
A Underlying Graph Structure

We generalize the standard notion of neighborhood to the setting of Interaction Graphs and SSP
(G,D,U , `). The intuitive way of defining neighbors of a node i is to look for nodes j such that
Aij 6= 0 or Aji 6= 0. However this intuitive definition does not perfectly suit the case of SSPs as the
properties of the loss function ` do impact the interactions between nodes.

For instance, let the loss function ` be defined by `(U,G) =
P

i2[n] f(Ui), for some real-valued
function f . In this case, there is no interaction between nodes when computing the state of the
Interaction Graph, even though some coefficient Aij may be non zero. We note in this case that:

8i 6= j, 8U 2 U , @
2
`

@Ui@Uj
(U,G) = 0 (12)

We thus propose the following definition of the neighborhood of a node i with respect to Interaction
Graph G and loss function `:

N (i;G, `) =

⇢
j 2 [n]|9U,

@
2
`

@Ui@Uj
(U,G) 6= 0

�
(13)

For a given class of SSP, the loss function ` does not change, so it will be omitted in the following,
and we will write N (i;G).

One can observe that in the case of a quadratic optimization problem where dA = dB = dU = 1 and
`(U,G) = U

T
AU+B

T
U, this notion of neighborhood is exactly that given in Section 2.1, and

eG is indeed the undirected graph defined by the non-zero entries of A (or more precisely those of
(A+A

T)/2 when A is not symmetric).

B Mathematical proofs

In this section, we’ll follow Keriven and Peyré [25] and use the notation [G]i to denote the i
th

component of any Interaction Graph or hyper-graph G. In the following, ‘dense’ means ‘dense with
respect to the uniform metric’ by default. As a reminder, the uniform metric d on function spaces
given two metric spaces (X, dX) and (Y, dY) is defined by

d(f, f 0) := sup
x2X

dY (f(x), f
0(x)). (14)

B.1 Proof of equivariance of the proposed DSS architecture

The following is a proof of the equivariance of the architecture proposed in Section 3.

Proof. Because the loss function ` is permutation invariant, we only have to prove that eq. (8)-(9)
satisfy the permutation-equivariance property.

Let us prove by induction on k that Hk is permutation-equivariant (by a slight abuse of notation in
eq. (8), we consider the latent states Hk as functions of G), i.e. that Hk(� ?G) = � ?H

k(G).

13

For k = 0, it is clear that � ?H
0 = (0, ..., 0)i2[n] = H

0, which is independant of G.
Now suppose the equivariance property holds for Hk�1, then from eq. (5) comes

[�k
!(� ?G)]i =

X

j2N?(i;�?G)

�k
!,✓(H

k�1
i (� ?G), (� ?A)ij , H

k�1
j (� ?G)) (15)

=
X

j2N?(i;�?G)

�k
!,✓([� ?H

k�1(G)]i, (� ?A)ij , [� ?H
k�1(G)]j) (16)

=
X

j2N?(i;�?G)

�k
!,✓(H

k�1
��1(i)(G), A��1(i)��1(j), H

k�1
��1(j)(G)) (17)

=
X

��1(j)2N?(��1(i);G)

�k
!,✓(H

k�1
��1(i)(G), A��1(i)��1(j), H

k�1
��1(j)(G)) (18)

=
X

j2N?(��1(i);G)

�k
!,✓(H

k�1
��1(i)(G), A��1(i)j , H

k�1
j (G)) (19)

= [�k
!(G)]��1(i) (20)

= [� ? �
k
!(G)]i (21)

All the above equalities are straightforward, except maybe eq. (18), which comes from the equivari-
ance property of the notion of neighborhood defined above by eq. (13). The same property follows
for �k

 by similar argument.

For �k
 , eq. (7) gives

[�k
 (� ?G)]i = �

k
 ,✓([H

k�1(� ?G)]i, (� ?A)ii) (22)

= �k
 ,✓([� ?H

k�1(G)]i, (� ?A)ii) (23)

= �k
 ,✓(H

k�1
��1(i)(G), A��1(i)��1(i)) (24)

= [�k
 (G)]��1(i) (25)

= [� ? �
k
 (G)](i) (26)

This concludes the proof that Hk
i is permutation equivariant for all k, and from eq. (8) we conclude

that Mk
✓ is permutation-equivariant. Similar proof holds for Dk

✓ and Û
k, which in turn prove that

bU(� ?G) = � ? bU(G). (27)

This concludes the proof.

