A Proof of Lemma 10

Lemma 10. If Eq. (8) has one or multiple solutions, there must exist one with at most n non-zero
elements.

Proof. We prove by contradiction. Suppose on the contrary that every solution to Eq. (8) has at least
(n + 1) non-zero elements. Let 5y denote a solution with the smallest number of non-zero elements.
Let A denote the set of indices of non-zero elements of 3y. Then, we have |A| > n + 1. Below, we
will show that there must exist another solution to Eq. (8) with strictly fewer non-zero elements than
B0, which leads to a contradiction. Towards this end, note that since Xy, has only n rows, the subset
of columns X;, ¢ € A, must be linear dependent. Therefore, we can always find a non-empty set
B € A and coefficients ¢; # 0 for ¢ € BB such that

icB
Define 8y € RP for A € R such that
. Bolil + Aci,  ifie B,
bl = { Bolil, otherwise.

Note that this definition is consistent with the definition of 5y when A = 0. Thus, for any A € R, we
have

k
Xtrainﬁz\ = Xtrainﬁo + A Z Cijj
=1
= XLrainBO (by Eq (]7))
= Y in (since 5y satisfies the constraint of Eq. (8)). (18)

In other words, any 3, also satisfies the constraint of Eq. (8). Define

C::{ieB —%M@}, u:z{ieB —Bim>0},

LB := {maxiec (~2), ifcte,

0, otherwise,
ug o Jminieu (—2),ifu £ o,
0, otherwise.

Base on those definitions, we immediately have the following two properties for the interval [LB, UB].
First, we must have [LB, UB] # @. This can be proved by contradiction. Suppose on the contrary
that [LB, UB] = @. Because by definition LB < 0 and UB > 0, we must have LB = UB = 0.
Because LB = 0, we must have £ = @. Because UB = 0, we must have &/ = &. Thus, we
have B = L UU = @, which contradicts the fact that 13 is not empty. We can thus conclude that
[LB, UB] # @. Second, for any A € (LB, UB), sign(Bo[i] + Ac;) = sign(Bo[i]) for all i € B. This
is because

ﬁo[ﬂﬂf%-lA( . >> 1-1B- (—5) 20, ifie L,
Boli] Boli] 1-UB- (—5) 20, ifi e

By the second property, we can show that || 5,1 is a linear function with respect to A when A €
[LB, UBJ. Indeed, we can check that ||y || is continuous with respect to A everywhere and its
derivative is a constant in A € (LB, UB), i.e

0||Bxll1
o\

ch sign(Boli] + Ac;) ch sign(Boli] (19)

A€(LB, UB) i€EB i€EB
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By the first property, there are only three possible cases to consider.

Case 1: LB < 0 and UB > 0. By linearity, we have

min{||Siell1, |Buslli} < [|Boll1-

Thus, by Eq. (18), we know that either 3, g or Syg (or both of them) is a solution of Eq. (8). By the
definitions of 5y, LB, and UB, we know that both 5 g and Syg have a strictly smaller number of
non-zero elements than that of 8y when LB # 0 and UB # 0. This contradicts the assumption that
Bo has the smallest number of non-zero elements.

Case 2: LB < 0 and UB = 0. Since UB = 0, we have & = @, which implies that 8y[¢]/c; > 0 for
all i € B, i.e., By[i] and ¢; have the same sign for all ¢ € B. Thus, the value of Eq. (19) is positive,
i.e., || Bx]l1 is monotone increasing with respect to A € [LB, UB]. Thus, we have ||Sig|1 < ||5oll1-
By Eq. (18), we know that 3, g is a solution of Eq. (8). By the definitions of 3, and LB, we know
that 51 g has a strictly smaller number of non-zero elements than that of 3y when LB ## 0. This
contradicts the assumption that 3y has the smallest number of non-zero elements.

Case 3: LB = 0 and UB > 0. Similar to Case 2, we can show that Syg is a solution of Eq. (8) and
has a strictly smaller number of non-zero elements than that of 3y. This contradicts the assumption
that By has the smallest number of non-zero elements.

In conclusion, all cases lead to a contradiction. The result of this lemma thus follows. O

B An estimate of ||¢.in |2 (close to o with high probability)

Lemma 11 (stated on pp. 1325 of [22]). Let U follow a chi-square distribution with D degrees of
freedom. For any positive x, we have

Pr ({U —D>2VDz+ Qx}) <e ",
Pr ({D —U> 2x/D7c}) <e v

Notice that 1| €yain[|3/0? follows the chi-square distribution with n degrees of freedom. We thus
have

12
Pr ({ /w2 < 20%}) =1 — Pr ({"Hfrb > 2n}>

o2

12
zl_pr({nne"f;“b_nzn})_
o

Now we use the fact that

2 — 2 —
24/n 2\/§n+2~ zﬁn:\/n2(4f2\/§)+(27\/§)n
— \n2(V3— 1) + (2~ V3)n
=(3-1n+(2-V3)n
=n.
We thus have
inll2 2—-+/3 2—-+/3
Pr ({|lewain]|3 < 20°}) =1 —Pr nHL;n‘b—n22 n 2fn+2- 2\[n
o
2—+v3 2—v3
>1—exp <— 2\[71) (by Lemma 11 using x = 2\fn). (20)
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We also have

pr({||em||§z‘f}) pe ({ el el /)
({n nwmm2>2}>
({n nkmM222¢@&})

>1—exp ( ) (by Lemma 11 using x = n/16). 21

I/\
|3

5\3

In other words, when 7 is large, ||€in||3 should be close to o2, As a result, in the rest of the paper,
we will use ||€ain |3 as a surrogate for the noise level.

C Proof of Lemma 1 (distortion of 5 due to normalization of Xy,;, is small)

From Eq. (6), it is easy to see that the amount of distortion of 3 depends on the size of H; for those i

~BP
such that either 3[i] or 3 [i] is non-zero. More precisely, we define the sets

A= {i: i) £0yU{i: B[ # 0} ={1,2,--- ,s}U{i: B [i] # 0},
Bi=A\{1,--- s}

~BP ~
Notice that because |5 ||o = [|3%"|lo < n, the number of elements in A satisfies |.A| < s+ n. Thus,
the number of elements in B satisfies

Bl = |AN{L - s} = [A| —s <s+n—s=n. (22)

Then, we have

n(B%[i] — Bi))?
GAE
n(3%[i] — B2
GAE
o S (8] - Bli])?

~ mingeq [[Hlf3

~BP
lw®™ I3 = 18" - BII5 =

s.
i M@
I,

IS

i€

i€ A
_ W  ypsP 2
= w2 o
n BP||2
=— . 23
win e >
In the same way, we can get the other side of the bound:
n

lw™ 13 > —PI\wBPH%- (24)

max;e 4 ||H;|
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Similarly, for ¢;-norm, we have

A o |51 - Bl
BP _ BP<_ =
lw |l = 18" =Bl =) [ H |2

i V|38 - )|
-2 ||Hi||2

€A

ﬁBP
mite A ||HLH2 2

_ flnﬁm’ 3l

min;e 4 || H;|

Vﬁi BP
= —————|w ; (25)
min;e 4 ||H;l2 o™l

\ /\

as well as

S L 26)

w __vn_
e max;e 4 || Hill2

It only remains to bound the minimum or maximum of ||H;||% over i € A. Intuitively, for each i,
since E[||H;||3] = n, ||H;||3 should be close to n when n is large. However, here the difficulty is that
we do not know which elements ¢ belong to A. If we were to account for all possible s = 1,2,--- , p,
when p is exponentially large in n, our bounds for the minimum and maximum of ||H;||2 would
become very loose. Fortunately, for those ¢ = s + 1, --- , p (i.e., outside of the true basis), we can
show that ||H;||3 is independent of .A. Using this fact, we can obtain a much tighter bound on the
minimum and maximum of ||H;||3 on A. Towards this end, we first show the following lemma:

Lemma 12. 327 is independent of the size |[H;||y of H; fori € {s +1,--- ,p}. In other words,
scaling any H; by a non-zero value «; for any i € {s+1,--- ,p} does not affect 35F.

