
In the appendix, we will give the proof of the main theorems. The appendix is organized as follows:

1. In section A, we list some notations used in the appendix.

2. In section B, we prove the two main theorems in one-block case.

3. In section C, we briefly state the proof of the two main theorems in multi-block setting.

4. In section D, we prove the two main error bound lemmas (Lemma 4.3 and Lemma 4.2)
under the strict complementarity assumption.

5. In section E, we see that the strict complementarity assumption can be relaxed to a weaker
regularity assumption. We also prove that this weaker regularity assumption is generic for
robust regression problems with square loss, i.e., we prove that our regularity assumption
holds with probability 1 if the data points are joint from a continuous distribution.

6. In the last section F, we give some more details about the experiment.

A Notations

We first list some notations which will be used in the appendix.

1. [m] = {1, 2, · · · ,m}.
2. W ∗ is the solution set of (1.1) or (1.2). X∗ is the set of all solutions x∗, i.e., x∗ ∈ X∗ if

there exists a y∗ such that (x∗, y∗) ∈W ∗.
3. B(r) is a Euclidian ball of radius r for proper dimension.

4. dist(v, S) means the Euclidian distance from a point v to a set S.

5. For a vector v, vi means the i-th component of v. For a set S, vS ∈ R|S| is the vector
containing all components vi’s with i ∈ S.

6. Let A ∈ Rn×m be a matrix and S ⊆ [m] be an index set. Then AS represents the row
sub-matrix of A corresponding to the rows with index in S.

7. For a matrix M, γ(M) is the smallest singular value of M.

8. The projection of a point y, onto a set X is defined as PX(y) = argminx∈X
1
2‖x− y‖

2.

B Proof of the two main theorems: one-block case

In this section, we prove the two main theorems in one-block case. The proof of the multi-block
case is similar and will be given in the next section.

Proof Sketch.

• In Step 1, we will introduce the potential function φt which is shown to be bounded below.
To obtain the convergence rate of the algorithms, we want to prove the potential function
can make sufficient decrease at every iterate t, i.e., we want to show φt − φt+1 > 0.

• In Step 2, we will study this difference φt − φt+1 and provide a lower bound of it in
Proposition 4.2. Notice that a negative term (4.3) will show up in the lower bound, and we
have to carefully analyze the magnitude of this term to obtain φt − φt+1 > 0.

• Analyzing the negative term will be the main difficulty of the proof. In Step 3, we will
discuss how to deal with this difficulty for solving Problem 1.1 and Problem 1.2 separately.

• Finally, we will show the potential function makes a sufficient decrease at every iterate
as stated in (4.4), and will conclude our proof by computing the number of iterations to
achieve an ε-solution in Lemma B.12.

B.1 The potential function and basic estimate

Recall that the potential function is:

φt = Φ(xt, zt; yt) = K(xt, zt; yt)− 2d(yt, zt) + 2P (zt),
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where

K(x, z; y) = f(x, y) +
p

2
‖x− z‖2,

d(y, z) = min
x∈X

K(x, z; y),

P (z) = min
x∈X

max
y∈Y

K(x, z; y).

Also note that if p > L, K(x, z; y) is strongly convex of x with modular p−L and∇xK(x, z; y) is
Lipschitz-continuous of x with a constant L+ p. We also use the following notations:

1. h(x, z) = maxy∈Y K(x, z; y).
2. x(y, z) = arg minx∈X K(x, z; y), x∗(z) = arg minx∈X h(x, z).
3. The set Y (z) = arg maxy∈Y d(y, z).
4. y+(z) = PY (y + α∇yK(x(y, z), z; y)).
5. x+(y, z) = PX(x− c∇xK(x, z; y)).

First of all, we can prove that φt is bounded from below:

Lemma B.1 We have
φ(x, y, z) ≥ f.

Proof By the definition of d(·) and P (·), we have

K(x, z; y) ≥ d(y, z), P (z) ≥ d(y, z), , P (z) ≥ f. (B.1)

Hence, we have

φ(x, y, z) = P (z) + (K(x, z; y)− d(y, z)) + (P (z)− d(y, z))

≥ P (z)

≥ f.

Next, we state some “error bounds”.

Lemma B.2 There exist constants σ1, σ2, σ3 independent of y such that

‖x(y, z)− x(y, z′)‖ ≤ σ1‖z − z′‖, (B.2)
‖x∗(z)− x∗(z′)‖ ≤ σ1‖z − z′‖, (B.3)
‖x(y, z)− x(y′, z)‖ ≤ σ2‖y − y′‖, (B.4)

‖xt+1 − x(yt, zt)‖ ≤ σ3‖xt − xt+1‖, (B.5)

for any y, y′ ∈ Y and z, z′ ∈ X , where σ1 = p
−L+p , σ2 = 2(p+L)

p−L , σ3 = 1+(c(−L+p))
c(−L+p) ..

Proof The proofs of (B.2), (B.3) and (B.5) are the same as those in Lemma 3.6 in [30] and hence
omitted. We only need to prove (B.4). Using the strong convexity of K(·, z; y) of x, we have

K(x(y, z), z; y)−K(x(y′, z), z; y) ≤ −−L+ p

2
‖x(y, z)− x(y′, z)‖2, (B.6)

K(x(y, z), z; y′)−K(x(y′, z), z; y′) ≥ −L+ p

2
‖x(y, z)− x(y′, z)‖2. (B.7)

Moreover, using the concavity of K(x, z; ·) of y, we have

K(x(y, z), z; y′)−K(x(y, z), z; y)

≤ 〈∇yK(x(y, z), z; y), y′ − y〉. (B.8)

Using the Lipschitz-continuity of∇yK(x, z; ·), we have

K(x(y′, z), z; y)−K(x(y′, z), z; y′)

≤ 〈∇yK(x(y′, z), z; y), y′ − y〉+
L

2
‖y − y′‖2. (B.9)
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Combining (B.6) and (B.9), we have

(−L+ p)‖x(y, z)− x(y′, z)‖2 (B.10)

≤ 〈∇yK(x(y, z), z; y)−∇yK(x(y′, z), z; y), y′ − y〉+
L

2
‖y − y′‖2 (B.11)

≤ (p+ L)‖x(y′, z)− x(y, z)‖‖y − y′‖+
L

2
‖y − y′‖2, (B.12)

where the last inequality uses the Cauchy-schwarz inequality and the Lipschitz-continuity of
∇xK(·, z; y) of x.

Let ζ = ‖x(y, z)− x(y′, z)‖/‖y − y′‖. Then (B.10) becomes

ζ2 ≤ p+ L

p− L
ζ +

L

2(p− L)
.

Hence, we only need to solve the above quadratic inequality. We have

ζ2 ≤ 1

2
ζ2 +

1

2

(
p+ L

p− L

)2

+
L

2(p− L)

≤ 1

2
ζ2 +

1

2

(
p+ L

p− L

)2

+
p+ L

2(p− L)

≤ 1

2
ζ2 +

1

2

(
p+ L

p− L

)2

+
1

2

(
p+ L

p− L

)2

=
1

2
ζ2 +

(
p+ L

p− L

)2

,

where the first inequality is due to the AM-GM inequality and the third inequality is because (p +
L)/(p− L) > 1. Therefore

ζ ≤
√

2
p+ L

p− L
< 2

p+ L

p− L
.

Hence, we can take σ2 = 2(p+ L)/(p− L) and finish the proof.

The following lemma is a direct corollary of the above lemma:

Lemma B.3 The dual function d(·, z) is a differentiable function of ywith Lipschitz continuous gra-
dient

∇yd(y, z) = ∇yK(x(y, z), z; y) = ∇yf(x(y, z), y)

and
‖∇yd(y′, z)−∇yd(y′′, z)‖ ≤ Ld‖y′ − y′′‖, ∀ y′, y′′ ∈ Y.

with Ld = L+ Lσ2.

Remark.Note that if p ≥ 3L, then we have σ2 = 2(p+ L)/(p− L) ≥ 4L and hence

Ld ≥ 5L. (B.13)

Proof Using Danskin’s theorem in convex analysis [52], we know that d is a differentiable function
with

∇yd(y, z) = ∇yK(x(y, z), z; y) = ∇yf(x(y, z), y).