B.2 Proof of Property 1

In Section 3, Property 1 states that if the loss function ` is permutation-invariant and if for any
G 2 supp(D) there exists a unique minimizer U⇤(G) of problem (1), then U

⇤ is permutation-
equivariant.

Let ` be a permutation-invariant loss function and D a distribution such that for any G 2 supp(D)
there is a unique solution U

⇤ of problem 1. Let G = (n,A,B) 2 supp(D) and � 2 ⌃n a
permutation.

`(� ?U
⇤(G),� ?G) = `(U⇤(G),G) by invariance of ` (28)

= min
U2U

`(U,G) by definition of U⇤ (29)

= min
U2U

`(� ?U,� ?G) by invariance of ` (30)

= min
U2U

`(U,� ?G) by invariance of U (31)

= `(U⇤(� ?G),� ?G) by definition of U⇤ (32)

Moreover the uniqueness of the solution ensures that U⇤(� ?G) = � ?U
⇤(G), which concludes the

proof.

14

B.3 Proof of Theorem 1

We will now prove Theorem 1, the main result on DSSs, by closely following the approach of [25].
We will first prove a modified version of the Stone-Weierstrass theorem, and then verify that the
defining spaces for Interaction Graphs indeed verify the conditions of this theorem by proving several
lemmas (most importantly Theorem 3 on separability).

Let Geq. ✓ G be a set of compact, permutation-invariant Interaction Graphs. The compactness implies
that there exist n 2 N such that all graphs in Geq. have an amount of nodes lower than n 2 N. Let
Ceq.(Geq.,U) be the space of continuous functions from Geq. on U that associate to any Interaction
Graph G = (n,A,B) one of its possible states U 2 Rn. (Ceq.(Geq.,U),+, ·,�) is a unital R-algebra,
where (+, ·) are the usual addition and multiplication by a scalar, and � is the Hadamard product
defined by [(f � g)(x)]i = [f(x)]i · [g(x)]i. Its unit is the constant function 1 = (1, . . . , 1).

Theorem 2 (Modified Stone-Weierstrass theorem for equivariant functions).
Let A be a unital subalgebra of Ceq.(Geq.,U), (i.e., it contains the unit function 1) and assume both

following properties hold:

• (Separability) For all G,G
0 2 Geq., with number of nodes n and n

0
such that G is not

isomorphic to G
0
, and for all k 2 [n], k0 2 [n0], there exists f 2 A such that [f(G)]k 6=

[f(G0)]k0 ;

• (Self-separability) For all n  n, I ✓ [n], G 2 Geq. with n nodes, such that no isomorphism

of G exchanges at least one index between I and I
c
, and for all k 2 I , l 2 I

c
, there exists

f 2 A such that [f(G)]k 6= [f(G)]l.

Then A is dense in Ceq.(Geq.,U) with respect to the uniform metric.

This proof of Theorem 2 is almost identical to that of Theorem 4 in [25], with the following
differences.

1. For the input space, we consider Interaction Graphs of the form (n,A,B) with A 2
(RdA)n

2

and B 2 (RdB)n, instead of hyper-graphs of the form Rnd

for d 2 N. The
corresponding metrics are naturally different, although the difference is not critical for the
proof;

2. Similarly, we consider an output space with U 2 (RdU)n instead of Rn;

3. We only assume Geq. ✓ G to be compact and permutation-invariant instead of a Geq. with
an explicit form: Geq. := {G 2 Rnd |n  nmax, kGk  R} (which makes this modified
theorem more general).

We shall then indicate how to bypass these differences one by one and then reuse the proofs in [25].

For 1, the only properties of the input space involved in [25] are the number of nodes, action of
permutation and the metric (with the corresponding topology). For the first two points, everything
is still applicable in our setting. For the topology, the difference is not critical either since we are
actually considering the product space of two of metric spaces defined in [25] and all corresponding
properties follow.

For 2, we can always reduce to the case with dU = 1 then stack the resulting function dU times to
have the expected shape. This works seamlessly with Hadamard product and all properties related to
density.