Proof. Suppose that H; is scaled by any «; # 0 forany i € {s+ 1,--- ,p}. We denote the new H
matrix by H', i.e., H, = o, H, for some i € {s + 1,--- ,p}. By the normalization in Eq. (4), we
know that Xiin does not change after this scaling. Further, because §[i] = 0 fori € {s+1,--- ,p},
Y wain is also unchanged. Therefore, the BP solution as defined in Eq. (8) will remain the same. [

Let2A C {1,---,p} denote any possible realization of the set .A. By Lemma 12 and noting that all
H,’s are i.i.d., we then get that, for any h; € R,4=1,--- ,p, and any fixedsetC C {s+1,--- ,p},

Pr ({A — A, |[H |2 > hyyi=1,--- s} ‘ {IIH;]|3 > hy, forall i C})
=Pr({A=2||H;|3 > hsi=1,---,s}). (27)

In other words, A and ||H;||3, i = 1,---,s are independent of |[H;||3,i = s +1,---,p. Of
course, this is equivalent to stating that ||H;||3,7 = s + 1,--- , p are independent of A and ||H;||3,
t=1,--+,s. More precisely, for any h; € R,i=1,--- ,p, and any fixedsetC C {s+ 1,--- ,p},
we have

Pr ({HHZ-H% > by, foralli € C} ‘ {A =90 |[H,3> hyi =1, ,3})

Pr ({A = |H 3> hiyi=1,- 5} ‘ {I[EL 12 > by, forall i € c})
- Pr({A=2,[Hi[Zi =1, s})
-Pr ({||H;||3 > hy,foralli € C}) (by Bayes’ Theorem)
=Pr ({||H;||3 > hy,foralli € C}) (using Eq. (27)). (28)
Further, because all H;’s are i.i.d., we have

Pr ({|[H;|3 > hi,foralli € C}) = [[Pr ({I[Hil3 > hi}) = [ Pr ({IH1l5 > hi}) .

ie€C ieC
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Substituting back to Eq. (28), we have

Pr ({||Hi||§ > b, foralli € C} ‘ (A= |2 > hii=1,-- ,s})
=[IPr ({IHL5 > hi}) - (29)

ieC

We are now ready to bound the probability distribution of min;c 4 ||H;||3 in Eq. (23). Because
{1,---,s} C A, we have (recalling that B = A\ {1,--- ,s

Pr <{IIélIl||H1||2 ;L})
—rr (0, {im3 = 3})
=H(Hﬂﬁ2ZJ=M~ADJ%C&HEﬁZZHﬂmMZZJZM~JD
(1 ({im > 51)) e (g, {imaz= ) {imag > =1 o)) o

(because all H;’s are i.i.d.).

We first study the second term of the right-hand-side of Eq. (30) by conditioning on .4 = 2. For any
possible realization 2l of the set .4, we have

pr( 0 {IEE 2 S} {a=mig = izt s}

n n
—P N {H¢2>*}H =9, Hi2>7,':1,---,}
r(iem\{l,m,s} IFLlz 2 5 g [ A =2 Lz 2 500 y

= [0 e ({||H1||§ > g}) (by letting C = A\ {1,--- , s} in Eq. (29))

€A\ {1, 5}

> (1-Pr({Im3 < 2 }))" by Ea. 2)). 31)

Since the right-hand-side of Eq. (31) is independent of 2{, we then conclude that

n n . n n
m@gﬂm%z2H{M£22ﬂ=u~ﬁDz(uP%@HMsQD)

Substituting back to Eq. (30), we have

Pf({?““"*z }) (e ({mgz < 23)"

(1 ({HHng < })>2n (assuming s < n)
>(1 — en/16y2n (32)

Y
|3

>1—2n.e /16
-1 — e—7z/16+1n(2n), (33)

where in Eq. (32), we have used results for large deviation analysis on the probability of chi-square
distribution (similar to the analysis of getting Eq. (21) in Appendix B). Using similar ideas, we can
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also get

Pr ({161 < 20} ) = (1= Pr ({1013 > 20})

>(1_exp<

>1—-2n- exp(

=1—exp <2 2\/§n + ln(2n)> .

%

Applying Eq. (33) in Eq. (23) and applying Eq. (34) in Eq. (24), we conclude that
Pr ({lw®ll> < V2Iwll2}) = Pr ({1 < 20w™|3})
n
>1_ _
>1 exp( 16 +ln(2n)> ,

Pr ({2 < V2w |2 } ) = Pr ({lw®|I3 < 2w®™|3})
>1—exp (—2 _2\/371 + ln(2n)> .

Applying Eq. (33) in Eq. (25) and applying Eq. (24) in Eq. (26), we conclude that
Pr ({||MBP||1 < \/§||wBP||1}) >1—exp (—% + ln(2n)> ,

Pr ({HwBPHl < \/§||MBP||1}) >1—exp (2 _2\/§n+ 111(271)) .

The result of Lemma 1 thus follows.

D Proof of Proposition 5 (relationship between ||wB?||; and ||w!]];)

BP

Proof. Since we focus on w®", we rewrite BP in the form of wBP. Notice that

1%l = lw® + Bl = [lwg® + Boll + [[wi*|l1-
Thus, we have

wB? = arg min |lwo + Boll1 + [Jwll1
w

subject to XinW = Eqrain-

) ) (similar to Eq. (20) in Appendix B)

(34)

(35)

Define G := Xin” Xiain and let I be the p x p identity matrix. Let | - | denote the operation that

takes the component-wise absolute value of every element of a matrix. We have

HetramH2 ”Xtramw ”%
_ (wBP)TG’LUBP
= w3 + (w®) (G = D

> (w3 = [w*7]G — TJw®]

@
> (w3 = M[w®* T[T - T[]w®]

= (L+M)[[w™ 3 — M|Jw™ 3,

18
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where in step (a) 1 represents a p X p matrix with all elements equal to 1, and the step holds because
G has diagonal elements equal to 1 and off-diagonal elements no greater than M in absolute value.
Because w! also satisfies the constraint of (35), by the representation of wB? in (35), we have

lwg® + Boll + [l < flwg + Bollx + [l |-

By definition (12), we have w} = 0 and ||w?||; = ||w!||;. Thus, we have

[wg” + Bollr + lwi¥ll < [lBollx + [lw 1.
By the triangle inequality, we have ||Bo]|1 — [[wEF + Boll1 < ||wEF||1. Thus, we obtain

[wPP Il < 1Bolls = [[wg® + Bollx + [[w” |2

< Jlwg® I + llw! [l 37)
We now use (36) and (37) to establish (15). Specifically, because wgp € R?, we have
1
Jwg|I5 > ;ngl’nf,

Thus, we have

1
P13 = flwg” 13 > < g 13- (38)
Applying Eq. (37), we have
[wPll = ¥l + [lwg” [l < 2[wg (1 + [lw 1. (39)
Substituting Eq. (38) and Eq. (39) in Eq. (36), we have

lwglIF = M (2llwg [l + w'[11)* < lewanll3,

1+ M

S
which can be rearranged into a quadratic inequality in || w§® ||, i.e.,
( 1+ M

—4M>Hw?ﬁ—4ﬂwmew?m

— (Mw'||F + [lewanll3) < 0.

Since K = LI — 4 > 0, we have the leading coefficient £ — 4)/ = KM > 0. Solving this
quadratic inequality for [|wEF||;, we have

AM o + /AN 1) + AKM (M 7 + Jlwinl3)
2KM

2w A2 + K (1 + e 3)

_ - |

lwg” 1 <

Plugging the result into Eq. (39), we have

Awill + 2\/4||wa? + K ([w![IF + 57l éwain][3)
K

This expression already provides an upper bound on ||wB?||; in terms of M and |Jw!||;. To obtain
an even simpler equation, combining 4||w?||; /K with ||w’| 1, and breaking the square root apart by

Va+b+c<a+Vb+ /¢ wehave

K+4 [(a|w |1\ [4]lwT)?
Hprulg 7 Hw1”1+ < ”K”l) + ”K”l

Jw® ||y < + [l |1

+ 4||€lrain||%
MK
8 1 2||6lrain||2
=(1+—=+24/= I —nns,
<+K+VK>wm+V@M
The result of the proposition thus follows. O
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E Proof of Proposition 6 (relationship between |[w®?||, and ||w®®||;)

Proof. In the proof of Proposition 5, we have already proven Eq. (36)*. By Eq. (36), we have

||€lrain||§ + M”wBPH%
1+ M

</ llevinll3 + M P2
SHetrainHQ + \/M”wBPHl‘

w2 <

F Proof of Theorem 2 (upper bound of model error)

The proof consists three steps. In step 1, we verify the conditions for Proposition 8 and get the
estimation on ||w?||; by Proposition 8. In step 2, we verify the conditions for Proposition 9 and
get the estimation on M by Proposition 9. In step 3, we combine results in steps 1 and 2 to prove
Theorem 2.