To prove the Lipschitz-continuity, we have

‖∇yd(y′, z)−∇yd(y′′, z)‖ = ‖∇yK(x(y′, z), z; y′)−∇yK(x(y′′, z), z; y′′)‖
≤ ‖∇yK(x(y′, z), z; y′)−∇yK(x(y′, z), z; y′′)‖

+‖∇yK(x(y′, z), z; y′′)−∇yK(x(y′′, z), z; y′′)‖
≤ L‖y′ − y′′‖+ L‖x(y′, z)− x(y′′, z)‖
≤ L‖y′ − y′′‖+ Lσ2‖y′ − y′′‖ = Ld‖y′ − y′′‖,

where the last inequality is due to Lemma B.2.

We then prove the following basic estimate.
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Proposition B.4 We let

p > 3L, c <
1

p+ L
,α < min{ 1

11L
,

1

4Lσ2
3

} = min{ 1

11L
,

c2(p− L)2

4L(1 + c(p− L))2
}, β < min{ 1

36
,

(p− L)2

384p(p+ L)2
}.

(B.14)
Then we have

φt − φt+1 (B.15)

≥ 1

8c
‖xt − xt+1‖2

+
1

8α
‖yt − yt+(zt)‖2 +

p

8β
‖zt − zt+1‖2 (B.16)

−24pβ‖x∗(zt)− x(yt+(zt), zt)‖2 (B.17)

To prove this basic estimate, we need a series of lemmas.

Lemma B.5 (Primal Descent) For any t, we have

K(xt, zt; yt)−K(xt+1, zt+1; yt+1) ≥ 1

2c
‖xt − xt+1‖2 + 〈∇yK(xt+1, zt; yt), yt − yt+1〉

−L
2
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2. (B.18)

Proof Notice that the step of updating x is a standard gradient projection, hence we have

K(xt, zt; yt)−K(xt+1, zt; yt) ≥ 1

2c
‖xt − xt+1‖2. (B.19)

Next, because∇yK(x, z; y) is L-Lipschitz-continuous of y, we have

K(xt+1, zt; yt)−K(xt+1, zt; yt+1) ≥ 〈∇yK(xt+1, zt; yt), yt − yt+1〉 − L

2
‖yt − yt+1‖2.(B.20)

Based on the update of variable zt+1, i.e. zt+1 = zt + β(xt+1 − zt), it is easy to show that

K(xt+1, zt; yt+1)−K(xt+1, zt+1; yt+1) ≥ p

2β
‖zt − zt+1‖2.

Combining (B.19)-(B.21), we finish the proof.

Lemma B.6 (Dual Ascent) For any t, we have

d(yt+1, zt+1)− d(yt, zt) ≥ 〈∇yd(yt, zt), yt+1 − yt〉 − Ld
2
‖yt − yt+1‖2

+
p

2
(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1)) (B.21)

= 〈∇yK(x(yt, zt), zt; yt), yt+1 − yt〉 − Ld
2
‖yt − yt+1‖2(B.22)

+
p

2
(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1)) (B.23)

Proof Using Lemma B.3, we have

−d(yt+1, zt)− (−d(yt, zt)) ≤ −〈∇yd(yt, zt), yt+1 − yt〉+
Ld
2
‖yt − yt+1‖2

= −〈∇yK(xt+1, zt; yt), yt+1 − yt〉+
Ld
2
‖yt − yt+1‖2.(B.24)

Next,
d(yt+1, zt+1)− d(yt+1, zt)

= K(x(yt+1, zt+1), zt+1; yt+1)−K(x(yt+1, zt), zt; yt+1)

≥ K(x(yt+1, zt+1), zt+1; yt+1)−K(x(yt+1, zt+1), zt; yt+1)

=
p

2
‖x(yt+1, zt+1)− zt+1‖2 − p

2
‖x(yt+1, zt+1)− zt‖2

=
p

2
(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1)). (B.25)
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Finally, using (B.24)-(B.25) we finish the proof.

Recall that
Y (z) = {y ∈ Y | arg max

y∈Y
d(y, z)}

Note that
P (z) = d(y(z), z),

for any y(z) ∈ Y (z).

Lemma B.7 (Proximal Descent) For any t ≥ 0, there holds

P (zt+1)− P (zt) ≤ p

2
(zt+1 − zt)T (zt + zt+1 − 2x(y(zt+1, zt)), (B.26)

where y(zt+1) is arbitrary y belongs to the set Y (zt+1).

Proof In the rest of the Appendix, y(zt+1) denote any y belongs to the set Y (zt+1). Using Kaku-
toni’s Theorem, we have

min
x∈X

max
y∈Y

K(x, z; y) = max
y∈Y

min
x∈X

K(x, z; y),

which implies
max
y∈Y

d(y, z) = min
x∈X

h(x, z) = P (z).

Hence we have

P (zt+1)− P (zt)
(i)
≤ P (zt+1)− d(y(zt+1), zt)
(ii)
= d(y(zt+1), zt+1)− d(y(zt+1), zt)
(iii)
= K(x(y(zt+1), zt), zt+1; y(zt+1))−K(x(y(zt+1), zt), zt; y(zt+1))
(iv)
=

p

2
(zt+1 − zt)T (zt+1 + zt − 2x(y(zt+1), zt)),

where (i) and (iii) are because of (B.1), (ii) is because of the definition of y(zt+1) and (iv) is from
direct calculation.

Lemma B.8 x∗(z) = x(y, z) for any y ∈ Y (z) and x∗(z) is continuous in z. Moreover, we have

z = x∗(z)

if and only if z ∈ X∗.

We define
y+(z) = PY (y + α∇yK(x(y, z), z; y)).

Then we have

Lemma B.9 We have
‖yt+1 − yt+(zt)‖ ≤ κ‖xt − xt+1‖,

where κ = αLσ3.

Proof By the nonexpansiveness of the projection operator, we have

‖yt+1 − yt+(zt)‖ = ‖PY (yt + α∇yK(x(yt, zt), zt; yt))− PY (yt + α∇yK(xt+1, zt; yt))‖
≤ ‖(yt + α∇yK(x(yt, zt), zt; yt))− (yt + α∇yK(xt+1, zt; yt))‖
≤ αL‖xt+1 − x(yt, zt)‖
≤ αLσ3‖xt − xt+1‖,

where the first inequality is due to the nonexpansiveness of the projection operator, the second is
because of the Lipschitz-continuity of∇yK and the last inequality is because of (B.5).
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Now we can prove Proposition B.4.

Proof Using the three descent lemma, we have

Φt − Φt+1

≥ 1

2c
‖xt − xt+1‖2 + 〈∇yK(xt+1, zt; yt), yt − yt+1〉 − L

2
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2

+2〈∇yK(x(yt, zt), zt; yt), yt+1 − yt〉 − 2Ld
2
‖yt − yt+1‖2 + p(zt+1 − zt)T (zt+1 + zt − 2x(yt+1, zt+1))

−p(zt+1 − zt)T (zt + zt+1 − 2x(y(zt+1), zt))

=
1

2c
‖xt − xt+1‖2 − L+ 2Ld

2
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2 + 〈∇yK(xt+1, zt; yt), yt+1 − yt〉

+2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉 (B.27)

+2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1)). (B.28)

Using the property of the projection operator and the update of the dual variable yt, we have

〈∇yK(xt+1, zt; yt), yt+1 − yt〉 ≥ 1

α
‖yt − yt+1‖2.

Substituting the above inequality into (B.27), we get

Φt − Φt+1

≥ 1

2c
‖xt − xt+1‖2 + (

1

α
− L+ 2Ld

2
)‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2

+2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉
+2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1))

≥ 1

2c
‖xt − xt+1‖2 + (

1

α
− L+ 10L

2
)‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2

+2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉
+2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1))

≥ 1

2c
‖xt − xt+1‖2 +

1

2α
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2

+2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉
+2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1))

where the second inequality is because of (B.13) and the last inequality is because α ≤ 1
11L .

