
Training Normalizing Flows with the Information
Bottleneck for Competitive Generative Classification

– APPENDIX –

Contents

A Proofs and Derivations 1

A.1 Assumptions . 1

A.2 Mutual Cross-Information as Estimator for MI . 2

A.3 Loss Function LX . 2

A.4 Density Error through Noise Augmentation . 5

B Practical Loss Implementation 6

C Calibration Error Measures 7

D Additional Experiments 8

D.1 Choice of σ . 8

D.2 CIFAR100 . 8

D.3 Further experiments . 9

E Network Architecture 9

A Proofs and Derivations

A.1 Assumptions

Assumption 1. We assume that the the sample space X belonging to the input RV X : X → R is
a compact domain in Rd, and that p(X | y) is absolutely continuous ∀y ∈ Y , where Y is the set of
available classes.

The compactness of X is the major aspect here. However, this is always fulfilled for image data,
as the pixels can only take certain range of values, and equally fulfilled for most other real-world
datasets, as data representations, measurement devices, etc. only have a finite range.

Assumption 2. We assume gθ is from a family of universal density estimators, as defined by Defini-
tion 3 in Teshima et al. (2020). Moreover, we assume the network parameter space Θ is a compact
subdomain of Rn, gθ and Jθ are uniformly bounded, and that the lower bound of |det Jθ| is > 0.
We also assume that gθ and Jθ are continuous and differentiable in both X and θ.

This is a fairly mild set of assumptions, as it is fulfilled by construction with most existing INN
architectures using standard multi-layer subnetworks. See e.g. Behrmann et al. (2020); Virmaux &
Scaman (2018) for details. Specifically, it holds for our tanh-clamped coupling block design (see

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Appendix E). Note that some properties directly follow from Assumption 2: Firstly, as Jθ is uni-
formly bounded, this implies that gθ is uniformly Lipschitz-continuous. Second, using Assumption
1, the domain of Z = gθ(X) is compact, and p(Z) is absolutely continuous.

A.2 Mutual Cross-Information as Estimator for MI

In our case, we only require CI(X,ZE) and CI(Y,ZE), but we show the correspondence for two
unspecified random variables U , V , as it may be of general interest. However, note that our estimator
will likely not be particularly useful outside of our specific use-case, and other methods should
be preferred (e.g. MINE, Belghazi et al., 2018). Our approach has the specific advantage, that we
estimate the MI of the model using the model itself. For e.g. MINE, we would require three models,
one generative model, and two models that only serve to estimate the MI. Secondly, it is not clear
how the large constant d log(σ) can be cancelled out using other approaches.

For the joint input space Ω = U × V , we assume that U is a compact domain in Rd, and V is either
also a compact domain in Rl (Case 1), or discrete, i.e. a finite subset of N (Case 2). In Case 1, we
assume that p(U, V) is absolutely continuous with respect to the Lebesgue measure, and in Case 2,
p(U |v) is absolutely continuous for all values of v ∈ V . This is in agreement with Assumption 1.

In Case 1, q(U), q(V), q(U, V), the densities can all be modeled separately, by three flow networks
g

(U)
θ (u), g(V)

θ (v), g(UV)
θ (u, v). Although in our formulation, we are later able to approximate the

latter two through the first.

In Case 2, we only model q(U |V), and assume that q(V) is either known beforehand and set to
p(V) (e.g. label distribution), or the probabilities are parametrized directly. Either way, q(U, V) =
q(U |V)q(V) and q(U) =

P
v2V q(U, v).

Proposition 1. Assume that the q(.) densities can be chosen from a sufficiently rich model family
(e.g. a universal density estimator). Then for every η > 0 there is a model such that��I(U, V)− CI(U, V)

�� < η (1)

and I(U, V) = CI(U, V) if p(U, V) = q(U, V).