For 3, there is actually no dependency on the explicit form of Geq. or G in [25] (as for the case in 1).
And the proof only relies on the upper bound on the number of nodes. So this generalization can be
naturally obtained.

The detailed proof of Theorem 2 then follows the exact same procedure than that of Theorem 4 in
[25], and we shall omit it here, refering the reader to [25] for all details.

Let k 2 N, and, as defined in Section 4, let Hk be the set of graph neural networks defined in Section
3 such that k  k. Our goal is to prove that Theorem 2 can be applied to Hk.

15

Because Hk is not an algebra, let us consider Hk�, the algebra generated by Hk with respect to the
Hadamard product. More formally:

Hk� =

(
SX

s=1

TsK

t=1

cstfst|S 2 N, Ts 2 N, cst 2 R, fst 2 Hk

)
. (33)

Note that the Hadamard product among fst’s is well-defined since for a fixed input G, all output
values fst(G) take the same dimension - the size of G.
(Hk�

,+, ·,�) is obviously a unital sub-algebra of (Geq.,+, ·,�) (the constant function (1, . . . , 1)

trivially belongs to Hk�). In order to apply Theorem 2 to Hk�, one needs to prove that it satisfies
both separability hypotheses.

Let us first notice that the self-separability property is a straightforward consequence of the hypothesis
of separability of external inputs on supp(D). Hence we only need to prove the separability property:

Theorem 3. Hk�
satisfies the separability property of Theorem 2.

The proof consists of 3 steps. In step 1, we prove that for all G,G
0 2 supp(D) that are not isomorphic,

there exists a sequence (node, edge, node) that only exists in G. In Step 2, we build a continuous
function f

† on G that returns an indicator of the presence of this sequence in the input graph. In Step
3, we prove that there exists a function f✓ 2 Hk� that approximates well enough f

†.

For Step 1, we formally state it in the following lemma.
Lemma 1. Let G = (n,A,B) and G

0 = (n0,A0,B0) be in supp(D) such that G and G
0

are not

isomorphic and n � n
0
. Then there exist i, j 2 [n], i 6= j, such that, for all i

0
, j
0 2 [n0], the following

inequality holds:

(Bi, Aij , Bj) 6= (B0i0 , A
0
i0j0 , B

0
j0) (34)

Proof. This lemma relies on the separability hypothesis of supp(D) which states that there exists
� > 0 such that for all G = (n,A,B) 2 supp(D) and for all i 6= j 2 [n], kBi �Bjk � �.

We shall use proof by contradiction: assume that for any (i, j) 2 [n]2 with i 6= j, there exists
↵(i, j) = (i0, j0) 2 [n0]2 such that (Bi, Aij , Bj) = (B0i0 , A

0
i0j0 , Bj0). Two cases must be distin-

guished, depending on whether n < n
0 or n = n

0

If n > n
0, then according to the pigeonhole principle, there exist two pairs (i, j) 2 [n]2 and (l,m) 2

[n]2 that have the same image by ↵, (i0, j0) 2 [n0]2. Hence, (Bi, Aij , Bj) = (B0i0 , A
0
i0j0 , B

0
j0) =

(Bl, Alm, Bm), which contradicts the separability hypothesis for G.

If n = n
0, according to the separability hypothesis of supp(D), there cannot exist i 6= l 2 [n] that are

mapped to the same i
0 2 [n0] (i.e. ↵(i, j) = (i0, j0) for some j, j

0 and ↵(l,m) = (i0,m0) for some
m,m

0). Thus ↵ actually defines an injective mapping � : [n] ! [n] on the first component. Because
n = n

0, this mapping is also surjective and hence bijective. Due to the symmetry of i and j, we see
that the mapping on the second component �0 defined by X is exactly �. Hence we have found a
permutation � 2 ⌃n such that

Bi = B
0
�(i) (35)

Aij = A�(i)�(j) (36)

for any (i, j) 2 [n]2, which means that G and G
0 are isomorphic, contradicting the hypothesis, and

thus completing the proof.

Figure 6: Kernel function

Let us now proceed with Step 2. For convenience, we shall use a
continuous kernel function defined by

K✏(x) = max(0, 1� |x|/✏) (37)

for ✏ > 0. Then we have K✏(0) = 1 and K✏(x) = 0 for |x| > ✏.