Notice that

2p(zt+1 − zt)T (x(y(zt+1), zt)− x(yt+1, zt+1))

= 2p(zt+1 − zt)T ((x(y(zt+1), zt)− x(y(zt+1), zt+1)) + (x(y(zt+1)), zt+1)− x(yt+1, zt+1)))

= 2p(zt+1 − zt)T (x(y(zt+1), zt)− x(y(zt+1), zt+1))

+2p(zt+1 − zt)T (x(y(zt+1)), zt+1)− x(yt+1, zt+1))
(i)
≥ −2pσ1‖zt+1 − zt‖2 + 2p(zt+1 − zt)T (x(y(zt+1)), zt+1)− x(yt+1, zt+1))
(ii)
≥ −2pσ1‖zt+1 − zt‖2 − p

6β
‖zt+1 − zt‖2 − 6pβ‖x(y(zt+1), zt+1)− x(yt+1, zt+1)‖2,

where (i) is because of the Cauchy-Schwarz inequality and Lemma B.2 and (ii) is due to the AM-GM
inequality. Also we have

2〈∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt), yt+1 − yt〉
≥ −2‖∇yK(x(yt, zt), zt; yt)−∇yK(xt+1, zt; yt)‖ · ‖yt+1 − yt‖
≥ −2L‖xt+1 − x(yt, zt)‖ · ‖yt − yt+1‖
≥ −Lσ2

3‖yt − yt+1‖2 − Lσ−2
3 ‖xt+1 − x(yt, zt)‖2

≥ −Lσ2
3‖yt − yt+1‖2 − L‖xt+1 − xt‖2,
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where the first inequality is because of the Cauchy-Schwarz in equality, the second inequality is be-
cause∇yK = ∇yf is L-Lipschitz-continuous, the third inequality is due to the AM-GM inequality
and the last is because of (B.5).

Hence we have

Φt − Φt+1

≥ (
1

2c
− L)‖xt − xt+1‖2 + (

1

2α
− Lσ2

3)‖yt − yt+1‖2 + (
p

2β
− 2pσ1 −

p

6β
)‖zt − zt+1‖2

−6pβ‖x(y(zt+1), zt+1)− x(yt+1, zt+1)‖2

By the conditions of p, c, we have
1/2c− L ≥ 1/4c.

By the condition for α, we have
α < 1/(4Lσ2

3),

which yields
1/(2α)− Lσ2

3 ≥ 1/(4α)

And by the conditions that β < 1
36 and p ≥ 3L together with the definition of σ1,

p

2β
− 2pσ1 −

p

6β
≥ p

4β
.

Then we have

Φt − Φt+1

≥ 1

4c
‖xt − xt+1‖2 +

1

4α
‖yt − yt+1‖2 +

p

4β
‖zt − zt+1‖2

−6pβ‖x(y(zt+1), zt+1)− x(yt+1, zt+1)‖2 (B.29)

=
1

4c
‖xt − xt+1‖2 +

1

4α
‖yt − yt+1‖2 +

p

4β
‖zt − zt+1‖2

−6pβ‖x∗(zt+1)− x(yt+1, zt+1)‖2, (B.30)

where the last equality is because of Lemma B.8. By Lemma B.9 and the convexity of the norm
square function, we have

‖yt+1 − yt‖2 = ‖(yt+1 − yt+(zt)) + (yt+(zt)− yt)‖2 (B.31)

≥ ‖yt − yt+(zt)‖2/2− ‖yt+1 − yt+(zt)‖2 (B.32)

≥ ‖yt − yt+(zt)‖2/2− κ2‖xt − xt+1‖2. (B.33)

Similarly, by Lemma B.9, (B.4) and the convexity of norm square function, we have

‖x∗(zt+1)− x(yt+1, zt+1)‖2 (B.34)

= ‖(x∗(zt+1)− x∗(zt)) + (x∗(zt)− x(yt+(zt), zt)) (B.35)

+(x(yt+(zt), zt)− x(yt+1, zt)) + (x(yt+1, zt)− x(yt+1, zt+1))‖2 (B.36)

≤ 4‖x∗(zt+1)− x∗(zt)‖2 + 4‖x∗(zt)− x(yt+(zt), zt)‖2 (B.37)

+4‖x(yt+(zt), zt)− x(yt+1, zt)‖2 + 4‖x(yt+1, zt)− x(yt+1, zt+1)‖2 (B.38)

≤ 4σ2
1‖zt − zt+1‖2 + 4‖x∗(zt)− x(yt+(zt), zt)‖2 (B.39)

+4σ2
2κ

2‖xt − xt+1‖2 + 4σ2
1‖zt − zt+1‖2 (B.40)

= 8σ2
1‖zt − zt+1‖2 + 4‖x∗(zt)− x(yt+(zt), zt)‖2 (B.41)

+4σ2
2κ

2‖xt − xt+1‖2. (B.42)

Substituting (B.33) and (B.42) to (B.29) yields

φt − φt+1

≥ (
1

4c
− 24pβσ2

2κ
2 − κ2/(4α))‖xt − xt+1‖2

+
1

8α
‖yt − yt+(zt)‖2 + (

p

4β
− 48pβσ2

1)‖zt − zt+1‖2

−24pβ‖x∗(zt)− x(yt+(zt), zt)‖2.
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Notice that
α < 1/(4Lσ2

3) < 1/(4cL2σ2
3),

and hence κ2/(4α) = α2L2σ2
3/(4α) < 1/(16c). Also we have

β < 1/(96pασ2
2),

thus
24pβσ2

2κ
2 < κ2/(4α) ≤ 1/(16c).

Consequently, we have

(
1

4c
− 24pβσ2

2κ
2 − κ2/(4α)) > 1/(8c).

By the definition of σ1 and the conditions p ≥ 3L, β < 1
36 , we have

(
p

4β
− 48pβσ2

1) ≥ p

8β
.

Combining the above, we have

φt − φt+1

≥ 1

8c
‖xt − xt+1‖2

+
1

8α
‖yt − yt+(zt)‖2 +

p

8β
‖zt − zt+1‖2

−24pβ‖x∗(zt)− x(yt+(zt), zt)‖2,

which finishes the proof.

B.2 General nonconvex-concave case

We have the following error bound:

Lemma B.10 We have

(p− L)‖x∗(zt)− x(yt+(zt), zt)‖2 < (1 + αL)‖yt − yt+(zt)‖ · dist(yt+(zt), Y (zt)).

≤ (1 + αL)‖yt − yt+(zt)‖ ·D(Y ),

where D(Y ) is the diameter of Y .

The proof will be given in the next section.

Lemma B.11 If

max{‖xt − xt+1‖, ‖yt − yt+(zt)‖, ‖zt − xt+1‖} ≤ λ̄ε, (B.43)

then (xt+1, yt+1) is a λ̄ε− solution for some λ̄ > 0.

Proof

By the update of xt+1, we have

xt+1 = arg min
x∈X
{〈∇xf(xt, yt) + p(xt − zt), x− xt〉+

1

2c
‖x− xt‖2 + ι(x)}.

Therefore, we have

0 ∈ ∇xf(xt+1, yt) + p(xt+1 − zt) +
1

2c
(xt+1 − xt) + ι(xt+1). (B.44)

Similarly, we have

0 ∈ arg min
y∈Y
{−∇yf(xt+1, yt) +

1

α
(yt+1 − yt) + ι(yt+1)}. (B.45)
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We let

u = (∇xf(xt+1, yt)−∇xf(xt, yt))+(∇xf(xt+1, yt+1)−∇xf(xt+1, yt))−p(xt+1−zt)− 1

2c
(xt+1−xt)

and
v = ∇yf(xt+1, yt)−∇yf(xt+1, yt+1)− 1

α
(yt+1 − yt).

By the Lipschitz-continuity of∇xf(x, y), Lemma B.9 and (B.43), we have

‖u‖ ≤ L‖xt − xt+1‖+ L‖yt − yt+1‖+ pε+
1

2c
ε

≤ (1 + p+ 1/2c)ε+ L‖yt − yt+(zt)‖+ ‖yt+(zt)− yt+1‖
≤ (1 + p+ 1/2c)ε+ ε+ κε,

where the first and the second inequalities are both due to (B.43), the triangular inequality and the
Lipschitz-continuity of ∇xf(·) and the last inequality is because of Lemma B.9. Similarly, we can
prove that

‖v‖ ≤ (L+ 1 + κ+
1

α
)ε.

Hence, we finish the proof with η = 2 + L+ p+ κ+ max{1/2c, 1/α}.

We say that φt decreases sufficiently if

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

pβ

16
‖zt − xt+1‖2. (B.46)

Lemma B.12 Let T > 0. Then if for any t ∈ {0, 1, · · · , T − 1}, (B.46) holds, there must exist
a t ∈ {1, 2, · · · , T} such that (xt, yt) is an C/

√
Tβ-solution. Moreover, if for any t ≥ 0, (B.46)

holds, Then any limit point of (xt, yt) is a solution of (1.2), and the iteration complexity of attaining
an ε−solution is O(1/ε2).