Proof. Writing out the definitions explicitly, and rearranging, we find

CI(U, V) = I(U, V) +DKL

�
p(U, V)

q(U, V)
�

−DKL

�
p(U)

q(U)
�
−DKL

�
p(V)

q(V)
�

(2)

Shortening the KL terms to D1, D2 and D3 for convenience:

|CI(U, V)− I(U, V)| = |D1 −D2 −D3| (3)
≤ D1 +D2 +D3 (4)
≤ 3 max(D1, D2, D3) (5)

At this point, we can simply apply results from measure transport: if the gθ are from a family
of universal density estimators, we can choose θ� to make max(D1, D2, D3) arbitrarily small by
matching p and q. This was shown in general for increasing triangular maps, e.g. in Hyvärinen &
Pajunen (1999), Theorem 1 for an accessible proof, or Bogachev et al. (2005) for a more in-depth
approach (specifically Corollary 4.2). Generality was also proven for several concrete architectures,
e.g. Teshima et al. (2020); Jaini et al. (2019); Huang et al. (2018).

For the second part of the Proposition, we note the following: if p(U, V) = q(U, V), we have
D1 = D2 = D3 = 0, and therefore CI(U, V) = I(U, V).

A.3 Loss Function LX

In the following, we use the subscript-notation for the cross entropy:

hq(U) = Eu�p(U) [− log q(u)] , (6)

to avoid confusion with the joint entropy that arises with the usual notation (h(p(U), q(U))).
Proposition 2. For the case given in the paper, that ZE = gθ(X + E), it holds that I(X,ZE) ≤
CI(X,ZE).

2

Proof. In the following, we �rst use the invariance of the (cross-)information to homeomorphic
transforms (see e.g. Cover & Thomas (2012) Sec. 8.6). Then, we usep(X + EjX) = q(X + EjX) =
p(E) (known exactly) and write out all the terms, most of which cancel. Finally, we use the inequality
that the cross entropy is larger than the entropy,hq(U) � h(U) regardless ofq. The equality holds
iff the two distributions are the same.

CI (X; Z E) � I (X; Z E) = CI (X; X +E) � I (X; X +E) (7)
= hq(X) � h(X) + 0 (8)
� 0 (9)

With equality iff p(X) = q(X).

We now want to show that the network optimization procedure that arises from the empirical loss,
in particular the gradients w.r.t. network parameters� , are consistent with those ofCI (X; Z E):

Proposition 3. The de�ned loss is a consistent estimator forCI (X; Z E) up to a known constant,
and a consistent estimator for the gradients. Speci�cally, for any� 1; � 2 > 0 and0 < � < 1 there are
� 0 > 0 andN0 2 N, such that8N � N0 and8� < � 0,

Pr
� �

�
� CI (X; Z E) + d log

p
2�e� 2 � L (N)

X

�
�
� < � 1

�
> 1� �

and

Pr
�

@
@�

CI (X; Z E) �
@
@�

L (N)
X

 < � 2

�
> 1� �

holds uniformly for all model parameters� .

The loss function is as de�ned in the paper:

L X = hq(ZE) � Ex � p(X + E)

h
log

�
� det J � (x)

�
�
i

(10)

as well as its empirical estimate usingN samples,L (N)
X .

We split the proof into two Lemmas, which we will later combine.

Lemma 1. For any� 1; � 2 > 0 and� > 0 there is anN0 2 N so that

Pr
� �

�L (N)
X � L X

�
� < � 1

�
> 1 � � (11)

Pr
� �

� @
@�

L (N)
X �

@
@�

L X
�
� < � 2

�
> 1 � � (12)

8N � N0

Proof. For the �rst part (Eq. 11), we simply have to show that the uniform law of large numbers
applies, speci�cally that all expressions in the expectations are bounded and change continuously
with � . For the Jacobian term in the loss, this is the case by de�nition. For thehq(ZE)-term, we can
show the boundedness oflogq occurring in the expectation by inserting the GMM explicitly. We
�nd

� log(q(z)) � max
y

[(z � � y)2=2] + const: (13)

while we know thatz = g� (x) is bounded. Therefore, the uniform law of large numbers (Newey &
McFadden, 1994, Lemma 2.4) guarantees existence of anN1 to satisfy the condition for all� 2 � .

For the second part (Eq. 12), we will show that the gradient w.r.t.� and the expectation can be ex-
changed, as the gradient is also bounded by the same arguments as before. We �nd that the conditions
for exchanging expectation and gradient are trivially satis�ed, again due to the bounded gradients
(see L'Ecuyer (1995), assumption A1, with� set to the upper bound). This results in anN2 2 N for
which Eq. 12 is satis�ed. As a last step, we simply de�neN0 := max(N1; N2).