All intermediate functions of DSSs �k
!,�k

 ,�k
 ,

k and ⌅k (Sec-
tion 3) live in function spaces that satisfy the Universal Approxima-
tion Property (UAP). So let us consider now a space of continuous

16

functions that share the same architecture than DSS, but in which all spaces of parameterized neural
networks have been replaced by corresponding continuous function space. We denote this space by
Hk† (by convention, a dagger(†) added to a Neural Network block from Section 3 will refer to the
corresponding continuous function space (e.g. �k†

!). We are now in position to prove the following
lemma.

Lemma 2. For any G,G
0 2 supp(D) that are not isomorphic, there exists a function f

† 2 Hk†

such that for any k 2 [n], k0 2 [n0], we have [f†(G)]k 6= [f†(G0)]k0 .

Proof. Without loss of generality, we suppose n � n
0. According to Lemma 1, there exist (i†, j†) 2

[n]2, i† 6= j
†, such that G contains a sequence (Bi† , Ai†j† , Bj†) that does not appear in G

0.

We are going to construct a continuous function f
† : supp(D) ! U that will be an indicator of

the presence of the above sequence in the graph, and such that f†(G) = (1, . . . , 1) 2 Rn and
f
†(G0) = (0, . . . , 0) 2 Rn0

(thus proving Lemma 2).

Let us first recall the architecture of DSS, as defined by eq. (5)-(9), and let us choose continuous

functions �1†
!,�1†

 ,�1†
 and 1† such that H1† is defined by, for any G

00 2 supp(D),

[H1†(G00)]i = 2K✏(kB00i �Bi†k)�K✏(kB00i �Bj†k) (38)

where ✏ = kAi†j† � A
0
�(i†)�(j†)k if B and B

0 are isomorphic through permutation � and ✏ =

min� maxi kBi �B
0
�(i)k otherwise. This function allows us to identify whether the external input

B
00
i is close to one of Bi† or Bj† .

For k = 2, we define

�2†
!(h, a, h0) = K✏(kh� 2k+ ka�Ai†j†k+ kh0 + 1k) (39)

and

�2†
 (h, a) = K✏(kh� 1k+ ka�Ai†j†k). (40)

Then we choose 2† such that

[H2†]i = �
2†
 ,i + �

2†
!,i = �

2†
 (H1†

i , Aii) +
X

j2N?(i;G)

�2†
!(H1†

i , Aij , H
1†
j) (41)

According to the construction of H1† and H
2†, we have [H2†(G)]i = 1 if i = i

† and 0 otherwise.
And H

2†(G0) = (0, . . . , 0).

For k � 3, we let
[Hk+1†]i = [Hk†]i +

X

j2N?(i;G)

[Hk†]j (42)

Thus if k � �+ 2, we have [Hk†(G)]i � 1 for any i 2 [n], due to the connectivity and the fact that
the diameter of G is bounded by �, i.e. the propagation process described in eq. (42) reaches every
node of G. We have [Hk†(G)]i � 1 for any i 2 [n], and [Hk†(G0)]i = 0 for any i 2 [n0]

Finally for the decoder, we let
⌅k†(h) = min(1, h) (43)

and
[Ûk†]i = ⌅

k†(Hk†
i). (44)

We have thus constructed a function f
† such that f†(G) = (1, . . . , 1) 2 Rn and f

†(G0) =
(0, . . . , 0) 2 Rn0

. Thus for any k 2 [n], k0 2 [n0], we have [f†(G)]k = 1 6= 0 = [f†(G0)]k0 ,
which concludes the proof.

Lemma 3. Let X , Y , Z be three metric spaces. Let F ✓ C(X,Y) and G ✓ C(Y, Z) be two sets of

continuous functions. And let F` ✓ F ,G` ✓ G be two subsets of Lipschitz functions that are dense

in F and G respectively. Then G` � F` := {g � f |g 2 G`
, f 2 F`} is dense in G � F .