Step 1

We first verify that the conditions for Proposition 8 are satisfied. Towards this end, from the
assumption of Theorem 2 that

p € |(16n)*, exp (ﬁ)} ,
we have
p > (16n)*, (40)
and

) < 1792 (since s > 1). 1)

<e (L
P=eP 179952 ) =

M n
Further, from the assumption of the theorem that s < , / =168 Tn(Ton) We have

n>s2-7168 In(16n) > 7168 > 100 (since s > 1 and n > 1). (42)

Eq. (42) and Eq. (40) imply that the condition of Proposition 8 is satisfied. We thus have, from
Proposition 8, with probability at least 1 — 2e~"/4,

3n/2
12 el
np

Jw![ly < 4/1+

From Eq. (41), we have

p < en/1792 < en/?

~ Inp’

2
Pr ({leh <y [ie ||€train||2}) >1—2e "4 (43)
Inp

“Notice that in the proof of Proposition 5, to get Eq. (36), we do not need K > 0.

Therefore, we have
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Step 2

Note that Eq. (41) implies that the conditions of Proposition 9 is satisfied. We thus have, from
Proposition 9,

1
Pr ({Mg W7 np}) > 1 — e~ Inp _gpn/144, (44)

n

Step 3
In this step, we will combine results in steps 1 and 2 and proof the final result of Theorem 2. Towards
this end, notice that for any event A and any event B, we have
Pr({A}n{B}) = Pr({A}) + Pr({B}) — Pr({A} U{B})
> Pr({A}) + Pr({B}) - L.
Thus, by Eq. (43) and Eq. (44), we have

Pr <{||wf||1 < ,/12”|etram|2}m{Ms2f7 1“”}) @)
np n

>1—2e /4 —2e7 P _gemn/1M4
> 1 —6e” P (since Inp < n/144 < n/4 by Eq. (41))
=1-6/p.
It remains to show that the event in (45) implies Eq. (9). Towards this end, note that from M <
2/T h;—f’, we have
1+ M
K= sM

1
> a7 4. (46)
From the assumption of the theorem, we have
oo () =
179252

— _n > 1n
179252 = P

n 1 n
= s < = — 47
5= V 1792Inp 167\ Inp @7

Applying Eq. (47) to Eq. (46), we have

— 4 (by definition in Eq. (14))

1
K> -4

1 /n Inp
16V7 2V7 n

Inp

=8—-4=4.

1 2
M < 2VT =2 w11 < /= [lewainll2, and K > 4. (48)
n Inp

to Corollary 7, we have

In 1/4 2n
10213 <2llecanllz + \/2v/7 (p> A 2 el
n Inp
7n \ V4
= <2+8 (h’l])) HftrainH2-

The result of Theorem 2 thus follows.

Applying
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G Proof of Corollary 3 (descent floor)

Proof. For any a > 1, we have
Leaj . ea/2 > e — ea/2 1= ea/2(ea/2 . 1) —1
>Ve(vVe—1)—1=e—+e—1=~~0.0696.

It implies that |e®| > e%/2 for any a > 1. Taking logarithm at both sides, we have In [e®| > a/2 for

any a > 1. When s < ,/Wn(mn),wehave

n
——— >41In(16n) > 1.
T702s2 = 41016 =
Thus, by the choice of p in the corollary, we have
n n
Inp =1n |exp ( )] = . 49
HPE P\ 179252 | = 358452 “49)

Substituting Eq. (49) into Eq. (9), we have

[[w®®]l2

<248 (7 x 3584s%) "/

=24 32V14/5.

Hetrain H2

H Proof of Proposition 8 (upper bound of ||w?||;)

Recall that, by the definition of w! in Eq. (12), w! is independent of the first s columns of X,i,. For
ease of exposition, let A denote a n X (p — s) sub-matrix of X, that consists of the last (p — s)
columns, i.e.,

A = [Xs+l X5+2 s Xp]
Thus, ||w!||; equals to the optimal objective value of

min ||a||; subject to A = €qain- (50)
acRpP—s

Let A be a n x 1 vector that denotes the Lagrangian multiplier associated with the constraint
A« = €yyin- Then, the Lagrangian of the problem (50) is

L(a, A) = ||04H1 + )‘T(Aa - Gtrain)'
Thus, the dual problem is
max h(A), (51)
where the dual objective function is given by
h(X\) = inf L(a, N).
Let A; denote the i-th column of A. It is easy to verify that
h(A\) = inf L(a, \)

|- if there exists 7 such that [A\T A;| > 1,
| =AT¢uun  otherwise.

Thus, the dual problem (51) is equivalent to
max AT (—€train)

subjectto —1 < M'A; < 1forallie {1,2,---,p—s}. (52)
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This dual formulation gives the following geometric interpretation. Consider the R™ space that A and
A, stay in. Since ||A;||2 = 1, the constraint —1 < AT A; < 1 corresponds to the region between two
parallel hyperplanes that are tangent to a unit hyper-sphere at A; and — A ;, respectively. Intuitively,
as p goes to infinity, there will be an infinite number of such hyperplanes. Since A; is uniformly
random on the surface of a unit hyper-sphere, as p increases, more and more such random hyperplanes
“wrap" around the hyper-sphere. Eventually, the remaining feasible region becomes a unit ball. This
implies that the maximum value of the problem (52) becomes ||€yin||2 When p goes to infinity and
the optimal ) is attained when A* = —é€yin /|| €rain||2. Our result in Proposition 8 is also consistent
with this intuition that ||w!||; — ||€qain||2 as p — 0o. Of course, the challenge of Proposition 8 is to
establish an upper bound of ||w!||; even for finite p, which we will study below.

Another intuition from this geometric interpretation is that, among all A;’s, those “close” to the
direction of +e,i, matter most, because their corresponding hyperplanes are the ones that wrap the
unit hyper-sphere around the point \* = —é€yqin/ || €wrain||2- Next, we construct an upper bound of (52)
by using ¢ such “closest" A;’s.

Specifically, for all i € {1,2,--- ,p — s}, we define

B, — A; if A?(_Etrain) >0,
"7 | —A; otherwise.

Then, we sort B; according to the inner product Bzﬂ(fetmm). Let By, - - ,B(q) betheq <p—s
vectors with the largest inner products, i.e,
Ba)(*elrain) Z Bg)(*etrain) 2 e Z Ba)(*euain) Z 0. (53)

We then relax the dual problem (52) to
m)é\iX )\T(_elrain)
subject to A" By;) < 1foralli € {1,2,---,q}. (54)

Note that the constraints in (54) are a subset of those in (52). Thus, the optimal objective value of
(54) is an upper bound on that of (52).

Figure 4: A 3-D geometric interpretation of Problem (54).

Fig. 4 gives an geometric interpretation of (54). In Fig. 4, the gray sphere centered at the origin
O denotes the unit hyper-sphere in R™. The top (north pole) of the sphere O is denoted by the

point A. The north direction denotes the direction of (—éi,). The vector O% denotes some By,
1 € {1,--+,q — 1}. The green plane is tangent to the sphere O at the point C. Thus, the space
below the green plane denotes the feasible region defined by the constraint )\TB(l) < 1. The point D

—
denotes the intersection of the axis OA and the green plane. Similarly, the vector (ﬁ% cﬁr}responds to
B (,)- Note that its corresponding hyperplane (not drawn in Fig. 4) intersects the axis OA at a higher
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Figure 5: When all the points lie on some hemisphere, the objective value of Problem (56) can be
infinity A takes the direction 6% .

point . This suggests that, by replacing the vector B;y in each of the constraints of (54) by another
vector that has a smaller inner-product with (—€gqin ), the optimal objective value of (54) will be even

higher. For example, in Fig. 4, the constraint corresponding to (f is replaced by that corresponding
to OB. This procedure is made precise below.

Foreachi € {1,2,--- ,q}, we define

\/1 - <Bg;|1)(elm>>2 BT e
€train |2 i —€frain
C('L) = D) ' (B(l) St (Qrain))
1 _ Bz;)(_ftraix))
[l €urain | 2

B,(Tq) (*etrain)

| €train H%

|| €train ||§

+ (7€lrain) . (55)

By the definition of C;), it is easy to verify that ||C ;|| = 1 and Ca)(—etrain) = B%’;) (—€uwain) <
Ba) (—€urain), forall i € {1,--- , q}. Roughly speaking, C;) is the point on the unit-hyper-sphere
that is along the same (vertical) longitude as By;), but at the same (horizontal) latitude as B .
Then, we can construct another problem as follows:

max /\T(fqmm) subject to

ATCpy <1, foralli € {1,2,--- ,q}. (56)
The following lemma shows that the solution to (56) is an upper bound on that of (54).