3

Lemma 2. For any� 1; � 2 > 0 there is an� 0 > 0, so that

 CI � (X; Z E) + d log

p
2�e� 2 � L X

 < � 2 (14)

@
@�

�
CI � (X; Z E) � L X

�

 < � 2 (15)

8� < � 0

Proof. In the following proof, we make use of theO(�) notation, see e.g. De Bruijn (1981):

We writef (�) = O(g(�)) (� ! 0) iff there exists a� 0 and anM 2 R, M > 0
so that

kf (�)k < M g (�) 8� � � 0: (16)

Furthermore, to discuss the limit case, it is necessary we reparametrize the noise variableE in terms
of noiseS with a �xed standard normal distribution:

E = �S with p(S) = N (0; 1) (17)

To begin with, we use the invariance ofCI under the homeomorphic transformg� . This can be easily
veri�ed by inserting the change-of-variables formula into the de�nition. See e.g. Cover & Thomas
(2012) Sec. 8.6. This results in

CI (X; Z E) = CI (Z; Z E) = hq(ZE) � hq(ZE jZ) (18)

Next, we series expandZE around� = 0 . We can use Taylor's theorem to write

ZE = Z + J � (Z)E + O(� 2) (19)

We have written the Jacobian dependent onZ , but note that it is still@g� =@X, and we simply
substituted the argument. We put this into the second entropy termhq(ZE jZ) in Eq. 18, and then
perform a zero-order von Mises expansion ofhq. In general, the identity is

hq(W + �) = hq(W) + O(k� k) (k� k ! 0); (20)

and we simply put� = O(� 2) (the identity applies in the same way to theconditionalcross-entropy).
Intuitively, this is what we would expect: the entropy of an RV with a small perturbation should
be approximately the same without the perturbation. See e.g. Ser�ing (2009), Sec. 6 for details.
Effectively, this allows us to write the residual outside the entropy:

hq(ZE jZ) = hq
�
Z + J � (Z)E + O(� 2)

�
�Z

�
(21)

= hq
�
Z + J � (Z)E

�
�Z

�
+ O(� 2) (22)

= hq
�
J � (Z)E

�
�Z

�
+ O(� 2) (23)

At this point, note thatq� (J � (Z)EjZ) is simply a multivariate normal distribution, due to the condi-
tioning onZ . In this case, we can use the entropy of a multivariate normal distribution, and simplify
to obtain the following:

� hq(J � EjZ) = E
�

1
2

log
�
det(2�� 2J � J T

�)
�
�

(24)

= E
�

1
2

log
�
(2�� 2)d det(J �)2�

�
(25)

= d log
p

2�e� 2 + E [log j det J � j] : (26)

Here, we exploited the fact thatJ � (Z) is an invertible matrix, and usedd = dim(Z). Finally, as in
practice we only want to evaluate the model once, we use the differentiability ofJ � to replace

E [log j det J � (Z)j] = E [log j det J � (ZE)j] + O(�): (27)

The residual can be written outside of the expectation as we know it is bounded from our assumptions
aboutg� andJ � (Dominated Convergence theorem).

4

Putting the terms together, we obtain

CI (X; Z E) = hq(ZE) � d log
p

2�e� 2

� E [log j det J � j] + O(�) (28)

= L X � d log
p

2�e� 2 + O(�) (29)

Through the de�nition ofO(�), Eq. 14 is satis�ed. To show that the gradients also agree (Eq. 15),
we must ensure that theO(�) term is uniformly convergent to 0 over� , i.e. there is a single constant
M in the de�nition of O(�) that applies for all� 2 � . This is directly the case, asg� is Lipschitz
continuous and the outputs are bounded (Arzela - Ascoli theorem).

We can now combine the two Lemmas 1 and 2, to show Proposition 3.

Proposition 3 - Proof.

Proof. The Proposition follows directly from Lemmas 1 and 2: for a given� 1, � 2 and� , we choose
each� i = � i =2, and apply the triangle inequality, meaning there exists anN0 and� 0 so that

�
�
� CI (X; Z E) + d log

p
2�e� 2 � L (N)

X

�
�
�

�
�
�
� CI (X; Z E) + d log

p
2�e� 2 � L X

�
�
� +

�
�
�L X � L (N)

X

�
�
�

<
� 1

2
+

� 1

2

And thereforePr(: : :) > 1 � � . Equivalently for the gradients.