17

Proof. Let g � f be a continuous function in G �F , ✏ > 0. Due to the density of G` in G, there exists
g
` 2 G` such that

d(g, g`) <
✏

2
. (45)

Let Lg` be the Lipschitz constant of g`, the density of F` in F implies that there exists f ` such that

d(f, f `) <
✏

2Lg`

. (46)

Then we have

dZ(g � f(x), g` � f `(x))  dZ(g � f(x), g` � f(x)) + dZ(g
` � f(x), g` � f `(x)) (47)

<
✏

2
+ Lg`dY (f(x), f

`(x)) (48)

<
✏

2
+ Lg`

✏

2Lg`

= ✏ (49)

for any x 2 X . Thus d(g � f, g` � f `) < ✏. Hence G` � F` is dense in G � F .

Lemma 4. Hk
is dense in Hk†

.

Proof. As functions in Hk are composition of Lipschitz functions (neural network with linear
transformation and Lipschitz activation as assumed), and all intermediate function spaces verify the
Universal Approximation Property. We conclude immediately from using the definition of Hk† and
applying Lemma 3 consecutively.

We are ready to prove Theorem 3, i.e., that Hk� satisfies the separability hypothesis of Theorem 2.

Proof. of Theorem 3

It suffices to show the separability for Hk since it is a subset of Hk�.

Let G,G
0 2 supp(D). According to Lemma 2, there exists f† 2 Hk† such that for any k 2 [n], k0 2

[n0], we have [f†(G)]k 6= [f†(G0)]k0 . According to Lemma 4, there exists f 2 Hk such that

d(f†
, f) <

1

3
. (50)

Then for any k 2 [n], k0 2 [n0], we have [f(G)]k >
2
3 and [f(G0)]k0 <

1
3 . This proves the

separability of Hk and furthermore, Hk�.

Before being able to prove Theorem 1, we need the last following lemma.

Lemma 5. Hk
is dense in Hk�

.

Proof. We shall prove this result by explicitly constructing an approximation function in Hk for a
given function in Hk�.

Let f� 2 Hk�, and ✏ > 0. By definition of Hk� in eq. (33), there exists S 2 N, {Ts}s2{1,...,S} 2
NS , as well as {cst} 2 R and {fst} 2 Hk for all (s, t) with s 2 [S], t 2 [Ts], such that :

f
� =

SX

s=1

TsK

t=1

cstfst (51)

Thus, for any (s, t), there exists kst  k, and dst 2 N, such that fst is composed of functions
{�k,s,t
!,✓ ,�

k,s,t
 ,✓ ,�

k,s,t
 ,✓ , k,s,t

✓ ,⌅k,s,t
✓ }k2[kst]

, as defined by eq. (5)-(9) and Figure 3 in Section 3. dst
is the dimension of the latent states of channel fst.

18

The different channels can have different number of propagation updates kst, but they are all bounded
by k. Without loss of generality, we can assume that all kst are equal to k by padding, when needed,
exactly k � kst null operations �k

!, �k
 and k before the actual ones.

Let d =
PS

s=1

PTs

t=1 dst be the cumulated dimensions of the different channels.

For each (s, t), we introduce the matrix Wst 2 {0, 1}dst⇥d which is defined by:

[Wst]ij =

(
1, if

Ps
s0=1

PTs0
t0=1 ds0t0 +

Pt�1
t0=1 dst0 + i = j

0, otherwise.
(52)

Thus Wst = [0, . . . , 0, Idst , 0, . . . , 0]. Basically, when given a vector of dimension d, Wst will be
able to select exactly the component that corresponds to the channel (s, t), and will thus return a
vector of dimension dst.

Let us now define the functions {�k
!,✓,�

k
 ,✓,�

k
 ,✓,

k
✓ ,⌅

k
✓}k2[k] such that

�k
!,✓(H

k�1
i , Aij , H

k�1
j) =

SX

s=1

TsX

t=1

W
>
st .�

k,s,t
!,✓ (Wst.H

k�1
i , Aij ,Wst.H

k�1
j) (53)

�k
 ,✓(H

k�1
i , Aij , H

k�1
j) =

SX

s=1

TsX

t=1

W
>
st .�

k,s,t
 ,✓ (Wst.H

k�1
i , Aij ,Wst.H

k�1
j) (54)

�k
 ,✓(H

k�1
i , Aij) =

SX

s=1

TsX

t=1

W
>
st .�

k,s,t
 ,✓ (Wst.H

k�1
i , Aij) (55)

 k
✓(H

k�1
i , Bi,�

k
!,i,�

k
 ,i,�

k
 ,i) =

SX

s=1

TsX

t=1

W
>
st .

k,s,t
✓ (Wst.H

k�1
i , Bi,Wst.�

k
!,i,Wst.�

k
 ,i,Wst.�

k
 ,i)

(56)
These functions, using eq. (5)-(8), define a function acting on a latent space of dimension d. Moreover,

for any channel (s, t) and any node i 2 [n], we have Wst.H
k
i = H

k,s,t
i .