Lemma 13. The objective value of Problem (56) must be greater than or equal to that of Problem
(54).

See Appendix I.1 for the proof. We draw the geometric interpretation of the problem (56) in Fig. 5.

— . .
Vectors OD;, OD,, and ODj3 represent those vectors C(i). Since all C(i) ’s have the same latitude,
points D1, D5, and D3 locate on one circle centered at point D (the circle is actually a hyper-sphere
in R"~1). Therefore, tangent planes on those points have the same intersection point F with the axis

OD.
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We wish to argue that the vector O? is the optimal A for the problem (56). However, it is not always
the case. Specifically, when all those C;)’s lie on some hemisphere in R™!, we can find a direction

A such that )\T(—enain) goes to infinity. For example, in Fig. 5, the direction 6?: corresponds to such
a direction of \ that ™ (—eyin) goes to infinity. Fortunately, when g is large enough, the probability
that all C;’s lie on some hemisphere in R™ ! is very small. Towards this end, we can utilize the
following result from [35].

Lemma 14 (From [35]). Let N points be scattered uniformly at random on the surface of a sphere in
an n-dimensional space. Then, the probability that all the points lie on some hemisphere equals to

n—1
N -1
9—N+1 )
> (Y0
k=0

Applying Lemma 14 to all g points Cy), - -+ , C(g) (represented by Dy, D3, D3 in Fig. 5) on the
sphere in R”~!, we can quantify the probability that the situation in Fig. 5 does not happen, in which

case we can then prove that the vector OE is the optimal A for the problem (56). Lemma 15 below
summarizes this result.

Lemma 15. The problem (56) achieves the optimal objective value at

—€train
M= ———

B’(I;]) (_Gtrain)

with the probability at least

n—2
Y <q - 1) > 1 e—(a/am),
(3

i=0
See Appendix 1.2 for the proof. Letting ¢ = 5n, and combining Lemmas 13 and 15, we have the

following corollary.
Corollary 16. The following holds

HwI”1 < Hetminng
- B{Sn) (_etrain)

with probability at least 1 — e~"/*.

It only remains to bound B ;) (—é€rain)- Using the fact that each B; is i.i.d. and uniformly distributed
on the unit-hyper-hemisphere in R", we have the following result.

Lemma 17. When n > 100 and p > (16n)*, the following holds

||€train H 2

1+ 3n/2

Inp

B(5n) (76train) >

with probability at least 1 — e~>"/4,

See Appendix 1.3 for the proof. Combining Corollary 16 and Lemma 17, we then obtain Proposition
8.

I Proofs of supporting results in Appendix H

I.1 Proof of Lemma 13

The proof consists of two steps. In step 1, we will define an intermediate problem (57) below, and
show that problem (54) is equivalent to the problem (57). In step 2, we will show that the any feasible
A for the problem (57) is also feasible for the problem (56). The conclusion of Lemma 13 thus
follows.
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For step 1, the intermediate problem is defined as follows.
mfmx )\T(—etram) subject to
)\T(*ftrain) > Ba)(*elrain)v
A'B() < Lforalli e {1,2, -+ ,q}. (57)

In order to show that this problem is equivalent to (54), we use the following lemma.

Lemma 18. The value of the problem (54) is at least Ba) (—€train)-

Proof. Because ‘Ba)Ai < IBwyll2l[B@yllz = 1foralli € {1,---,q}, B(y) is feasible for the
problem (54). The result of this lemma thus follows. ]

By this lemma, we can add an additional constraint A7 (—eyain) > B(Tl) (—é€train) to the problem (54)
without affecting its solution. This is exactly problem (57). Thus, the problem (54) is equivalent to
the intermediate problem (57), i.e., step 1 has been proven. Then, we move on to step 2. We will first
use Lemma 19 to show that if C;) can be written in the form of

Bi + k€train

=, (53)
HB(z) + kftrain”Q

Cou

for some k& > 0 and C%;)etrain < 0, then any A that satisfies )\TB(i) < 1 and AT (—€gain) >

Ba) (—é€wrain) Must also satisfies )\TC(,;) < 1. After that, we use Lemma 21 to show that all C;)’s

indeed can be expressed in this form. The conclusion of step 2 then follows. Towards this end,
Lemma 19 is as follows.

Lemma 19. Foralli € {1,2,--- ,q}, for any X that satisfy
\TB; <1,
N (—€irain) = Blyy (—€urain),
we must have
r_Bit keran 1
|Bi + kéainll2 =

for any k > 0 that satisfies (B; + kéyain) T €rain < 0.

Proof. We have
/\TBi + /\Tketrain (2 /\TBZ + BiTketrain (i1) 1+ BZTkEtrain
||Bz + kﬁtrain”2 - ||Bz + ketrain”? ||Bz + kelrain||2
(’g) BT Bz + kelrain ||Bz + ketrain”2 (;)
o ! ||Bz + ketrain”2 ||Bz + ketrain”2

(iv)
< [Bill 1.

Here are reasons of each step: (i) By Eq. (53), we have AT (—€yqin) > B?l) (—€uain) > BT (—€urain)-
Thus, we have AT keyan < B?ketram; i) ATB,; < 1 by the assumption of the lemma; (iii) BiTBi =1
by definition of B;; (iv) Cauchy—-Schwarz inequality; (v) || B;|l2 = B! B, = 1.

O

Then, it only remains to prove that all C;)’s in Eq. (55) can be expressed in the specific form
described above in Eq. (58). Towards the end, we need the following lemma, which characterizes
important features of C;).

Lemma 20. Foranyi € {1,--- ,q}, we must have ||C; ||z = 1 ,and Cg;)(—e,mm) = B¢) (—€1rain)-
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Proof. It is easy to verify that Ca) (—€wain) = Ba) (—€uwain)- Here we show how to prove ||C ;|2 =
1. Because

Bj; (_Gtr in) r
B(z) - ()7;(,&&&“) (*etrain) =0, 59)
||€train||2

we know that the first and the second term on the right hand side (RHS) of Eq. (55) are orthogonal.
Thus, we have

|Ci) |13 = ||1st term on the RHS of Eq. (55)||3 + ||2nd term on the RHS of Eq. (55)|[3.  (60)

By Eq. (59), we also have

2 2
B (—€qain) B (—€qain)
(7) train (3) train 9
w3 | F PO T e )| = Bl =
train || 2 9 train||2 9
Notice that
Bg;)(_etmin) Bg;)(_ﬁtrain)
||€lrain||% _etmin) 9 - ||€train||2
Thus, we have
2
B%;) (_etrain) B%;) (7€train)
B(z) T TE _etrain) =.|1- -1 | -
||Etrain||2 2 HetrainH2

Thus, we have

BT (_Erin) ?
|15t term on the RHS of Eq. (55)|2 =1 — (W :

Hetrain HQ

||€train ||2

B{)(_etrain) 2
|2nd term on the RHS of Eq. (55)[|3 = [ —2—~—— | .

Applying those to Eq. (60), we then have ||C;[[2 = 1. O
Finally, the following lemma shows that C(i) can be written in the specific form in Eq. (58).
Lemma 21. Each C;) defined in Eq. (55) satisfies that C ;) €ain < 0 and

_ B(z) + k(i)etrain
||B(z) + k(i)etrainH27

. ( ) \/1 B <B%|r;;)(_5|/min)>2 - ( )
B NN\ — €440 €train || 2 B — €
(7’) train (q) train
k@ = - > 0.

||€lrain||% - B’(l;>(_51rain) 2 Hetrain“% =
[l€rain] 2

Proof. Using Eq. (59) again, we decompose B;) into two parts: one in the direction of (—¢ain), the
other orthogonal to (—€qain)-

Bj; (_Etrain) BZ; (_Gtrain)
B(l) = Ui(_etmi“) + B(l) - ()7(_€train) .

||€train||§ ||Etrain||%

C (61)

where
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Thus, we have

| (Bltem )"
l€rain[[2 Ba)(—etrain)
o 2 (*etrain)
BT (—cuun) 2 ||61rain||2
1 — [ Zon )
[l €train || 2
+