A.4 Density Error through Noise Augmentation

For the derivation of the losses, we only assumed thatX andX + E =: X E are both RVs on a
domainX , and required no further assumptions about a possible quantization ofX . However,if
X is quantized, which is mostly the case in practice, we can exploit this fact to derive a bound on
the additional modeling error caused by the augmentation. To demonstrate this, we introduce the
discrete, quantized dataW . This is essentially the same asX , but is only de�ned on a �nite, discrete
setW. With F regular quantization steps in each of thed dimensions, spaced by the quanitzation
step size� X , we write

W =
�

0; 1� X; 2� X : : : ; (F � 1)� X
	 d

� X ; (30)

We denote probabilities of this discrete variable as upper caseP andQ for true and modeled proba-
bilities, respectively. We index the �nite number of elements inW aswi . For convenience, we also
introduce the following notation:

P(wi) = : Pi Q(wi) = : Qi : (31)

Furthermore, we denote the noise distribution used for augmentation asr (E) in the following, as
this simpli�es the notation and avoids ambiguities (it was denotedp(E) instead for the loss deriva-
tion). From this, we can see how the distributionp(X E), which is used to train the network, can be
expressed in terms ofP(W) andr (E):

p(X E) =
X

i

Pi r (X E � wi) (32)

At test time, we want to recover an estimateQi . For standard normalizing �ows, this is generally
computed as

~Qi :=
q(X E = wi)

r (0)
(33)

Among other things, this is used to measure the bits/dim. In the most general case,~Q will not sum
to 1, so it is not guaranteed to be a valid probability, indicated by the tilde. Nevertheless, we can

5

see why this de�nition is sensible by considering the noise distributionr used by most normalizing
�ows: hereby the support ofr in each dimension is smaller or equal to the quantization step size.
Then, only one term in the sum in Eq. 32 is6= 0 at any point. As a result, we obtain

q(X E) = p(X E) =) ~Q(W) = P(W): (34)

This means that in principle a standard normalizing �ow can learn the true underlying discrete
distribution from the noisy augmented distribution. In other words, the augmentation process does
not introduce an additional error to the density estimation.

We now apply these de�nitions to our setting of a Gaussian noise distribution,r (E) = N (0; � 2I).
We consider the case where the model learns the training data distribution perfectly, i.e.q(X E) =
p(X E). We �nd that Eq. 34 no longer holds for the Gaussian case, but that the error between~Q(W)
andP(W) has a known bound that decreases exponentially for small� . For convenience, we write
A := N (0; 0; � 2I) = (2 �� 2) � d=2. From this, we get

~Qj =
q(X E = wj)

A
=

p(X E = wj)
A

(35)

=
1
A

X

i

Pi N (wj � wi ; 0; � 2I) (36)

=
Pj N (0; 0; � 2I)

A
+

1
A

X

i 6= j

Pi N (wj � wi ; 0; � 2I) (37)

= Pj +
1
A

X

i 6= j

Pi N (wj � wi ; 0; � 2I)

| {z }
:=� P j

(38)

We are now interested in determining a bound for the error� Pj . Becausekwi � wj k � � X for
i 6= j , we know

N (wi � wj ; 0; � 2I) � A exp
�

�
� X 2

2� 2

�
: (39)

From that, we obtain the following bound:

� Pj �

0

@
X

i 6= j

Pi

1

A 1
A

A exp
�

�
� X 2

2� 2

�
(40)

� exp
�

�
� X 2

2� 2

�
(41)

B Practical Loss Implementation

In the following, we provide the explicit loss implementations, as there are some considerations to
make with regards to numerical tractability. Speci�cally, we make use of the operationssoftmax,
log softmax, logsumexp provided by major deep learning frameworks, as they avoid the most
common pitfalls.

The class probabilitiesq(Y) can be characterized through a vector� , with

q(y) = softmax y (�) ; (42)

where the subscript of the softmax operator denotes which index is selected for the enumerator. The
use of the softmax ensures thatwy stay positive and sum to one. For our work,q(Y) = p(Y) is
known beforehand, so we leave� �xed to 0 (equal probability for each class). However, we also
�nd it is possible to learn� as a free parameter during training. In this case, only the gradients
of the L X loss w.r.t.� should be taken, as theL Y loss is no longer a lower bound, and can be
exploited by sending� y ! 1 for some �xed y, and� k ! �1 for all k 6= y. If only L X is
backpropagated w.r.t.� , this is avoided and� converges to the correct class weights. We use the
shorthandwy := log p(y) in the following.