Proof

We have

φ0 − f ≥
T−1∑
t=0

(φt − φt+1) (B.47)

≥ min{1/(16c), 1/(16α), p/16}
T−1∑
t=0

max{‖xt − xt+1‖2, (B.48)

‖yt − yt+(zt)‖2, β‖xt+1 − zt‖2}, (B.49)

where the last inequality is due to (B.46). Therefore, there exists a t ∈ {0, 1, · · · , T − 1} such that

min{1/(16c), 1/(16α), p/16}max{‖xt−xt+1‖2, ‖yt−yt+(zt)‖2, β‖xt+1−zt‖2} ≤ (φ0−f)/T.

Since β < 1, we further get

min{1/(16c), 1/(16α), p/16}max{‖xt−xt+1‖2, ‖yt−yt+(zt)‖2, ‖xt+1−zt‖2} ≤ (φ0−f)/(Tβ).

Hence, by Lemma B.11, (xt+1, yt+1) is a
√

(φ0 − f)/((1/8c+ 1/8α+ 16)Tβ)-solution. Accord-
ing to above analysis, If (B.46) holds for any t, we can attain an ε-solution within

(φ0 − f)/(βmin{1/(16c), 1/(16α), p/16}ε2)

iterations. Moreover, if (B.46) holds for any t, by (B.47), we have

max{‖xt − xt+1‖, ‖yt − yt+(zt)‖, ‖zt − xt+1‖} → 0. (B.50)
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Consequently, for any limit point (x̄, ȳ) of (xt, yt), there exists a z̄ such that

max{‖x̄− x̄+(ȳ, z̄)‖, ‖ȳ − ȳ+(z̄)‖, ‖x̄+(ȳ, z̄)− z̄‖} = 0,

which yields (x̄, ȳ) is a stationary solution. Here

x+(y, z) = PX(x−∇xK(x, z; y)).

Now we are ready to prove Theorem 3.4.

Proof [Proof of Theorem 3.4] There are two cases (B.51) and (B.52) as discussed in the proof for
the general nonconvex-concave problems in last subsection.

1. For some t ∈ {0, 1, · · · , T − 1}, we have

1

2
max{ 1

8c
‖xt−xt+1‖2, 1

8α
‖yt−yt+(zt)‖2, p

8β
‖zt−zt+1‖2} ≤ 24pβ‖x∗(zt)−x(yt+(zt), zt)‖2.

(B.51)
2. For any t ∈ {0, 1, · · · , T − 1},

1

2
max{ 1

8c
‖xt−xt+1‖2, 1

8α
‖yt−yt+(zt)‖2, p

8β
‖zt−zt+1‖2} ≥ 24pβ‖x∗(zt)−x(yt+(zt), zt)‖2

(B.52)

In the first case (B.51), we have

‖yt − yt+(zt)‖2 ≤ 384pβα‖x(yt+(zt), zt)− x∗(zt)‖2

≤ 384pβα
(1 + αL)

p− L
‖yt − yt+(zt)‖D(Y ).

Hence, letting λ1 = 384pα (1+αL)
p−L ·D(Y ), we have

‖yt − yt+(zt)‖ ≤ λ1β. (B.53)

Moreover,

‖xt+1 − zt‖2 = ‖(zt+1 − zt)/β‖2 (B.54)
(i)
≤ 384p‖x(yt+(zt), zt)− x∗(zt)‖2 (B.55)
(ii)
≤ 384p

1 + αL

p− L
D(Y )‖yt − yt+(zt)‖ (B.56)

(iii)
≤ 384p

1 + αL

p− L
D(Y )λ1β, (B.57)

where Inequality (i) is due to Inequality (B.51) and (ii) is because of Lemma B.10 and (iii) is due to
(B.53). We also have

‖xt − xt+1‖2
(i)
≤ 384cpβ‖x∗(zt)− x(yt+(zt), zt)‖2 (B.58)
(ii)
≤ 384pcβ

1 + αL

p− L
D(Y )‖yt − yt+(zt)‖ (B.59)

(iii)
≤ 384pc

1 + αL

p− L
λ1D(Y )β2, (B.60)

where (i) is due to (B.51), (ii) is due to Lemma B.10 and (iii) is because of (B.53). Combining the
above, in the first case, we have

max{‖xt − xt+1‖2, ‖yt − yt+(zt)‖2, ‖zt − xt+1‖2} (B.61)

≤ max{λ2β
2, λ2

1β
2, λ3β}, (B.62)

where λ2 = 384p 1+αL
p−L D(Y )λ1 and λ3 = 192pc 1+αL

p−L λ1D(Y ) According to Lemma B.11, there
exists a λ > 0 such that (xt+1, yt+1) is a λmax{β,

√
β}-solution.
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In the second case, we have

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

1

16β
‖zt − zt+1‖2

for any t ∈ {0, 1, · · · , T − 1}. By Lemma B.12, there exists a t ∈ {0, 1, · · · , T − 1}, such that

(xt+1, yt+1) is a
√

(φ0 − f)/((1/8c+ 1/8α+ 16)Tβ)-solution. Finally taking β = 1/
√
T and

combining the two cases with Lemma B.12 yield the desired results.

B.3 The max problem is over a discrete set

In this subsection, we prove Theorem 3.8. We will prove that under the strict complementarity
assumption, the potential function φt decreases sufficiently after any iteration. Then by the following
simple lemma, we can prove Theorem 3.8.

By the bounded level set assumption (Assumption 3.7) and the fact that ψ(z) ≤ P (z), for any
(x0, y0, z0) ∈ Rn+m+n, there exists a constant R(x0, y0, z0) > 0 such that

{z | P (z) ≤ φ(x0, y0, z0)} ⊆ B(R(x0, y0, z0)).

Then we have the following “dual error bound”. Note that this error bound is homogeneous com-
pared to Lemma B.10.

Lemma B.13 Let
x+(y, z) = PX(x−∇xK(x, z; y)).

If the strict complementarity assumption and the bounded level set assumption hold for (1.2) , there
exists δ > 0, such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
‖x(y+(z), z)− x∗(z)‖ < σ5‖y − y+(z)‖

for some constant σ5 > 0.

Equipped with the dual error bound, we can prove that the potential function decreases after any
iteration in the following proposition:

Proposition B.14 Suppose the conditions in Theorem 3.8 holds, we have

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

p

16β
‖zt − zt+1‖2. (B.63)

Proof We set β < min{δ/
√
λ2, δ/λ1, δ

2/λ3, 1/(384pασ2
5)}. First, we prove that

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

p

16β
‖zt − zt+1‖2. (B.64)

and
‖zt‖ < R(x0, y0, z0)

for any t ≥ 0. We prove it by induction. We will prove that

1. If ‖zt‖ ≤ R(x0, y0, z0), then

φt − φt+1 ≥ 1

16c
‖xt − xt+1‖2 +

1

16α
‖yt − yt+(zt)‖2 +

p

16β
‖zt − zt+1‖2. (B.65)

2. If φt+1 ≤ φt, we have ‖zt+1‖ ≤ R(x0, y0, z0).

For t = 0, it is trivial that ‖zt‖ ≤ R(x0, y0, z0). For the first step, assume that we have ‖zt‖ ≤
R(x0, y0, z0). There are two cases:
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1. For some t, we have

1

2
max{ 1

8c
‖xt−xt+1‖2, 1

8α
‖y−yt+(zt)‖2, p

8β
‖zt−zt+1‖2} ≤ 24pβ‖x∗(zt)−x(yt+(zt), zt)‖2.

(B.66)
2. For any t,

1

2
max{ 1

8c
‖xt−xt+1‖2, 1

8α
‖y−yt+(zt)‖2, p

8β
‖zt−zt+1‖2} ≥ 24pβ‖x∗(zt)−x(yt+(zt), zt)‖2

(B.67)

For the first case, as in the last subsection, we have

max{‖xt − xt+1‖2, ‖yt − yt+(zt)‖2, ‖xt+1 − zt‖2}
≤ max{λ2β

2, λ2
1β

2, λ3β}
≤ δ2.

Hence, we can make use of Lemma B.13. In fact, we have

24pβ‖x(yt+(zt), zt)− x∗(zt)‖2 ≤ 24pβσ2
5‖yt − yt+(zt)‖

≤ 1

16α
‖yt − yt+(zt)‖2,

which yields (B.46) together with (B.15). For the second case, (B.46) holds as in the last subsec-
tion. Hence, if ‖zt‖ ≤ R(x0, y0, z0), we have (B.46). For the second step, if (B.46) holds for
0, 1, · · · , (t− 1), we have

P (zt+1) ≤ φt+1

≤ φ0.

