 +

n− 1

4 lnn+ 4 ln(p− s)
,

with probability at least 1− 3/n. Similar to what we do in Appendix I.3, without loss of generality,
we let εtrain = [−‖εtrain‖2 0 · · · 0]T . Thus,

‖εtrain‖2
BT

(1)(−εtrain)
=

1

maxi |Ai1|
.

We uses the following two steps in order to get an upper bound of 1/maxi |Ai1|. Step 1: estimate
the distribution of 1/|Ai1| for any i ∈ {1, · · · , p − s}. Step 2: utilizing the fact that all Ai1’s are
independent, we estimate 1/maxi |Ai1| base on the result in Step 1.

The Step 1 proceeds as following. For any i ∈ {1, · · · , p− s} and any k ≥ 0, we have

Pr

({
1

|Ai1|
≥ k

})
= Pr

({
(A′i1)2 ≤

∑n
j=2(A′ij)

2

k2 − 1

})
(by Eq. (67)).
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Therefore, for any m > 0, we have

Pr

({
1

|Ai1|
≥ k

})
≥Pr

({
(A′ij)

2 ≤
n− 1− 2

√
(n− 1)m

k2 − 1

})

· Pr


n∑
j=2

(A′ij)
2 > n− 1− 2

√
(n− 1)m


 (because all A′ij’s are independent)

≥

1− 2Φc

√n− 1− 2
√

(n− 1)m

k2 − 1


·
(
1− e−m

)
(by Lemma 11). (95)

Let m = (n− 1)/16 and define

t :=

√
(n− 1)/2

k2 − 1
. (96)

We have √
n− 1− 2

√
(n− 1)m

k2 − 1
= t. (97)

Substituting Eq. (97) and m = (n− 1)/16 to Eq. (95), we have

Pr

({
1

|Ai1|
≥ k

})
≥
(

1− e−(n−1)/16
)

(1− 2Φc(t))

≥
(

1− e−(n−1)/16
)1−

2
√

2/πe−t
2/2

t+
√
t2 + 8

π

 (by Lemma 24)

≥
(

1− e−(n−1)/16
)(

1− e−t
2/2
)

(since t ≥ 0 =⇒ t+
√
t2 + 8/π ≥ 2

√
2/π).

Now, let k take the value of the RHS of Eq. (93), i.e.,

k =

√
1 +

n− 1

4 lnn+ 4 ln(p− s)
.

By Eq. (96), we have

t2 =
(n− 1)/2

k2 − 1

=
(n− 1)/2(√

1 + n−1
4 lnn+4 ln(p−s)

)2
− 1

(substituting the value of k)

=2 lnn+ 2 ln(p− s),

which implies that

e−t
2/2 =

1

n(p− s)
.

Thus, we have

Pr

({
1

|Ai1|
≥ k

})
≥
(

1− e−(n−1)/16
)(

1− 1

n(p− s)

)
. (98)
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Next, in Step 2, we use Eq. (98) to estimate 1/maxi |Ai1|. Since all Ai1’s are independent, we have

Pr

({
1

maxi |Ai1|
≥ k

})
=

p−s∏
i=1

Pr

({
1

|Ai1|
≥ k

})
(since all Ai1 are independent)

≥
((

1− e−(n−1)/16
)(

1− 1

n(p− s)

))p−s
(by Eq. (98))

= exp
(

(p− s) ln(1− e−(n−1)/16)
)

· exp

(
(p− s) ln(1− 1

n(p− s)
)

)

≥ exp

(
− (p− s)e−(n−1)/16√

1− e−(n−1)/16

)
exp

(p− s)
− 1
n(p−s)√

1− 1
n(p−s)


(by Lemma 39)

= exp

(
− (p− s)e−(n−1)/16√

1− e−(n−1)/16

)
exp

 −1

n
√

1− 1
n(p−s)


≥
(

1− (p− s)e−(n−1)/16√
1− e−(n−1)/16

)1− 1

n
√

1− 1
n(p−s)


(because ex ≥ 1 + x)

≥
(

1− 1

n
√

1− e−(n−1)/16

)(
1− 1

n
√

1− 1/17

)
(based on the assumption of the proposition, i.e., p− s ≤ e(n−1)/16/n and n(p− s) ≥ n ≥ 17)

≥

(
1− 1

n
√

1− 1/e

)(
1− 1

n
√

1− 1/17

)
(because n ≥ 17)

=1− 1

n
√

1− 1/e
− 1

n
√

1− 1/17
+

1

n
√

1− 1/e

1

n
√

1− 1/17

≥1− 2√
1− 1/e

· 1

n
(because 17 > e)

≥1− 3/n (because e ≥ 9/5).

The result of this proposition thus follows. �

Finally, we use the following lemma to simplify the expression in Proposition 38. The result of
Proposition 35 thus follows.

Lemma 40. If n ≥ 17, then√
1 +

n− 1

4 ln p+ 4 ln(p− s)
≥
√

1 +
n

9 ln p
.

Proof. Because n ≥ 17, we have

n− 1

n
= 1− 1

n
≥ 1− 1

17
≥ 8

9
.
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Therefore, we have

n− 1

n
≥ 4

9
+

4

9

=⇒ n− 1

n
≥ 4 ln p

9 ln p
+

4 ln(p− s)
9 ln p

=⇒ n− 1

n
≥ 4 ln p+ 4 ln(p− s)

9 ln p

=⇒ n− 1

4 ln p+ 4 ln(p− s)
≥ n

9 ln p

=⇒

√
1 +

n− 1

4 ln p+ 4 ln(p− s)
≥
√

1 +
n

9 ln p
.
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