6

With z := g� (x + "), we also have
� logq(y) = wy = logsoftmaxy (�) (43)

� logq(zjy) = �
1
2

kz � � y k2 + const: (44)

� logq(z) = logsumexp
y0

�
�

kz � � y0k2

2
+ wy0

�
+ const: (45)

With this, the loss functions are evaluated as

L X (x) = logsumexp
y0

kz � � 0

y k2

2
� wy0

!

� logJ (x) (46)

L Y (x; y) = logsoftmax y

�
�

kz � � y0k2

2
+ wy0

�
� wy : (47)

The constants have been dropped for convenience. The use of thelogsumexp and logsoftmax
operations above is especially important. Otherwise when explicitly performing the exp and log
operations with 32 bit �oating point numbers, the values become too large, and the loss numerically
ill-de�ned (NaN).

C Calibration Error Measures

In the following, we make use of the Iverson bracket:
�
C

�
:=

�
1 if C is true;
0 otherwise,

(48)

Firstly, we de�ne the bin edgesbi , with i 2 f 1; : : : ; K + 1g, so thatb1 = 0 , bK +1 = 1 , and
bi +1 > b i . In practice, we choose thebi be spaced more tightly near high and low con�dences, as
this is where the bulk of the predictions are made:

concatenate(range(0.00, 0.05, stepsize=0.01),
range(0.05, 0.95, stepsize=0.1),
range(0.95, 1.00, stepsize=0.01))

The bins themselves are then half-open intervals between the bin edges:B i = [bi ; bi +1) with i 2
f 1; : : : ; K g. We now de�nen(i) , the count of predictions within a con�dence bin; as well asn(i)

c ,
the count ofcorrectpredictions in that bin:

n(i) :=
X

x j

X

y0

�
p(y0jx j) 2 B i

�
(49)

n(i)
c :=

X

(x j ;y j)

X

y0

�
p(y0jx j) 2 B i

�
�
�

arg max
y0

(p(y0jx j) = yj
�

(50)

wherex j and the(x j ; yj)-pairs are from the test set.

We de�ne the con�denceP as the center of each bin, and the achieved accuracy in this bin asQ:

Pi =
bi + bi +1

2
(51)

Qi =
n(i)

c

n(i)
(52)

Finally, usingQ and P, we de�ne the calibration error measures, in agreement with Guo et al.
(2017):

ECE =
X

i

n(i)

ntot
jPi � Qi j (Expected calib. err.) (53)

MCE = max
i

jPi � Qi j (Maximum calib. err.) (54)

ICE =
X

i

(bi +1 � bi)jPi � Qi j (Integrated calib. err.) (55)

7

Figure 1: From left to right: Changes in test-loss, performance metrics, and a comparison between
approximation and known slope of the true mutual information for varying values of� (x-axis)

Table 1: Results on the CIFAR100 dataset. All models have the same number of parameters and were
trained with the same hyperparameters. All values except entropy and overcon�dence are given in
percent. The arrows indicate whether a higher or lower value is better.

Model Classif. Bits/dim Calibration error (#) Incr. OoD prediction entropy (") OoD detection score (")
err. (#) (#) Geo. mean ECE MCE ICE Average RGB-rot Draw Noise ImgNet Average RGB-rot Draw Noise ImgNet

IB-INN
(ours)

only L X (= 0) – 4.82 – – – – – – – – – 70.03 63.35 87.45 85.12 50.99
 = 0 :1 42.57 4.94 2.60 0.58 7.04 4.28 0.50 0.66 0.28 0.35 0.69 68.31 66.53 78.91 81.70 50.75
only L Y (! 1) 33.78 18.44 4.49 0.62 16.76 8.72 0.58 0.52 1.04 0.00 0.77 58.29 47.95 99.37 49.23 49.23

Stand. GC Class-NLL 97.92 4.82 16.20 1.02 95.63 43.53 -0.04 -0.14 0.55 -0.53 -0.03 70.26 64.68 86.54 85.19 51.09
Class-NLL + regul. 69.28 5.07 13.94 0.75 89.74 40.15 0.00 -0.00 -0.01 0.01 0.01 68.83 64.96 82.19 83.32 50.44

Stand. DC ResNet 29.27 – 5.13 0.65 20.57 10.16 0.60 0.68 0.97 -0.00 0.74 – – – – –
i-RevNet 37.54 – 5.18 0.63 19.85 11.09 0.51 0.32 1.00 -0.00 0.75 – – – – –

using the shorthandntot :=
P

i n(i) .