BT (*‘Etrain)
(B@) — O T () | -

€trainl2

‘We then have

2
( €lr\|n)
(a)
\/1 ( |Tflra|n ” 2 >
+ k( )ﬂram)
( €train
Z(r ms
\/1 ( ” €train Il 2 )
1 (q) — €train
\/ ( ”51mm”2 ) z;) (_Gtrain)
72(_€train)
()( E|ra\m ||€train||2
L= e
( 6tram)
@7 _etrain)

|| €1rain ”2

=Cq)-

In other words, C(;) and B;) + k(;)€irain are along the same direction. Since [|C;)||l2 = 1, it must
then also be equal to a normalized version of B ;) + k(;)€tain» 1.€.,

B(z) + k(i)gtrain
HB(z) + k(i)etrainHQ

=Cu)-

This verifies (61). Note that C ;) €qain = B (4)€train < 0 by Lemma 20. It then only remains to prove
k(i) > 0. Towards this end, because of Eq. (53), we have

Bg:])(_ﬂrain) S B:(Z;)(_euain)
L (B
”e!rain”Z
= <1
1 _ Ba)(fflrain)
Helmin”2

Bg;)(*etrain) B B,(ZZI) (*etrain)

||€train||% ||€train||%

—

Thus, we have

The result of the lemma thus follows. O

Combining Lemma 19 and Lemma 21, we have proven that if A7 (—eyqin) > Ba) and )\TB(i) <1,

then )\TC(Z-) < 1. Therefore, we have shown step 2, i.e., any feasible A for the problem (57) is also
feasible for the problem (56). The conclusion of Lemma 13 thus follows.

28



1.2 Proof of Lemma 15

First, we show that A\, defined in the lemma is feasible for the problem (56). Towards this end,
note that because C%;)(—etrain) = Ba)(—emin) (see Lemma 20) for all i € {1,2,--- ,q}, we have

)\fC(i) = 1, which implies that ), is feasible for the problem (56). Then, it remains to show that A,
is optimal for the problem (56) with probability at least 1 — e~2/4~",

Next, we will define an event .# with probability no smaller than

n—2
-1
1ot ST (170, 62

z( Z. (62
such that \* is optimal whenever event .’ occurs. Towards this end, consider the null space of — €,
which is defined as

ker(—€yain) 1= {A ‘ /\T(—e[mm) = 0}.

We then decompose all C;)’s into two components, one is in the direction of —é€yin, the other is in
the null space of —e,in. Specifically, we have

Cj; (_elrain) CT; (_Etrain)
C(z) = C(z) - ()72 —€irain) ()72 _etrain)
| €train[5 || €train |3
cr (_Etrain) cr (_Etrain)
= C(z) - @ﬁ(_etrain) + mig(_etrain)a (63)
|| €train 3 | €train[3

where in the last step we have used C%;) (—€train) = Ca) (—é€uain ). For conciseness, we define
Cg:]) (_elrain>

”Etrain”%
Since [|C;)[l2 = 1 and Cy;) is orthogonal to C(;) — Dy;), we have

2
D ll2 = \/lIC(z')lI% —ICu» =D ll3 = \/1 - (C@)(—Etrain)) :

Thus, D ;) has the same /3-norm for all i € {1,---, q}. Therefore, D1y, D2y, - ,D(4) can be
viewed as ¢ points in a sphere in the space ker(—€y,in), which has (n — 1) dimensions. By Lemma
21, we know that the projections of C;) and By;) to the space ker(—e€yin) have the same direction.
Because B ;)’s are uniformly distributed on the hemisphere in R", their projections to ker(—€yain)
are also uniformly distributed. Therefore, D ;s are uniformly distributed on a (n — 1)-dim sphere.
By Lemma 14, with probability (62), there exists at least one of the vectors D (1), D2y, , Dy
in any hemisphere. Let 7 denote this event with probability (62). Note that if we use a vector
v € ker(—e€yqin) to represent the axis of any such hemisphere in R”~1, then whether a vector
¢ € ker(—eyqain) is on that hemisphere is totally determined by checking whether ¢ > 0. Thus,
the event o7 is equivalent to, for any v € ker(—ey.in), there exists at least one of the vectors
D1y, D), -+ ; D(q) such that its inner product with v is positive.

D) = Cp) -

_Glrain)-

We now prove the following statement that A* is optimal whenever event </ occurs. We prove by
contradiction. Assume that event <7 occurs, suppose on the contrary that the maximum point is
achieved at A = p # A, such that p7 (—€gain) > (A*)7 (—€gain). Since 1 meets all constraints, we
have

(=X)"Cpy=p"Cpuy—1<0foralli € {1, ,q}. (64)
Comparing the objective values at ;2 and A, we have
(,u - )\*)T(*etrain) > 0. (65)

Similar to the decomposition of C ;) in Eq. (63), we decompose (;z — A,) into two components: one
in the direction of —e,;, and the other in the null space of —e,i,. Specifically, we have

(- \) = ((u ) - (1 = X)) " (—€rain) (_elrain))

||€train||%
(M - /\*)T(_Gtrain)
||€train ”%

+

( — €train ) .
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Thus, we have

(1= 2)TC
- T —€train T
= ((H - )\*) - (,U )\*) ( ) (_Etrain)>

HetrainH%
CT —€train
: C(z) - Lt;)(*etrain)
HftrainHQ
1

+ (= AT (—ewan) (€T (—evan)) -

| | €train | | %
For conciseness, we define

(:u - )\*)T(_Etra.in)
Hetrain H%

0= (1= A) —

( — €train ) .
‘We then have

(k=2A)"CuH =D+ —

| €xvain | %

((,U - )\*)T(_etrain)) (C,(];])(_etrain)> > 5TD(’L)7 (66)

where the last inequality holds because (¢ — A« )7 (—€wain) > 0 (by Eq. (65)) and C%;) (—€train) =

Ba) (—é€train) > 0 (by Lemma 20 and Eq. (53)). Since ¢ € ker(—ey,in) and event & occurs, we can

therefore find a D 1 such that 6TD(k) > 0. Letting © = k in Eq. (66), we then have
(L=A)"C) > 6"Dy,y >0,

which contradicts Eq. (64). Therefore, \* must be optimal whenever event </ occurs.

It only remains to show that the probability of event <7 given in Eq. (62) is at least 1 — e~ (¢/4=7)
which is proven in the following Lemma 22.

Lemma 22.
n—2 q 1
1— 2 at! I I U
> ()=

The proof of Lemma 22 uses the following Chernoff bound.

Lemma 23 (Chernoff bound for binomial distribution, Theorem 4(ii) in [18]). Let X be a random
variable that follows the binomial distribution B(m,p), where m denotes the number of experiments
and D denotes the probability of success for each experiment. Then

25
Pr({X < (1-40)mp}) < exp (_(52}?> forall o € (0,1).

Proof of Lemma 22: Consider a random variable X with binomial distribution B(qg — 1, 1/2). We

have
n—2 q 1
p —2}) =279+ ).
r({X <n-2})=2 Z( . )
=0
Let
2(n—2 2(n —2
s=1-2=2 . ;=222
qg—1 qg—1

Applying Chernoff bound stated in the Lemma 23, we have
1

Pr({XSn—2}>=Pr<{X5(1‘5)q;}>

< o8 a-1)/4.
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Also, we have

Pa-np=g (1- =2 @)
z}l(l—”‘f‘f))(q—w
= 10— 1-4(n~2))
>g—n.

— 4

Thus, we have

12‘1*1;(‘12,1) —1-Pr({fz<n-2})

>1— 6*52@1*1)/4

> 1 e—(a/d—n),

1.3 Proof of Lemma 17

The proof consists of three steps. Recall that B%;n) (—€train) ranks the 5n-th among all AT (—eyyin)’s

and A?emin’s. In step 1, we first estimate the probability distribution about A?(fqrain). In step 2, we
use the result in step 1 to estimate BY (—eyain). In step 3, we relax and simplify the result in step 2 to
get the exact result of Lemma 17. Without loss of generality’, we let €yin = [—||€qain]|2 0 --- 0]%.
Thus, AT (—€yain) = || €wain||2A41, where A; ; denotes the j-th element of the 4-th column of A.

Step 1

Notice that A; (i.e., the i-th column of A) is a normalized Gaussian random vector. We use A’ to
denote the standard Gaussian random vector before the normalization, i.e., A; is an x 1 vector where
each element follows i.i.d. standard Gaussian distribution. Thus, we have

(Al _ | A

|Ait] = 7 = '
[AZ]l2 \/(A;1)2+Zj:2(A§j)2

For any k > 1, we then have

Pr ({ |A1“| < k;}) =Pr <{(A;1)2 > WD : (67)

Notice that Z?:z (Aj;)? follows the chi-square distribution with (n — 1) degrees of freedom. When

n is large, 3-7_,(Aj;)? should be around its mean value. Further, A}, follows standard Gaussian
distribution. Next, we use results of chi-square distribution and Gaussian distribution to estimate the
distribution of A;;. The following lemma is useful for approximating a Gaussian distribution.