Hence, zt+1 ∈ B(R(x0, y0, z0)). Combining these, for any t ≥ 0, ‖zt‖ ≤ R(x0, y0, z0) and (B.46)
holds. Then the theorem comes from Lemma B.12.

C The multi-block cases

The proofs for the multi-block case is similar to the one-block case. In this section, we briefly
introduce the proof of them. Note that the only differences for proving the theorem s are Lemma
B.5, (B.5) and Proposition 4.1. Instead, we have the following:

Lemma C.1 (Primal Descent) For any t, we have

K(xt, zt; yt)−K(xt+1, zt+1; yt+1) ≥ 1

2c
‖xt − xt+1‖2 + 〈∇yK(xt+1, zt; yt), yt − yt+1〉

−L
2
‖yt − yt+1‖2 +

p

2β
‖zt − zt+1‖2. (C.1)

The proof of it is the same as Lemma 5.3 in [30]. The error bound (B.5) becomes:

Lemma C.2 We have
‖xt+1 − x(yt, zt)‖ ≤ σ′3‖xt − xt+1‖,

where σ′3 = (c(p− L) + 1 + c(L+ p)N3/2)/c(p− L).

The proof of Lemma C.2 is similar to Lemma 5.2 in [30] hence omitted here. Because of the above
two differences, we have a replacement of Proposition B.4:

Proposition C.3 We let

p > 3L, c <
1

p+ L
,α < min{ 1

11L
,

c2(p− L)2

4L(1 + c(p+ L)N3/2 + c(p− L))2
},min{ 1

36
, β <

(p− L)2

384p(p+ L)2
}.

(C.2)
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Then we have
φt − φt+1 (C.3)

≥ 1

4c
‖xt − xt+1‖2

+
1

4α
‖yt − yt+(zt)‖2 +

p

8β
‖zt − zt+1‖2 (C.4)

−24pβ‖x∗(zt)− x(yt+(zt), zt)‖2 (C.5)

The proof of Proposition C.3 is similar to Proposition B.4 hence omitted.

D Proof of the error bound lemmas

D.1 Proof of lemma B.10

Let
x+(y, z) = PX(x− c∇xK(x, z; y))

and
y+(z) = PY (y + α∇yK(x(y, z), z; y)).

Then Lemma B.10 can be written as

Lemma D.1 We have
(p− L)‖x∗(z)− x(y+(z), z)‖2 < (1 + αL)‖y − y+(z)‖ · dist(y+(z), Y (z)).

≤ (1 + αL)‖y − y+(z)‖ ·D(Y ),

where D(Y ) is the diameter of Y .

Proof By the strong convexity of K(·, z; y), we have

K(x∗(z), z, ; y+(z))−K(x(y+(z), z)z; y+(z)) ≥ p− L
2
‖x(y+(z), z)− x∗(z)‖2 (D.1)

K(x(y+(z), z), z; y(z))−K(x∗(z), z; y(z)) ≥ p− L
2
‖x(y+(z), z)− x∗(z)‖2, (D.2)

where y(z) is an arbitrary vector in Y (z). Notice that y+(z) is the maximizer of the following
problem:

max
ȳ∈Y
{K(x(y+(z), z), z; ȳ)− δT (y, y+(z); z)ȳ},

where
δ(y, y+(z); z) = (y+(z) + α∇ȳK(x(y+(z), z), z; y+(z)))− (y + αȳK(x(y+(z), z), z; y))

satisfies
‖δ(y, y+(z); z)‖ < (1 + αL)‖y − y+(z)‖,

by the Lipschitz-continuity of∇yK = ∇yf . Hence, we have
K(x(y+(z), z), z; y(z))− δT (y, y+(z); z)y(z)

≤ K(x(y+(z), z), z; y+(z))− δT (y, y+(z); z)y+(z).

Then, we have the following estimates:

K(x(y+(z), z), z; y(z))−K(x(y+(z), z), z; y+(z)) (D.3)

≤ (y(z)− y+(z))T δ(y, y+(z); z) (D.4)
≤ ‖y+(z)− y(z)‖ · (1 + αL)‖y − y+(z)‖. (D.5)

Also because y(z) maximizes
max
ȳ∈Y

K(x∗(z), ȳ; z),

we have
K(x∗(z), z; y(z)) ≥ K(x∗(z), z; y+(z)). (D.6)

Since y(z) is an arbitrary vector in Y (z), combining (D.1), (D.3), (D.6), we have
(p− L)‖x∗(z)− x(y+(z), z)‖2 < (1 + αL)‖y − y+(z)‖ · dist(y+(z), Y (z)),

which is the desired result.
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D.2 Proof of Lemma B.13

For a pair of min-max solution of (1.2), the KKT conditions in the following hold:

JTF (x∗)y = 0, (D.7)
m∑
i=1

yi = 1, (D.8)

yi ≥ 0,∀i ∈ [m] (D.9)
µ− νi = fi(x),∀i ∈ [m], (D.10)
νi ≥ 0, νiyi = 0,∀i ∈ [m], (D.11)

where µ is the multiplier of the equality constraint
∑m
i=1 yi = 1 and νi is the multiplier for the

inequality constraint yi ≥ 0.

Definition D.2 For y ∈ Y , we define the active set

A[y] = {i ∈ [m] | yi = 0}.

We also define the inactive set of y as follows:

I[y] = {i ∈ [m] | yi > 0}.

Definition D.3 For an x ∈ Rn, we define the top coordinate set T (x) as the collection of all indexes
of the top coordinates of F (x), i.e., fi(x) > fj(x) if i ∈ T (x), j /∈ T (x) and fi(x) = fj(x) if
i, j ∈ T (x).

According to the KKT conditions, it is easy to see that for (x, y) ∈W ∗,

I[y] ⊆ T (x).

Recall that we have the following strict complementarity condition:

Assumption D.4 For any (x, y) satisfying (D.7), we have

νi > 0,∀i ∈ A[y].

It is easy to see that if the strict complementarity assumption holds,

I[y] = T (x)

for (x, y) ∈W ∗. Then we can prove the following “dual error bound”.

Lemma D.5 If the strict complementarity assumption holds for (1.2) , there exists δ > 0, such that
if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
‖x(y+(z), z)− x∗(z)‖ < σ5‖y − y+(z)‖

for some constant σ5 > 0.

To prove this, we need the following lemmas. First, we prove that if the residuals go to zero, the
iteration points converge to a solution.

Lemma D.6 If {zk} is a sequence with ‖zk‖ ≤ R(x0, y0, z0) and

max{‖xk − xk+(yk, zk)‖, ‖yk − yk+(zk)‖, ‖xk+(yk, zk)− zk‖} → 0,

there exists a sub-sequence of {zk} converging to some z̄ ∈ X∗.

Proof It is just a direct corollary of Lemma B.11.
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Lemma D.7 Let
M(x) =

{
JT (x)F (x) 1

}
.

Then if (x, y) ∈W ∗, the matrix M(x) is of full row rank.

Proof We prove it by contradiction. If for some (x∗, y∗, µ∗, ν∗) satisfying (D.7), M(x∗) is not of
full row rank. Without loss of generality, we assume that T (x∗) = {1, 2, · · · , |T (x∗)|} Then there
exists a nonzero vector v ∈ R|T (x∗)| such that

MT (x∗)v = 0.

Let d = mini∈I[y∗]{yi/|vi|}. Then we define a vector y′ ∈ Rm as:

y′i = y∗ − dvi, when i ∈ I[y∗];

y′i = 0, when otherwise.

Notice that y∗i = 0 for any i /∈ T (x∗). Then y′ satisfies

JTF (x∗)y′ = 0,
m∑
i=1

y′i = 1,

y′i ≥ 0, i ∈ T (x∗),

y′i = 0, i /∈ T (x∗).

Therefore, (x∗, y′, µ, ν) still satisfies (D.7) . Moreover, let i0 ∈ I[y∗] satisfying d = y∗i0/vi0 . Then
y′i0 = νi0 = 0. This is a contradiction to the strict complementarity assumption.

We then have the following corollary from the above lemma and (D.7):

Corollary D.8 For any x∗ ∈ X∗, there exists only one y ∈ Y such that (x∗, y) ∈ W ∗ and there
exists only one (µ, ν) such that (x∗, y, µ, ν) satisfies (D.7).