D Additional Experiments

D.1 Choice of�

Fig. 1 shows the behaviour for 25 different models trained with� between10� 4 and100 (x-axis),
and �xed = 0 :2. We �nd that the loss values (left) and performance characteristics (middle) do
not depend on� below a threshold that is about a factor 4 smaller than the qantization step size� X .
Contrary to expectations from existing work on normalizing �ows, the models performance does not
decrease even when� is 50 times smaller than� X . Detrimental effects might occur more easily
if the quantization steps are larger, e.g.� X = 1=32 as used by Kingma & Dhariwal (2018), or if
the model were more powerful or less regularized (e.g. from the tanh-clamping we employ). The
rightmost plot compares our approximation ofCI (X; Z ") with the asymptoticI (X; Z ") + const:
for � ! 0, where the constant is unknown. The slope of the approximation agrees well for small� ,
but breaks down for larger values.

D.2 CIFAR100

Table 1 reports the performance of the models on CIFAR100. The general behaviour observed for
CIFAR10 is repeated here: The IB-INN model which balances both loss terms peforms signi�cantly
better in terms of uncertainty calibration than both standard GCs and DCs. It also performs OoD
detection almost as well as pure GCs, with a much better classi�cation error.

There are two differences compared to the CIFAR10 case: Firstly, in terms of increase in predictive
entropy on OoD data, there are much smaller differences between models (excluding the standard
GCs). The standard ResNet has the best overall performance by a small margin. Note that the in-
crease in prediction entropy is also in�uenced by the calibration and overall classi�cation error of
the model to some degree, so we are careful in drawing any conclusions from minor differences.
Secondly, we �nd that the most advantageous trade-off regime is now at a lower value of . The
only values trained for CIFAR100 were 2 f 0:1; 1; 10g, and we �nd that the models with set to
1 and 10 behave almost the same as the limit case ! 1 . The explanation for this is simple: due
to the increased dif�culty of the task, theL Y loss is higher than for CIFAR10. Therefore, it has a
larger in�uence at the same setting for compared to the CIFAR10 models.

8

0.03 0.17 1.00 5.62 31.6

10

15

20

25

30
Classification error ()

0.03 0.17 1.00 5.62 31.6

1

2

3

4

5

6

Geom. mean of calibration errors ()

0.03 0.17 1.00 5.62 31.6

0.4

0.6

0.8

1.0

1.2

1.4

Expected calibration error ()

0.03 0.17 1.00 5.62 31.6

5

10

15

20

25

30
Maximum calibration error ()

0.03 0.17 1.00 5.62 31.6

2

4

6

8

10

12

Integrated calibration error ()

0.03 0.17 1.00 5.62 31.6

0.15

0.20

0.25

0.30

0.35

0.40

Average incr. OoD pred. ent. ()

0.03 0.17 1.00 5.62 31.6
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
incr. OoD pred. ent. - RGB rot. ()

0.03 0.17 1.00 5.62 31.6

0.00

0.05

0.10

0.15

0.20

incr. OoD pred. ent. - Noisy ()

0.03 0.17 1.00 5.62 31.6

0.0

0.1

0.2

0.3

0.4

0.5

0.6
incr. OoD pred. ent. - QuickDraw ()

0.03 0.17 1.00 5.62 31.6

0.30

0.35

0.40

0.45

0.50

0.55

0.60

incr. OoD pred. ent. - ImageNet ()

0.03 0.17 1.00 5.62 31.6

50

60

70

80

90

100
Average OoD detection score ()

0.03 0.17 1.00 5.62 31.6

50

60

70

80

90

100
OoD detection score - RGB rot. ()

0.03 0.17 1.00 5.62 31.6

50

60

70

80

90

100
OoD detection score - Noisy ()

0.03 0.17 1.00 5.62 31.6

50

60

70

80

90

100
OoD detection score - QuickDraw ()

0.03 0.17 1.00 5.62 31.6

50

60

70

80

90

100
OoD detection score - ImageNet ()

Figure 2: Effect of changing the parameter β̃ (x-axis) on the different performance measures (y-
axis). The arrows indicate if a larger or smaller score is better. The black horizontal line in the last
row indicates random performance. Details are explained in the paper. The VIB results are added
as dotted lines. The VIB does not converge reliably for values of γ < 0.2, producing some otiliers
e.g. for expected calibration error. This is not to claim that the IB-INN is better than the VIB or vice
versa. The comparison serves to show how the IB affects GCs and DCs differently.