We have thus built a function of Hk that exactly replicates the steps performed on the different
channels. Now, let us take a closer look at the decoding step.

Observing that the mapping from Rd to RdU , h 7!
PS

s=1

JTs

t=1 cst⌅
k,s,t
✓ (Wsth) is indeed continu-

ous, there exists a mapping ⌅k
✓ 2 HdU

d such that :

k⌅k
✓(h)�

SX

s=1

TsK

t=1

cst⌅
k,s,t
✓ (Wsth)k  ✏ (57)

for any h in a compact of Rd. The resulting function f 2 Hk, composed of
{�k
!,✓,�

k
 ,✓,�

k
 ,✓,

k
✓ ,⌅

k
✓}k2[k] using eq. (5)-(9), approximates f

� with precision less than ✏,
which concludes the proof.

We now have all necessary ingredients to prove Theorem 1.

Proof. According to the hypotheses of compactness and permutation-invariance on supp(D), both
conditions of Theorem 2 are satisfied by supp(D). Consider the subalgebra Hk� defined by eq. (33).
According to the hypothesis of separability of external inputs, the hypothesis of connectivity and
Theorem 3, Hk� satisfies the separability and self-separability conditions of Theorem 2. Applying
Theorem 2, it comes that Hk� is dense in Ceq.(supp(D)). Then according to Lemma 5, Hk is dense

in Hk�. We conclude that Hk is dense in Ceq.(supp(D)) by the transitivity property of density.

19

B.4 Proof of Corollary 1

Proof. Let ✏ > 0. From Property 1, U⇤ is permutation-equivariant. Moreover, by hypothesis, U⇤ is
continuous. Thus U⇤ 2 Ceq.(supp(D)).

And from Theorem 1, we know that there exists a function Solver✓ 2 H�+2 such that

8G 2 supp(D), kSolver✓(G)�U
⇤(G)k  ✏ (58)

C Linear Systems derived from the Poisson Equation

This appendix details the experiments of Section 5.1: it presents the data generation process, and
also explains the change of variables that was made to help normalizing the data (not mentioned in
the main paper for space reason, as it does not change the overall conclusions of the experiments).
Finally, we also discuss an additional super generalization experiment briefly cited in the paper.

C.1 Data generation

Initial problem Consider a Poisson’s equation with Dirichlet condition on its boundary @⌦:

�4u = f in ⌦

u|@⌦ = g

where ⌦ a spatial domain in R2, and @⌦ its boundaries. The right hand side f is defined on ⌦, and
the Dirichlet boundary condition g is defined on @⌦. x and y will denote the classical 2D coordinates.

Random geometries Random 2D domains ⌦ are generated from 10 points, randomly sampled in
the unit square. The Bézier curve that passes through these pints is created, and is further subsampled
to obtain approximately 100 points in the unit square. These points defines a polygon, that is used as
the boundary @⌦. See the left part of Figure 7 to see four instances.

Random f and g Functions f and g are defined by the following equations:

f(x, y) = r1(x� 1)2 + r2y
2 + r3, (x, y) 2 ⌦ (59)

g(x, y) = r4x
2 + r5y

2 + r6xy + r7x+ r8y + r9, (x, y) 2 @⌦ (60)

in which parameters ri are uniformly sampled between -10 and 10.

Discretization The random 2D geometries are discretized using Fenics’ standard mesh generation
method (see Figure 7-right).