Proof First, this (y, µ, ν) must exist due to the existence of a solution. Next, the solution y must
satisfy

MT (x∗)y = (0, 0, · · · , 0, 1)T .

By Lemma D.7,MT (x∗) is of full column rank hence the solution of y is unique. Furthermore, since∑m
i=1 yi = 1, there is at least one i such that yi > 0, νi = 0. Without loss of generality, we assume

that y1 > 0, ν1 = 0. Then µ = f1(x∗) by (3.5). Further by (3.5), νi = fi(x
∗)− µ, i = 2, 3, · · · ,m.

Hence, µ, νi are uniquely defined.

Lemma D.9 If the strict complementarity assumption holds for (1.2) , there exists δ > 0, γ > 0,
such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

γ(M(x∗(z))) ≥ γ and γ(M(x(y, z))) ≥ γ.

Proof We prove it by contradiction. Suppose it is not true, there exists {zk} ⊆ B(R(x0, y0, z0))
such that γ(M(x∗(zk)))→ 0 and

max{‖xk − xk+(yk, zk)‖, ‖yk − yk+(zk)‖, ‖xk+(yk, zk)− zk‖} → 0.

Since T (x) has only finite choice, without loss of generality, we assume that T (x∗(zk)) = T for
any k(passing to a sub-sequence if necessary). By Lemma D.6, there exists a z̄ ∈ X∗ such that
zk → z̄. We let

M̃(z̄) = lim
k→∞

M(x∗(zk)) = {JT (x∗(z̄)) 1} .
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By the continuity of x∗(·)((B.3) of Lemma B.2) and the continuity of the function of taking the least
singular value, we know that

γ(M̃(z̄)) = 0,

where we also use the fact that x∗(z̄) = z̄ by Lemma B.8. Moreover, according to the definition
of T [z̄], we have fi(x∗(zk)) > fj(x

∗(zk)) for any k with i ∈ T , j /∈ T . Therefore, we have
fi(z̄) ≥ fj(z̄) for i ∈ T , j /∈ T . Consequently, we have

T ⊆ T [z̄].

Therefore M̃(x∗(z̄)) is a row sub-matrix ofM(z̄). Consequently,M(z̄) is not of full row rank. This
is a contradiction! For x(y, z), it is similar to prove the desired result. Hence the details are omitted.

The following lemma shows that if the residuals are small, the active set of y+(z) and y(z) ∈ Y (z)
are the same.

Lemma D.10 If the strict complementarity assumption holds for (1.2) , there exists δ > 0, such that
if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ,

we have
A[y+(z)] = A[y(z)], for some y(z) ∈ Y (z).

Proof We prove it by contradiction. Suppose that there exists a sequence {(xk, yk, zk)} such that

max{‖xk − xk+(yk, zk)‖, ‖yk − yk+(zk)‖, ‖xk+(yk, zk)− zk‖} → 0

and
A[yk+(zk)] 6= A[y(zk)].

Since {yk+(zk)}, {zk} are bounded, we assume that yk+(zk)→ ȳ, zk → z̄. We write down the KKT
condition for (x(yk+(zk), zk), yk+(zk)) as follows:

JTF (x(yk+(zk), zk))yk+(zk) + p(x(yk+(zk), zk)− zk) = 0, (D.12)
m∑
i=1

(yki )+(zk) = 1, (D.13)

(yki )+(zk) ≥ 0,∀i ∈ [m] (D.14)
1

α
(yki )+(zk)− 1

α
yki + fi(x(yk, zk)) + µk − νki = fi(x(yk+(zk), zk)),∀i ∈ [m], (D.15)

νki ≥ 0, νki (yki )+(zk) = 0,∀i ∈ [m], (D.16)

It is not hard to check that µ, ν are bounded. Hence, we assume that µk → µ̄ and νk → ν̄. We take
limit to (D.12) and make use of the fact that

‖yk − yk+(zk)‖ → 0

together with Lemma B.2. We then attain that (x(ȳ, z̄), ȳ) is a min-max solution of (1.2), i.e.,
(x(ȳ, barz), ȳ, µ̄, ν̄) satisfies (D.7). By the strict complementarity assumption, ν̄i > 0 for i ∈ A[ȳ]
and ȳi > 0 for i /∈ A[ȳ]. Hence, for k sufficiently large, we have A[yk+(zk)] = A[ȳ]. Similarly,
when k is sufficiently large, we have

A[y(zk)] = A[ȳ].
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We also write down the KKT conditions for x∗(z) for some z.

JTF (x∗(z))y + p(x∗(z)− z) = 0, (D.17)
m∑
i=1

yi = 1, (D.18)

yi ≥ 0,∀i ∈ [m] (D.19)
µ− νi = fi(x),∀i ∈ [m], (D.20)
νi ≥ 0, νiyi = 0,∀i ∈ [m], (D.21)

Lemma D.11 If the strict complementarity assumption holds for (1.2) , there exists δ > 0, such that
if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
dist(y+(z), y(z)) < λ‖x∗(z)− x(y+(z), z)‖

for some constant λ > 0.

Proof By Lemma D.10 , if the strict complementarity assumption holds for (1.2) , there exists δ > 0,
such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ,

we have
A[y+(z)] = A[y(z)],

for some y(z) ∈ Y (z). Hence, we have
T (x∗(z)) = T (x(y+(z), z)).

Let T = T (x∗(z)). Then for i /∈ T , yi(z) = (y+(z))i = 0 and ‖y(z) − y+(z)‖ = ‖(y(z))T −
(y+(z))T ‖. Using the optimality conditions for x(y+(z), z) (D.12) and x∗(z) (D.17), we have

MT (x(y+(z), z))(y+(z))T +

{
p(x(y+(z), z)− z)

0

}
= (0, 0, · · · , 0, 1), (D.22)

and

MT (x∗(z))(y(z))T +

{
p(x∗(z)− z)

0

}
= (0, 0, · · · , 0, 1). (D.23)

Note that (D.22) can be written as

MT (x∗(z))(y+(z))T = MT (x∗(z))(y+(z))T −MT (x(y+(z), z))(y+(z))T −
{
p(x(y+(z), z)− z)

0

}
.

(D.24)
By (D.23) and (D.24), we have

MT (x∗(z))((y(z))T −(y+(z))T ) = (MT (x(y+(z), z))−MT (x∗(z)))(y+(z))T −
{
p(x(y+(z), z)− x∗(z))

0

}
.

Therefore, taking norms to the above and the Lemma D.9, we have
γ‖(y+(z))T − (y(z))T ‖ ≤

√
mL‖x(y+(z), z)− x∗(z)‖‖(y+(z))T ‖+ p‖x(y+(z), z)− x∗(z)‖

≤ (
√
mL+ p)‖x∗(z)− x(y+(z), z)‖,

where the first inequality uses the Lipschitz-continuity of∇xfi and the second is because ‖y+(z)‖ ≤
1. Hence, we finish the proof with λ = (p+

√
mL)/γ.

Proof [Proof of Lemma B.13] By Lemma B.10 and Lemma D.11, we have

‖x(y+(z), z)− x∗(z)‖ ≤ 1 + αL

λ(p− L)
‖y − y+(z)‖,

which finishes the proof with σ5 = 1+αL
λ(p−L) .
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E Discussion of the strict complementarity condition

In this section, we discuss some issues about the strict complementarity assumption. First, notice
that the min-max problem (1.1) and (1.2) are both variational inequalities. As mentioned in the main
text of the paper, the strict complementarity assumption is common in the field of variation inequality
[39, 40]. While this assumption is popular, it is still interesting to weaken the assumption. Inspired
by Lemma D.7, we prove Theorem 3.8 and Lemma 4.2 using a weaker regularity assumption rather
than the strict complementarity assumption:

Assumption E.1 For any (x∗, y∗) ∈W ∗, the matrix M(x∗) is of full column rank.

Here recall that
M(x∗) =

{
JT (x∗) 1

}
.

We say that Assumption E.1 is weaker since the strict complementarity assumption (Assumption
D.4) can imply Assumption E.1 according to Lemma D.7. For this assumption, we have the follow-
ing two claims:

1. If we replace Assumption D.4 by Assumption E.1 in Theorem 3.8, we can attain a same
result;

2. In a robust regression problem (will define in E.2), if the data is joint from a continuous
distribution, this regularity assumption holds with probability 1.