D.3 Further experiments

Figure 2 provides all the performance metrics discussed in the paper over the range of γ.

In Figure 3 we show the trajectory of a sample in latent space, when gradually increasing the angle α
of the RGB-rotation augmentation used in the paper as an OoD dataset. It travels from in-distribution
to out-of-distribution. Such images were never seen during training.

Figure 5 shows samples generated by the model, using different values of γ. In general, we find the
quality of generated images degrades faster with γ than the interpolations between existing images.
We see indications that the mass of points in latent space is offset from the learned µy , meaning
the regions that are sampled from have not seen much training data. In contrast to the IB-INN, the
standard class-NLL trained model generates fairly generic looking images for all classes, due to the
collapse of class-components in latent space.

E Network Architecture

As in previous works, our INN architecture consists of so-called coupling blocks. In our case, each
block consists of one affine coupling (Dinh et al., 2017), illustrated in Fig. 4, followed by random
and fixed soft permutation of channels (Ardizzone et al., 2019), and a fixed scaling by a constant,
similar to ActNorm layers introduced by Kingma & Dhariwal (2018). For the coupling coefficients,
each subnetwork predicts multiplicative and additive components jointly, as done by Kingma &
Dhariwal (2018). Furthermore, we adopt the soft clamping of multiplication coefficients used by
Dinh et al. (2017).

For downsampling blocks, we introduce a new scheme, whereby we apply the i-RevNet downsam-
pling (Jacobsen et al., 2018) only to the inputs to the affine transformation (u2 branch in Fig. 4),
while the affine coefficients are predicted from a higher resolution u1 by using a strided convolution
in the corresponding subnetwork. After this, i-RevNet downsampling is applied to the other half of
the channels u1 to produce v1, before concatenation and the soft permutation. We adopt this scheme

9

Figure 3: The scatter plot shows the location of test set data
in latent space. A single sample is augmented by rotating the
RGB color vector as described in the paper. The small im-
ages show the successive steps of augmentation, while the
black arrow shows the position of each of these steps in la-
tent space. We observe how the points in latent space travel
further from the cluster center with increasing augmenta-
tion, causing them to be detected as OoD.

Forward computation (left to right):

v1 = u1, v2 = T (u2;nn(v1))

Inverse computation (right to left):

u1 = v1, u2 = T�1(v2;nn(u1))

Figure 4: Illustration of a coupling block. T represents some invertible transformation, in our case
an affine transformation. The transformation coefficients are predicted by a subnetwork (nn), which
contains fully-connected or convolutional layers, nonlinear activations, batch normalization layers,
etc., similar to the residual subnetwork in a ResNet (He et al., 2016). Note that how the subnetwork
does not have to be inverted itself.

as it more closely resembles the standard ResNet downsampling blocks, and makes the downsam-
pling operation at least partly learnable.

We then stack sets of these blocks, with downsampling blocks in between, in the manner of [8,
down, 25, down, 25]. Note, we use fewer blocks for the first resolution level, as the data only has
three channels, limiting the expressive power of the blocks at this level. Finally, we apply a discrete
cosine transform to replace the global average pooling in ResNets, as introduced by Jacobsen et al.
(2019), followed by two blocks with fully connected subnetworks.

We perform training with SGD, learning rate 0.07, momentum 0.9, and batch size 128, as in the
original ResNet publication (He et al., 2016). We train for 450 epochs, decaying the learning rate by
a factor of 10 after 150, 250, and 350 epochs.

10

	Proofs and Derivations
	Assumptions
	Mutual Cross-Information as Estimator for MI
	Loss Function LX
	Density Error through Noise Augmentation

	Practical Loss Implementation
	Calibration Error Measures
	Additional Experiments
	Choice of
	CIFAR100
	Further experiments

	Network Architecture