Figure 7: Discretization of randomly generated domains

20

Assembling The assembling step [30] consists in building a linear system from the partial differen-
tiate equation and the discretized domain. The unknown are the values of the solution at the nodes of
the mesh, and the equations are obtained by using the variational formulation of the PDE on basis
functions with support in the neighbors of each node. This is also automatically performed using
Fenics. The result of the assembling step is a square matrix A and a vector B, and the solution is the
vector U such that AU = B. Thus, as stated in Section 5, in the framework of SSPs, an Interaction
Graph is defined from the number of nodes of the mesh, the matrix A and the vector B, and the loss
function is:

`(U,G) =
X

i2[n]

(�Bi +
X

j2[n]

AijUj)
2 (61)

C.2 Change of variables

Being able to properly normalize the input data of any neural network is a critical issue, and failing
to do so can often lead to gradient explosions and other training failures (more details on data
normalization in AppendixC.2). In the Poisson case study, the nodes at the boundary are constrained
(i.e. Aii = 1 and Aij = 0 if i 6= j), and the interior nodes are not. Moreover, the coefficients of
matrix A at these interior nodes satisfy a conservation equality (i.e. Aii = �

P
j2[n]\{i} Aij). As a

consequence, the distributions of their respective Bi are very different, sometimes even with different
orders of magnitude. It is then almost impossible to properly normalize those multimodal distribution.

In order to tackle this issue, we consider the following change of variable, changing A,B to A
0
,B
0,

and modifying the loss function accordingly. For B, we set the dimension dB0 of B0 to 3 as follows:

B
0
i =

⇢
[Bi, 0, 0] if node i is not constrained
[0, 1, Bi] otherwise

(62)

The Bi’s for constrainted and unconstrainted nodes will hence be normalized independently.

Moreover, the information stored in the matrix A is rather redundant. As mentioned, for constrained
nodes Aii = 1 and Aij = 0 if i 6= j, whereas for unconstrained nodes Aii = �

P
j2[n]\{i} Aij .

Hence the diagonal information can always be retrieved from B and the non diagonal elements of A.
We thus choose the following change of variable:

A
0
ij =

⇢
Aij if i 6= j

0 otherwise
(63)

Finally, the loss function is transformed into the following function `
0 (where B

0
i
p denotes the p

th

component of vector Bi):

`
0(U,G

0) =
X

i2[n]

0

@(1�B
0
i
2)(�B

0
i
1) +B

0
i
2(Ui �B

0
i
3) +

X

j2[n]

A
0
ij(Uj � Ui)

1

A
2

(64)

One can easily check that this change of variables and of loss function defines the exact same
optimization problem as in eq. (10), while allowing for an easier normalization, as well as a lighter
sparse storage of A.

C.3 Additional super generalization experiment

Figure 8: Increasing noise
variance ⌧ : Correlation (DSS,
LU)

This appendix describes a second experiment regarding super-
generalization. Figure 8 displays the results of the DSS model,
learned without any noise, when increasing noise is added to the
test examples, more and more diverging from the distribution of the
training set (the graph size remains unchanged). Log-normal noise is
applied to A (Aij exp(N (0, ⌧)), and normal noise to B (BiN (1, ⌧),
for different values of noise variance ⌧ . The correlation between
the results of DSS and the ’ground truth’, here given by the results
of LU (solving the same noisy system). But although DSS results
remain highly correlated with the ground truth for small values of

21

⌧ , they become totally uncorrelated for large values of ⌧ (correlation close to 0): DSS has learned
something specific to the distribution D of linear systems coming from the discretized Poisson EDP.
Further work will extend these results, analyzing in depth the specifics of the learned models.

D Power systems

This appendix gives more details about the AC power flow problem, and how it is converted into the
DSS framework.

The AC power flow equations model the steady-state behavior of transportation power grids. They
are an essential part of both real-time operation and long-term planning. A thorough overview of the
domain is provided in [34].

Let’s consider a power grid with n nodes. The voltage at every electrical node is a sinusoid that
oscillates at the same frequency. However, each node has a distinct module and phase angle. Thus,
we define the complex voltage at node i, Vi = |Vi|ej✓ 2 C (where j is the imaginary unit).

The admittance matrix Y = (Yij)i,j2[n];Yij 2 C defines the admittance of each power line of the
network. The smaller |Yij |, the less nodes i and j are coupled. For i, j 2 [n], the coefficient Yij

models the physical characteristics of the power line between nodes i and j (i.e. materials, length,
etc.).