E.1 Replacing Assumption D.4 by Assumption E.1 in Theorem 3.8

In this section, we will see that we can prove the dual error bound (Lemma 4.2) using Assumption
E.1 instead of Assumption D.4.

Lemma E.2 Let
x+(y, z) = PX(x−∇xK(x, z; y)).

If Assumption E.1 and the bounded level set assumption hold for (1.2) , there exists δ > 0, such that
if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
‖x(y+(z), z)− x∗(z)‖ < σ5‖y − y+(z)‖

for some constant σ5 > 0.

Using this Lemma, we can prove Theorem 3.8 using Assumption E.1:

Theorem E.3 Consider solving problem 1.2 by Algorithm 2 or Algorithm 3. Suppose that Assump-
tion E.1 holds and either Assumption 3.7 holds or assume {zt} is bounded. Then there exist con-
stants β′ and β′′ (independent of ε and T ) such that the following holds:

1. (One-block case) If we choose the parameters in Algorithm 2 as in (3.3) and further let
β < β′ , then

(a) Every limit point of (xt, yt) is a solution of (1.2).
(b) The iteration complexity of Algorithm 2 to obtain an ε-stationary solution isO(1/ε2).

2. (Multi-block case) Consider using Algorithm 3 to solve Problem 1.2. If we replace the
condition for α in (3.3) by (3.4) and require β satisfying β < ε2 and β < β′′, then we have
the same results as in the one-block case.
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E.2 The rationality of Assumption E.1

Intuitively, the assumption E.1 holds for “generic problem”. We rigorously justify this intuition
for a simple problem. More specifically, we prove that this regularity assumption is generic for a
robust regression problem using square loss, i.e., the regularity condition holds with probability 1 if
the outputs of the data points are joint from some continuous distribution. Consider the following
problem:

min
x∈Rn

max
y∈Y

1

2
yi(`i −Ψ(x, ξi))

2, (E.1)

where Y is the probability simplex , Ψ(·) is a smooth function used to fit the data (for example the
neural network) and ξi, `i are the input and the output of the i-th data point. We define Ψi(x) =
Ψ(x, ξi) for convenience. We further make the following mild assumptions:

Assumption E.4 `i is joint independently from a continuous distribution over a positive measure
set Li ⊆ R.

Here a continuous distribution over Li means that for any zero measure set S ⊆ R, Pr(x ∈ S ∩
Li) = 0. With assumption, for any zero measure set S ⊆ Rm, Pr((`1, · · · , `m)T ∈ S∩

∏m
i=1 Li) =

0.

Assumption E.5 Let Ψ(x) = (Ψ1(x), · · · ,Ψm(x))T . Then Ψ(Rn) ∩
∏m
i=1 Li = Ω, where Ω is a

zero measure set in
∏m
i=1 Li.

This assumption means that minx maxy∈Y fi(x) > 0 with probability 1. This assumption is reason-
able. If there exists an x∗ such that maxi fi(x

∗) = 0, then becaus fi(x) ≥ 0, we have fi(x∗) = 0
for all i. In this case, we do not need the min-max fomulation! We just need to solve the finite sum
problem minx

∑m
i=1 fi(x). However, in many cases, the uncertainty is large, we do need the robust

optimization formulation. So in these cases, Assumption E.5 is reasonable.

Moreover, we have the following lemma:

Lemma E.6 Suppose that Assumption E.4 holds. If m > n, Assumption E.5 holds with probability
1.

Proof It is direct from the claim that a smooth map Ψ maps a zero measure set into a zero measure
set. Specializing to this lemma, the map Ψ maps Rn into Rm, hence the image Ψ(Rn) is of zero
measure since Rn is a zero measure set of Rm. Therefore, Ψ(Rn)∩

∏m
i=1 Li is zero measure in Rm.

Then we have the following result:

Proposition E.7 Suppose that Assumption E.4 and Assumption E.5 hold. Then with probability 1,
every solution of (E.1) satisfies Assumption E.1.

E.3 Proof of Lemma E.2 and Theorem E.3

For a set S ⊆ [m], we define
MS(x) =

{
JSF (x;`S) 1

}
,

where JSF (x; `S) = ((Ψi(x)− `i)∇xΨi(x) | i ∈ S).

Similar to the proof of Theorem 3.8, to prove Theorem E.3, we only to prove Lemma E.2. Hence,
in this section, we only prove Lemma E.2. The proof is similar to the proof of Lemma 4.2. Hence
we only give the main steps. First, similar to Lemma D.9, we have the following:

Lemma E.8 If Assumption E.1 holds for Problem (E.1) , there exists δ > 0, γ > 0, such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ,

then γ(MT (y,z)(x
∗(z))) ≥ γ and γ(MT (y,z)(x(y+(z), z))) ≥ γ, where

T (y, z) = T (x∗(z)) ∪ T (x(y+(z), z)).
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Proof We prove it by contradiction. Suppose it is not true, there exist {xk}, {yk} ⊆ Y and
{zk} ⊆ B(R(x0, y0, z0)) such that γ(MT k(x∗(zk))), γ(MT k(x(yk+(zk), zk)))→ 0 and

max{‖xk − xk+(yk, zk)‖, ‖yk − yk+(zk)‖, ‖xk+(yk, zk)− zk‖} → 0,

where T k = T (x∗(zk)) ∪ T (x(yk+(zk), zk)). Since T k has only finite choice, without loss of
generality, we assume that T k = T for any k(passing to a sub-sequence if necessary). By Lemma
D.6, there exists a z̄ ∈ X∗ such that zk → z̄. Hence, by Lemma B.2 and Lemma B.8, we have

x∗(zk)→ x∗(z̄) = z̄.

Therefore by the definition of T (x), when k is sufficiently large, T (x∗(zk) ⊆ T (x∗(z̄)) = T (z̄)).
Moreover, since ‖yk − yk+(zk)‖ → 0, by Lemma B.10, we have

‖x(ȳk+(zk), zk)− x∗(zk)‖ → 0.

and hence T (x(yk+(zk), zk)) ⊆ T (z̄). Then T k ⊆ T (z̄) and γ(M)T k = 0, which contradicts
Assumption E.1.

We then can attain a result similar to Lemma D.11.

Lemma E.9 If Assumption E.1 holds for (1.2) , there exists δ > 0, such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ

we have
dist(y+(z), y(z)) < λ‖x∗(z)− x(y+(z), z)‖

for some constant λ > 0.

Proof By Lemma E.8, we can find a δ > 0 and a γ > 0, such that if

‖z‖ ≤ R(x0, y0, z0),

and
max{‖x− x+(y, z)‖, ‖y − y+(z)‖, ‖x+(y, z)− z‖} < δ,

then γ(MT (y,z)(x
∗(z))) ≥ γ and γ(MT (y,z)(x(y+(z), z))) ≥ γ, where

T (y, z) = T (x∗(z)) ∪ T (x(y+(z), z)).

Let T = T (y, z). Then for i /∈ T , yi(z) = (y+(z))i = 0 and ‖y(z) − y+(z)‖ = ‖(y(z))T −
(y+(z))T ‖. Using the optimality conditions for x(y+(z), z) (D.12) and x∗(z) (D.17), we have

MT
T (x(y+(z), z))(y+(z))T +

{
p(x(y+(z), z)− z)

0

}
= (0, 0, · · · , 0, 1), (E.2)

and

MT
T (x∗(z))(y(z))T +

{
p(x∗(z)− z)

0

}
= (0, 0, · · · , 0, 1). (E.3)

Note that (E.2) can be written as

MT
T (x∗(z))(y+(z))T = MT

T (x∗(z))(y+(z))T −MT
T (x(y+(z), z))(y+(z))T −

{
p(x(y+(z), z)− z)

0

}
.

(E.4)
By (E.3) and (E.4), we have

MT
T (x∗(z))(y(z)−y+(z)) = (MT

T (x(y+(z), z))−MT
T (x∗(z)))(y+(z))T −p(x(y+(z), z)−x∗(z)).

Therefore, taking norms to the above and the Lemma D.9, we have

γ‖(y+(z))T − (y(z))T ‖ ≤
√
mL‖x(y+(z), z)− x∗(z)‖‖(y+(z))T ‖+ p‖x(y+(z), z)− x∗(z)‖

≤ (
√
mL+ p)‖x∗(z)− x(y+(z), z)‖,

where the first inequality uses the Lipschitz-continuity of∇xfi and the second is because ‖y+(z)‖ ≤
1. Hence, we finish the proof with λ = (p+

√
mL)/γ.