Lemma 24. When t > 0, we have
—t2/2 —t2/2
V2/me < o°(t) < V2/me ’
t+ Vit +4 t4q/t2+ 8

where ®¢(-) denotes the complementary cumulative distribution function (cdf) of standard Gaussian

distribution, i.e.,
1 ° 2
PC(t) = —/ e U2y,
W=,

SRotating eyin around the origin is equivalent to rotating all columns of A. Since the distribution of A; is
uniform on the unit hyper-sphere in IR"™, such rotation does not affect the objective of the problem (50).
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Proof. By (7.1.13) in [1], we know that

/ e ydy<
9C+Vx2 4 fa?+ 2
Let:r:t/\/i We have

1 2 [ e 1
—Se/ eydyg—
t /12 t t 2 4
ﬁ+ 34’2 V2 ﬁ+ 54’;

. V2/m et/ < L * e V2 T e /2

< e Vdy< F—=—=+
tHVE+4 T VT b4 f24+ 8
/9 —t2/2 1 00 2 /9 —t2/2
= [me < e”2dz < L (let z := \@y)
t+ve2+4 T V2n t4 24 8

—t2/2 —t2/2
. V2/me < oc(t) < V2/me

t+viz+4 TN
The result of this lemma thus follows. O

The following lemma gives an estimate of the probability distribution of A ;;.

Lemma 25.
1 1 2 e t’/2
Pr <k >2(1—-— f, 68
<{Ai1_ })_ ( \/5> Tt+VE2+4 (68)
where
n+vV2v/n — 1
k2 -1 '

Proof. For any m > 0, we have

o ({ |Alz'1| : k}> - <{(A;1)2 - ZW})

>Pr ({(A(l)z > n—1+2\/(n—1)m+2m}>

k2 —1

n

- Pr Z:(A;j)2 <n—-142y(n—1)m+2m (since all Aj;’s are i.i.d.)

=2

Notice that Z?:Q(AQJV follows chi-square distribution with (n — 1) degrees freedom. Applying
Lemma 11, we have

({1 <)

by ({(A;1)2 _n-l —|—2sk/2(n—11)m+2m}> e

-14+2/(n—-1 2
:2(1—6_m)¢c \/TL i kQ(n_l )m+ -

(69)

(since the distribution of A;; is symmetric with respect to 0).
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We now let m = 1/2 in Eq. (69). Then

\/n—1+2\/(n—1)m+2m_\/n+ Q(n—l)_t
k2 —1 B k2 o

-1

Applying Lemma 24, the result of this lemma thus follows. O

Step 2

Next, we estimate the distribution of Bg;.m) (—é€train)- We first introduce a lemma below, which will be
used later.

Lemma 26. Ift > 0.5, thent + /12 +4 < !+05,
Proof. Let f(t) = !0 — (t + /12 +4). Then f(0.5) ~ 0.157 > 0. We only need to prove that

df /dt > 0 when t > 0.5. Indeed, when ¢ > 0.5, we have

d
If (t) — 05 _ g
dt t2+4

>e—1—1 >0 (notice that t < /12 + 4 for any t).

Now, we estimate B{,m) (—€urain) by the following proposition.

1 1 2
C=¢ (1 - \/é> \ﬁ ~ 0.063. (70)

Whenp — s > neg/g/C, the following holds.

Proposition 27. Let

H €train ||2

2v/n — 1
el [N e s et
() (— irain) <,/21n Lol _ 1)

with probability at least 1 — e~>"/4,

(71)

(Notice that, by applying this proposition in Corollary 16, Eq. (71) already suggests an upper bound
of [Jwl]|1.)

Proof. For conciseness, we use p(n, k) to denote the right-hand-side of Eq. (68), i.e.,

2
o—t2/2

k) =10C———c
pln. k) t+ V2 +4

t:\/n#»;"/g\_/llfl ’
Let k take the value of the RHS of Eq. (71). Then, we have

n++/2(n—1)

t:
k2 —1

n+/2(n—-1)
n+4/2(n—1)

_ nvenzl)
<2\/1n@71>

C(p—s)

n

1+
=1/2Iln —1. (72)
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Because p — s > ne®/8/C, we have t > 0.5. By Lemma 26, we have ¢ + /12 + 4 < ¢!t0-5, Thus,
we have

t2
p(n, k) > 10C exp (—2 —t— O.5>

= 10C exp (—;(t + 1)2)

n .
p—s

By the definition of B 5,,) and Eq. (53), we have

Pr ({Eq. (7D)}) = Pr ({#{i e {1,2, .p—sh |T1ﬂ| <k} > Bn}) L

Consider a random variable x following the binomial distribution B(p — s, p(n, k)). Since A;;’s are
i.i.d. and Pr ({ﬁ < k}) > p(n, k), we must have

Eq. 74 >Pr({z >5n})=1-Pr({x <5n—-1}) >1—Pr({z < 5n}).
It only remains to show that Pr ({z < 5n}) < e~®"*/*. Applying Lemma 23, we have

Pr({z < 5n}) = Pr ({z < (1 = 8)(p— s)p(n. )})

Se—éz(p—s)p(n,k)/{ (75)
where
0=1- o (sobn = (1—-139)(p—s)p(n,k))
(p—s)p(n, k) o
Since (p — s)p(n, k) > 10n by Eq. (73), we must have § > 0.5. Substituting into Eq. (75), we have
Pr ({z < 5n}) < exp(—0.5% - (10n)/2) = e~ 57/4, O
Step 3

Notice that by utilizing Proposition 27 and Corollary 16, we already have an upper bound on [|w’||;.
To get the simpler form in Lemma 17, we only need to use the following lemma to simplify the
expression in Proposition 27.

Lemma 28. Whenn > 100 and p > (16n)4, we must have

/ 2
RHS of Eq. (11) < 41+ 242
Inp

Proof. Because n > 100 and p > (16n)*, we have p > 10'2. Thus, we ahave
Inp > 25 (since In 10 =~ 2.3 > 25/12)
= /Inp—-22>3

— /Inp—2>+/3In2+ 6 (since In2 < 1)

:E(M—szglnﬂza

2
3 . .
== 3 (Inp —In2) > Inp+ 24/Inp + 1 (by expanding the square and rearranging terms)

3
= /Inp+1< \/g\/lnp —In2 (by taking square root on both sides).
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Because s < nand p > (16n)* > 2n, we have In(p — s) > In(p — n) > In(p/2). Thus, we have

\/lnp—l—lg\/g\/ln(p—s). (76)

We still use C' defined in Eq. (70). We have

p>(16n) = p> (%)4 ot ((16n)4 - (g)4 - n> . (77)

Note that

4 n\4 3 4 1!
(16n)* — (5> —n=n|n" (16" - (C) !
4 4
>n (n3 — 1) (because 16* — <é> ~ 16" - <0363> =

>0 (because n > 1).

Applying it in Eq. (77), we have

@ > (v/Inp + 1)? (by Eq. (76))

2
ﬁ( QIHC(pn_S)—1> > Inp. (78)

When n > 100, we always have

n*

8

— V2V 1< g

Substituting Eq. (78) and Eq. (79) into the RHS of Eq. (71), the conclusion of this lemma thus
follows. O

n—1<

(79)

J Proof of Proposition 9 (upper bound of /)

For conciseness, we define G;; := XiTXj. According to the normalization in Eq. (4), we have

HTH,

Gijim i
T2 lH;

Our proof consists of four steps. In step 1, we relate the tail probability of any |G, ;| (where ¢ # j) to
the tail probability of HY Hj;. In step 2, we estimate the tail probability of HI H;. In step 3, we use
union bound to estimate the cdf of M, so that we can get an upper bound on M with high probability.
In step 4, we simplify the result derived in step 3.
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Step 1: Relating the tail probability of |G ;| to that of HZTHJ

For any i # j, we have

Pr ({|Gyj| > a})

= ({16l > e > 300> |3 )
+ Pr ({|G” > a, (”HL”Q < \/ZOI‘ ||H]||2 < \/g) }) . (80)

The first term can be bounded by

Ty | < O
pe ({161 > 0l 2 500 2 3 }) < e ({rm > 20)),
Gul > a1l > |/, Bl > 5 = T E| > 2

Thus, we have, from Eq. (80),
. < TH. na ) n
Pe({1Gy| > a) < Pr ({f i) > 0}) 4 b ({prl <[5

P <{||Hj||2 < \/Z}) 81)
—2pr ({HH; > 20 }) 2P <{||H¢||2 < \/§}> ,

where the last equality is because the distribution of HiTHj is symmetric around 0, and H; has the
same distribution as H;;. Notice that ||H;||3 follows chi-square distribution with n degrees of freedom.
By Lemma 11 (using z = n/16), we have

pr({imte < 5 }) = pr ({iei < 5}) < e

Pr({|Gig| > a}) < 2Pr ({HIH; > %}) +2¢~m/16, (82)

because

Thus, we have

Step 2: Estimating the tail probability of H  H ;.