At each node i, there can be power consumption (houses, factories, etc.). The real part of the power
consumed is denoted by Pd,i and the imaginary part by Qd,i. The subscript d stands for “demand“.
Additionally, there can also be power production (coal or nuclear power plants, etc.). They are very
different from consumers, because they constrain the local voltage module. They are defined by Pg,i

and Vg,i. The subscript g stands for “generation“. Nodes that have a producer attached to it are called
“PV buses“ and are denoted by IPV ⇢ [n]. The nodes that are not connected to a production are
called “PQ buses“ and are denoted by IPQ ⇢ [n].

Moreover, one has to make sure that the global energy is conserved. There are losses at every power
line that are caused by Joule’s effect. The amount of power lost to Joule’s effect being a function of
the voltage at each node, it cannot be known before the voltage computation itself. Thus, to make
sure that the production of energy equals the consumption plus the losses caused by Joule’s effect,
we need to be able to increase the power production accordingly. In this work we use the common
“slack bus“approach which consists in increasing the production of a single producer so that global
energy conservation holds. This node is chosen beforehand and we denote it by is 2 [n].

Thus the system of equations that govern the power grid is the following:

8i 2 [n] \ {is}, Pg,i � Pd,i =
X

j2[n]

|Vi||Vj |(Re(Yij) cos(✓i � ✓j) + Im(Yij) sin(✓i � ✓j)) (65)

8i 2 IPQ, �Qd,i =
X

j2[n]

|Vi||Vj |(Re(Yij) sin(✓i � ✓j)� Im(Yij) cos(✓i � ✓j)) (66)

8i 2 IPV , |Vi| = Vg,i (67)

The encoding into our framework requires a bit of work. For the coupling matrix we use dA = 2 and
Aij = [Re(Yij), Im(Yij)]. For the local input we take dB = 5 and Bi = [Pg,i � Pd,i, Qd,i, 1(i 2
IPQ), Vg,i, 1(i = is)]. Finally, for the state variable we use dU = 2 and take Ui = [|Vi|, ✓i].
Taking the squared residual of eq. (65)-(67) and taking the sum over every node, we obtain the loss
of eq. (11).

E Further implementation details

In this section we detail the implementation details that were made to robustify the training of the
DSS. None of those changes alter the properties of the architecture.

Correction coefficient We introduce a parameter ↵ that modifies eq. (42) in the following way:

H
k
i = H

k�1
i + ↵⇥ k

✓(H
k�1
i , Bi,�

k
!,i,�

k
 ,i,�

k
 ,i) (68)

22

Choosing a sufficiently low value of ↵, helps to keep the successive k updates at reasonably low
orders of magnitude.

Injecting existing solutions Depending on the problem at hand, it may be useful to initialize the
predictions to some known value. This acts as an offset, that can help the training process to start not
too far from the actual solutions. This offset is applied identically at every node, thus not breaking
the permutation-equivariance of the architecture:

bUk
i = Uoffset + ⌅

k
✓(H

k
i) (69)

For instance, in the power systems application, it is known that the voltage module is commonly
around 1.0, while the voltage angle is around 0. Thus we used Uoffset = [1, 0] (keeping in mind
that dU = 2). On the other hand, in the linear systems application, there is no reason to use such an
offset, so we used Uoffset = [0] (keeping in mind that here dU = 1). But in several contexts, there
exists some fast inaccurate method that can give an approximate solution closer to the final one than
(0, . . . , 0).

Data normalization In addition to a potential change of variables (which helps disentangle mul-
timodal distributions of the input data, see Appendix C.2), it is also critical to normalize the input
Interaction Graphto help with the training of neural networks. Each function �k

!,✓, �k
 ,✓ and

�k
 ,✓ take Aij as input, and the functions k

✓ take bi as input. We thus introduce hyperparameters
µA,�A 2 RdA and µB ,�B 2 RdB are used to create a normalized version of the data:

aij =
Aij � µA

�A
(70)

bi =
Bi � µB

�B
(71)

g = (a,b) (with a = (aij)i,j2[n] and b = (bi)i2[n]) is thus the normalized version of G. We apply
the DSS to this normalized g and consider the loss `(Solver✓(g),G) instead of `(Solver✓(G),G).

Gradient clipping We sometimes observed (e.g., in the power systems experiments) some gradient
explosions. The solution we are currently using is to perform some gradient clipping. Further work
should focus on facilitating this training process automatically.

23