Then Lemma E.9 and Lemma 4.3 yield Theorem E.3.
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E.4 Proof of Proposition E.7

For a set S ⊆ [m], we define

MS(x; `S) =
{
JSF (x;`S) 1

}
,

where JSF (x; `S) = ((Ψi(x)− `i)∇xΨi(x) | i ∈ S).

Proof Define the event ET ,P to be: there exists a solution (x∗, y∗) ∈ W ∗ , such that M(x∗) is not
of full row rank, T (x∗) = T and Ψi(x

∗) − `i ≥ 0 for i ∈ P and Ψi(x
∗) − `i for i /∈ P . Then

Proposition E.7 is equivalent to the claim:
Pr(∪T ⊆[m],P⊆T ET ,P) = 0.

Since there are only finite choice of the sets T and P , we only need to prove that for any T ⊆ [m]
and P ⊆ T , ET ,P holds with probability 0, Without loss of generality, we let T = {1, 2, · · · , k}
and P = {1, 2, · · · , p} with p ≤ k. We define δi for i ∈ [k] as δi = 1 for i ∈ P and δi = −1
otherwise. Then if ET ,P holds, there exists an x∗ = (x∗1, · · · , x∗n)T ∈ X∗ and xn+1 ∈ R, such that

1. (x∗1, · · · , x∗n)T ∈ X∗;
2. x∗n+1 ≥ 0;
3. T (x∗) = T ;
4. Ψi(x

∗)− `i = x∗n+1 ≥ 0 for i ∈ P and Ψi(x
∗)− `i = −x∗n+1 ≤ 0 for i /∈ P .

5. MT (x∗1, · · · , x∗n; `1, · · · , `k) is row rank deficient.

Define X̄∗T ,P(`1, · · · , `k) to be the set of all x∗ ∈ X∗ satisfying the above conditions. Consider the
map G : Rn+1 → Rk defined as

G(x1, · · · , xn+1) = (Ψ1(x1, · · · , xn)− δ1xn+1, · · · ,Ψk(x1, · · · , xn)− δkxn+1)T .

Then G(x∗1, · · · , x∗n+1) = (`1, · · · , `k) for any (x∗1, · · · , x∗n+1)T ∈ X̄∗T ,P(`1, · · · , `k). Define the
set X̄T ,P ⊆ Rn+1 be the collection of all (x1, · · · , xn+1) satisfying:

1. xn+1 > 0.
2. there exist ¯̀

1, · · · , ¯̀
k with Ψi(x1, · · · , xn)− ¯̀

i = xn+1 for i ∈ P and Ψi(x1, · · · , xn)−
`i = −xn+1 for i /∈ P .

3. MT (x1, · · · , xn; ¯̀
1, · · · , ¯̀

k) is rank deficient.

4. ( ¯̀
1, · · · , ¯̀

k)T ∈
∏k
i=1 Li.

Therefore, if ET ,P holds, we have

(`1, · · · , `m)T ∈ (G(X̄T ,P) ∩
k∏
i=1

Li)×
m∏

i=k+1

Li ∪ Ω.

For (x1, · · · , xn+1)T ∈ X̄T ,P , notice that JG(x1, · · · , xn+1) is attained by doing elemen-
tary matrix transformation to the matrix MT (x1, · · · , xn; ¯̀

1, · · · , ¯̀
k), i.e., multiplying the first

k columns of MT (x1, · · · , xn; ¯̀
1, · · · , ¯̀

k) by 1/xn+1 and multiplying the k + 1-th column of
MT (x1, · · · , xn; ¯̀

1, · · · , ¯̀
k) by −1 and then multiplying the i-th row by δi for i ∈ [n]. There-

fore, MT (x1, · · · , xn; ¯̀
1, · · · , ¯̀

k) is also rank deficient.

Consequently, G(x1, · · · , xn+1) with (x1, · · · , xn+1)T ∈ X̄T ,P is a critic value of G (see [53]).
Then by Sard’s Theorem [53], G(X̄T ,P) is a zero measure set in Rk. Hence, G(X̄T ,P) ∩

∏k
i=1 Li

is a zero measure set in
∏k
i=1 Li. Recall that if ET ,P holds, we have

(`1, · · · , `m)T ∈ Z = (G(X̄T ,P) ∩
k∏
i=1

Li)×
m∏

i=k+1

Li ∪ Ω.

By the above analysis, G(X̄T ,P) ∩
∏k
i=1 Li is a zero measure set in

∏k
i=1 Li. Hence, (G(X̄T ,P) ∩∏k

i=1 Li) ×
∏m
i=k+1 Li is a zero measure set in

∏m
i=1 Li. Also by Assumption E.5, Ω is a zero

measure set in
∏m
i=1 Li. Consequently, Z is a zero measure set in

∏m
i=1 Li. Then by the continuity

of the distribution of `, we finish the proof.

34



F Details in Experiments

Recall the procedure of training a robust neural network against adversarial attacks can be formu-
lated as a min-max problem:

min
w

N∑
i=1

max
δi, s.t. |δi|∞≤ε

`(f(xi + δi;w), yi), (F.1)

where w is the parameter of the neural network, the pair (xi, yi) denotes the i-th data point, and δi
is the perturbation added to data point i.

As (F.1) is nonconvex-nonconcave and thus difficult to solve directly, researchers introduce an ap-
proximation of (F.1) [20] where the approximated problem has a concave inner problem. The ap-
proximation is first replacing the inner maximization problem in F.1 with a finite max problem:

min
w

N∑
i=1

max {`(f(x̂i0(w);w), yi), . . . , `(f(x̂i9(w);w), yi)} , (F.2)

where each x̂ij(w) is the result of a targeted attack on sample xi by changing the output of the
network to label j.

To obtain the targeted attack x̂ij(w), we need to introduce an additional procedure. Recall the
images in MNIST have 10 classifications, thus the last layer of the neural network architecture for
learning classification have 10 different neurons. To obain any targeted attack x̂ij(w), we perform
gradient ascent for K times:

xk+1
ij = ProjB(x,ε)

[
xkij + α∇x(Zj(x

k
ij ,w)− Zyi(xkij ,w))

]
, k = 0, · · · ,K − 1,

and let x̂ij(w) = xKij . Here, Zj is the network logit before softmax corresponding to label j; α > 0
is the step-size; and ProjB(x,ε)[·] is the projection to the infinity ball with radius ε centered at x.
Using the same setting in [20], we set the iteration number as K = 40, the stepsize as α = 0.01,
and the perturbation level ε chosen from {0.0, 0.1, 0.2, 0.3, 0.4}.
Now we can replace the finite max problem (F.2) with a concave problem over a probabilistic sim-
plex, where the entire problem is non-convex in w, but concave in t:

min
w

N∑
i=1

max
t∈T

9∑
j=0

tj`
(
f
(
xKij ;w

)
, yi
)
, T = {(t1, · · · , tm) |

m∑
i=1

ti = 1, ti ≥ 0}. (F.3)

We use Convolutional Neural Network(CNN) with the architecture detailed in Table 3 in the exper-
iments. This setting is the same as in [20].

Layer Type Shape

Convolution + ReLU 5× 5× 20
Max Pooling 2× 2
Convolution + ReLU 5× 5× 50
Max Pooling 2× 2
Fully Connected + ReLU 800
Fully Connected + ReLU 500
Softmax 10

Table 3: Model Architecture for the MNIST dataset.

The results are listed in Table 2. The first three lines are the results obtained from [20] and the fourth
line is obtained by using the code provided in [20] to train their algorithm. As for comparison, we run
our algorithm 2 for the same number of iterations (100 iterations) with parameter p = 0.2, β = 0.8
and α = 0.5. In the experiment, to compute the projection of a vector of dimension d over the
probability simplex, we use the algorithm from [54] which has a complexity O(d log d).
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Figure 2: Convergence speed of Smoothed-GDA and the algorithm in [20] on CI-
FAR10.

We also perform robust training on CIFAR10 [55] and comparing with the algorithm in [20] after 30
epochs. As shown in Figure 2, our algorithm still outperforms [20] in convergence speed. To obtain
the targeted attack at each epoch, we set the iteration number K as 10, the stepsize as 0.007, and the
perturbation level as 0.031 which are the same settings appear in [51]. We achieve robust accuracy
38.5% and testing accuracy 82.6% which are comparable to the results from the literature [56] in
robust training.
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