Notice that H H; is the sum of product of two Gaussian random variables. We will use the Chernoff
bound to estimate its tail probability. Towards this end, we first calculate the moment generating
function (M.G.F) of the product of two Gaussian random variables.

Lemma 29. [f X and Y are two independent standard Gaussian random variables, then the M.G.F
of XY is

forany t? < 1.
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Proof.
E[etXY]

o0 o0
:i/ / et’”ye_#dxdy
27T —0o0 —0o0

1 w22 1 o (y—tz)?
:E/ e~ T 1) (27r/ e 2 dy) dz
\% —o0 \% —o0
1 > z2 2
__ —z2 (1 4?)
= e 2 dx
V 2 \/;oo
1

VI—t2

We introduce the following lemma that helps in our calculation later.
Lemma 30. Forany x > 0,

—n + vn? 4 4x?
2z '

arg max (tm 4+ In(1 — tz)) =
te(0,1) 2

Proof. Let
f&)ztm+§hﬂl—ﬂ% te(0,1).

Then, we have

df (t) nt

T
Letting df (t)/dt = 0, we have exactly one solution in (0, 1) given by
—n + vn? + 4x?
2x '

Notice that df (¢)/dt is monotone decreasing with respect to ¢ and thus f(¢) is concave on (0, 1). The
result of this lemma thus follows. O

t=

We then use the Chernoff bound to estimate H? H; in the following lemma.

Lemma 31.
e (furm - 2))
n 2t
< exp (— (at+ln )) ,
2 a
where
. —14++vV1+a?
— Y

Proof. Notice that
n n
HIH; =) HuHj=) Z,
k=1 k=1
where Zj, := H;;,H ;. Using the Chernoff bound, we have

Pr({H/H; > 2}) < ItIl>1(IJl et klill E[e!Z*)
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Since each Zj, is the product of two independent standard Gaussian variable, using Lemma 30, we
have, for any = > 0,

Pr ({H/H; > z}) Srgge*”u )%
= min e (1 —t3)"%

. —tr—2n —¢2
— min e t*~3% In(1—t~)
t€(0,1)

—exp (—m _ g In(1 — t2)) (by Lemma 30)

t— —n+/ n2+4m2
- 2z

=exp (—tx — % ln(nt/x)>

)
b —n4+vn24422
- 2z

where the last equality is because ¢t = (—n + v/n? + 4x2)/2x is one solution of the quadratic
equation in ¢ that zt? + nt — x = 0 (which implies 1 — > = nt/x).

Letting z = %*, we gett = (=1 + /1 +a?)/a, and
( y nl(t/ )> nat nl 2t n . 2t
exp|—tr — =In(nt/z)) =exp| —— — =In— | =exp | —=(at+In— | ].
P 2 P\7T2 72"y P72 a

The result of this lemma thus follows. O

Step 3: Estimating the distribution of /.

Since M is defined as the maximum of all |G;;| for ¢ # j, we use the union bound to estimate the
distribution of M in the following proposition.

Proposition 32.

Pr <{M < 2\/6\/111]) <61np + 1) }) >1-— 9¢~Inp _ 9,—n/16+2Inp
n n

To prove Proposition 32, we introduce a technique lemma first.

Lemma 33. For any x > 0, we must have

1
Inz>1- —.
T

Proof. We define a function

1
fl@)=lnz—-(1- ;), x> 0.

It suffices to show that min f(z) = 0. We have
df(z) 1 1  x—1

dx r 2 2
Thus, f(«) is monotone decreasing in (0, 1) and monotone increasing in (1, c0). Thus, min f(z) =
f(1) = 0. The conclusion of this lemma thus follows. O
We are now ready to prove Proposition 32.

Proof of Proposition 32: Applying Lemma 31 to Eq. (82), we have

2t
Pr ({|Gi;| > a}) < 2exp (;L (atJr In >> + 2¢7 /16, (83)
a
where
144 2
b 1+v1l+a . (84)
a
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Since M = max;»; |G;;|, we have
Pr({M < a})

=1-Pr | |J{IGi| > a}
i#j
>1-— Z Pr ({|Gi;| > a}) (by the union bound)
i#]
=1—p(p—1)Pr({|Gi;| > a}) (since all G;; has the same distribution)
>1 - e?nP pr ({|GU‘ > a})
21 _ 26—n/16+21np

— 2exp (—” (at tmA 41np>> (by Eq. (83)).
2 a n

1 1
a= 2\/6\/“) (6 = +1>.
n n
Substituting Eq. (86) into Eq. (84), we have

at=—14++/1+a?
241 12Inp\?
:—1+\/1+ np+< np)
n n
121 2
-1+ ( np+1>
n

Let

_ 12Inp
==
Thus, we have
2 2at 9. 12lnp 1
ln—:ln%:ln 7 =In I
a a 24.1“71’(—61;"’+1) Shp 41

61
>1- (np + 1) (by Lemma 33)
n

61lnp

n
By Eq. (87) and Eq. (88), we have

n 2t 4lnp>< n<121np 61lnp 4lnp) !
< - - = —lInp.

2
Substituting into Eq. (85), the result of this proposition follows.

-—= (at+ln—
2 a n n n n

Step 4: Simplifying the expression in Proposition 32.

By the assumption of Proposition 9 that p < exp(n/36), we have

Thus, we have

2\/6\/lnp (61np+1> <ov7 22,
n n

n

We also have

-n 42T < -n P n n

_ n — — =

16 P="T6 36~ 144
Applying Eq. (89) and Eq. (90) to Proposition 32, we then get Proposition 9.
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K Lower bounds

In this section, we first establish a lower bound on ||w?||;. This lower bound now only shows that our
upper bound in Prop. 8 is tight (up to a constant factor), but can also be used to derive a lower bound
on ||wB?||;. We will then use this lower bound on ||w®P||; to prove Prop. 4 (i.e., the lower bound on
||wPP]|2). As we discussed in the main body of the paper, although our bounds on ||w®F||5 are not
tight, the bounds on ||wBP||; are in fact tight (up to a constant factor), which will be shown below.

K.1 Lower bound on ||w!||;

A trivial lower bound on ||w! ||y is ||w!||1 > ||€wain||2- To see this, letting w(I ) denote the i-th element

i
of w!, we have

P

> winXi

i=1

‘etrainHQ = ||Xtrainwl||2 =

2

P
<3 fwfy |- 1Xill2 = [lw' |1 (notice [[ Xl = 1).
=1

Even by this trivial lower bound, we immediately know that our upper bound on ||w!||; in Proposition
8 is accurate when p — oo. Still, we can do better than this trivial lower bound, as shown in
Proposition 35 below.

Towards this end, following the construction of Problem (54), it is not hard to show that B(y), i.e.,
the vector that has the largest inner-product with (—é4in), defines a lower bound for ||w?||;.

Lemma 34.

HwIH1 > Hetmin”g

o B{l) (_Etrain)

Proof. Let

(_ 6train)

A = — .
B:(Tl) (*Etrain)

By the definition of B(y), forany i € {1,2,--- ,p — s}, we have

In other words, A, satisfies all constraints of the problem (52), which implies that the optimal
objective value of (52) is at least

/\T(fe[ ) ) _ ||€trainH§
ramn - .
* Ba)(_ﬁtrain)

The result of this lemma thus follows. O

By bounding B(Tl) (—€train), We can show the following result.
Proposition 35. When p < e»~V/16 /n and n > 17, then

w11 n
HetrainH2 o 911’1p

with probability at least 1 — 3 /n.

The proof is available in Appendix K.4. Comparing Proposition 8 with Proposition 35, we can see
that, with high probability, the upper and lower bounds of ||w||; differ by at most a constant factor.
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K.2 Lower bounds on [|[w®?||; and ||wB?||,

Using Prop. 35, we can show the following lower bound on [|w®?||;.

Proposition 36 (lower bound on |[w®?||1). When p < e("=1/16 /n andn > 17, then

1 /'n
HwBP”l Z g m”@min”Z

Proof. We define w” as the solution to the following optimization problem:
nhi}n lwl]|1, subject to XiinW = €qrain-

with probability at least 1 — 3/n.

By definition, XinwB® = €yain. Thus, we have ||wB®||; > ||w”||1. To get a lower bound on ||w”||1,

we can directly use the result in Proposition 35 because the definitions of w! and w” are essentially
the same®. We then have,
/ n 1 /' n
||wJH1 > 1+ glanetrainHQ > g m”etrain‘b
with probability at least 1 — 3/n. The result of this proposition thus follows. O

Next, we proceed to prove Proposition 4, i.e., the lower bound on ||w®?||,. Because ||wBf|lq =

1552 — Bllo < IB%]lo + |B8]lo < n + s, we then have the following lower bound on ||w®P||;

assuming n > s,

BP BP
BP [|w®" |1 [|w? |1

w > > . 91

[w™ 2 > s Vo ©On

Combining with Prop. 36, we have proved Prop. 4.

K.3 Tightness of the bounds on ||w®?|;

As we discussed in the main body of the paper, our upper and lower bounds on ||w®? |5 still have a
significant gap. Interesting, our bounds on ||w5P||; are tight up to a constant factor, which may be of
independent interest. To show this, we first derive the following upper bound on ||wB?||;.

Proposition 37 (upper bound on ||w®*||\). When s <\ /srastagny if P € [(16n)*, exp (1rg5:) ]

then
1 n
BPI < [ 4v/2 — T ||€train
H’UJ ||1 = ( f_‘_ Q\ﬁ laneta ||27

with probability at least 1 — 6/p.

Proof. Following the proof of Theorem 2 in Appendix F, we can still get that Eq. (48), i.e.,

1 2
M < 2VT\ 22wty < /2 a2, and K > 4, 92)
n Inp
hold with probability at least 1 — 6/p. Applying Eq. (92) and Proposition 5, we have, with probability

atleast 1 — 6/p,
1 n 1/4
BP I

w Alw' |1 + 4/ —= | — Etrain

Pl <t + 7= () el
<[22 fleunllz + 1| — (” )1/4” ||

L leqa - (" o

~ lIlp train || 2 Q\ﬁ lnp train || 2
<(4v2+ /) - vl
> 2\/? lnp train |2

where the last inequality is because 5 > 1, and therefore (ﬁ)l/ 1< (ﬁ)l/ 2, O

SNotice that the proof of Proposition 35 does not require s > 0. Therefore, we can just let s = 0 so that w’
there becomes w” .
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Comparing with Prop. 36, we can see that our upper and lower bounds on ||w®F||; differ by at most a
constant factor.

K.4 Proof of Proposition 35

To prove Proposition 35, we will prove a slightly stronger result in Proposition 38 given below.
Proposition 38. When (p — s) < e(™=1/16 /n and n > 17, the following holds.

[[w?[|2 n—1
>, [1+ , 93
lewanllz ~ Ann+ 4ln(p — s) ©3)

with probability at least 1 — 3 /n.

To prove Proposition 38, we introduce a technical lemma first.
Lemma 39. Forany x € [0,1), we have

—Z

In(1—2x) > (94)

T—z
Proof. Let
fl@)=In(1—2)+

x

Vo

Note that f(0) = 0. Thus, it suffices to show that df (z)/dz > 0 when « € [0,1). Indeed, we have
df@) _ 1 VI-r- s =

v  1-uz 11—z
VI-z+l-z+z/2
- (1—z)3/2
_2—1772@

o 2(1—x)3/2

1-v1-=)

2(1 — x)3/2

>0.

The result of this lemma thus follows. O

We are now ready to prove Proposition 38.

Proof of Proposition 38: Because of Lemma 34, we only need to show that

||€lrain||2 + n—1
Ba)(*ﬁtrain) o 4lnn+4ln(p - 8)7
with probability at least 1 — 3/n. Similar to what we do in Appendix 1.3, without loss of generality,
we let €gain = [—||€wain]]2 0 -+ 0] Thus,

||€train ||2 1

B,(Tl)(_ﬁra_in) - max; ‘Azl‘

We uses the following two steps in order to get an upper bound of 1/max; |A;1|. Step 1: estimate
the distribution of 1/|A;1| for any ¢ € {1,--- ,p — s}. Step 2: utilizing the fact that all A;;’s are
independent, we estimate 1/max; |A ;1| base on the result in Step 1.

The Step 1 proceeds as following. Forany ¢ € {1,--- ,p — s} and any k > 0, we have

({2 4)

nAL 2
—Pr <{(A§1)2 < 27;22(_13)}> (by Eq. (67)).
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Therefore, for any m > 0, we have

Pr<{L;ﬂ|Zk}>
or(for <22 )

n

- Pr z:(A;j)2 >n—1-2y(n—1)m (because all Aj;’s are independent)

j=2
> [ 1- o0 n—1-2y/(n—1)m
k2 -1

(1 —e” ) (by Lemma 11). 95)

Let m = (n — 1)/16 and define

_ Jn=1))2
t:= EI (96)
We have
n—1-2y/(n—1)m

\/ o =1t. o7

Substituting Eq. (97) and m = (n — 1)/16 to Eq. (95), we have

o <{ ek k}> > (1= e0) (1 - 20(0)

2 2/7r67t2/2

t4 412+ 2
> (1 — e*<”*1>/16) (1 - e*tQ/Q) (since t >0 = t+ /22 +8/7 > 21/2/7).

Now, let k take the value of the RHS of Eq. (93), i.e.,

n—1
k=41 .
\/ +4lnn+4ln(pfs)

> (1 _ e*(”*)/l@) 1— (by Lemma 24)

By Eq. (96), we have
_(n=1)/2

k2 —1
(n—1)/2

2
(\/1 + 41nn+4ln (p— s)) -1

=2lnn+ 2In(p — s),

t2

(substituting the value of k)

which implies that

1
e_tz/2 = —.
n(p — s)

o <{ Al 2 ’“}) = (1o (1 - n(pl—>> | o9
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Next, in Step 2, we use Eq. (98) to estimate 1/ max; |A;1|. Since all A,;’s are independent, we have

1
P —— >k
r({maXHAiﬂ - }>

p—s
1
= H Pr <{ A > k}) (since all A;; are independent)
. il

p—s
> ((1 _ e—<"—1>/16) <1 _ n(pl_s)» (by Eq. (98))

=exp ((p —8)In(1 — e—(n—l)/16)>

e (- o)1 - )

n(p—s

_ —(n—1)/16 —
> exp (_ (p —s)e ) exp | (p— 5)——=__

1/1_6—(n—1)/16 1 _ (1 ;
n(p—s
(by Lemma 39)
( (p o S)B(nl)/16> -1
=exp | — — |exp | —F—
1 _ e-(n—1)/16 n. 1 1

—n(p—s)

1
1
/1 2=

_ —(n—1)/16
S (1 (P9 L
V1 — e—(n—1)/16

(because ¢ > 1 + x)

1 1
- (1 = e—<n—1>/16) (1 N 1/17)

(based on the assumption of the proposition, i.e.,p — s < e("*l)/m/n andn(p — s) >n > 17)

1 1
RS TP ——— 1
Z( n 1—1/e>< n 1—1/17>(musen2 "

1 1 1 1
ny/1—1/e ny/1-1/17 n\/1—1/eny/1—1/17
2 1
>1 — ———="- — (because 17 > ¢)
Vi—1/e n

>1 —3/n (because e > 9/5).

The result of this proposition thus follows. ]

Finally, we use the following lemma to simplify the expression in Proposition 38. The result of
Proposition 35 thus follows.

Lemma 40. [fn > 17, then

14 n—1 > 14 n
4dlnp+4ln(p—s) — 9lnp’

Proof. Because n > 17, we have




Therefore, we have

n—1_4 4
> 24 =
n 9 9
N n—1 > 4lnp 4ln(p —s)
n 9lnp 9lnp
N n—1 S 4Inp +4In(p — s)
no 9lnp
n—1 n
41np+41n —s) ~ 9lnp
N n—1 S
41np+4ln( s)
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