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Abstract

Recently generating natural language explanations has shown very promising re-
sults in not only offering interpretable explanations but also providing additional
information and supervision for prediction. However, existing approaches usually
require a large set of human annotated explanations for training while collecting
a large set of explanations is not only time consuming but also expensive. In
this paper, we develop a general framework for interpretable natural language
understanding that requires only a small set of human annotated explanations for
training. Our framework treats natural language explanations as latent variables
that model the underlying reasoning process of a neural model. We develop a
variational EM framework for optimization where an explanation generation mod-
ule and an explanation-augmented prediction module are alternatively optimized
and mutually enhance each other. Moreover, we further propose an explanation-
based self-training method under this framework for semi-supervised learning.
It alternates between assigning pseudo-labels to unlabeled data and generating
new explanations to iteratively improve each other. Experiments on two natural
language understanding tasks demonstrate that our framework can not only make
effective predictions in both supervised and semi-supervised settings, but also
generate good natural language explanations 2.

1 Introduction

Building interpretable systems for natural language understanding is critical in various domains
such as healthcare and finance. One promising direction is generating natural language explanations
for prediction [1–4], which has been shown very promising recently as they can not only offer
interpretable explanations for back-box prediction systems but also provide additional information
and supervision for prediction [5–7]. For example, given a sentence “The only thing more wonderful
than the food is the service.”, a human annotator may write an explanation like “Positive, because the
word ‘wonderful’ occurs within three words before the term food”, which is much more informative
than the label “positive” as it explains how the decision was made. Moreover, the explanation can
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serve as an implicit logic rule that can be generalized to other instances like “The food is wonderful, I
really enjoyed it.”

There are some recent works [3, 4] that study generating natural language explanations for predictions
and/or leverage generated explanations as additional features for prediction. For example, Camburu
et al. [3] trained a language model to general natural language explanations for the task of natural
language inference by training on a corpus with annotated human explanations. Rajani et al. [4]
proposed a two-stage framework for common sense reasoning which first trained a natural language
explanation model and then further trained a prediction model with the generated explanations
as additional information. These approaches achieve promising performance in terms of both
prediction performance and explainability. However, a large number of labeled examples with human
explanations are required, which is expensive and sometimes impossible to obtain. Therefore, we are
looking for an approach that makes effective prediction, offers good explainability, but requires a
limited number of human explanations for training.

In this paper, we propose such an approach. We start from the intuition that the explanation-augmented
prediction model is able to provide informative feedback for generating meaningful natural language
explanations. Therefore, different from existing work which trains the explanation generation model
and the explanation-augmented prediction model in separate stages, we propose to jointly train
the two models. Specifically, taking the task of text classification as an example, we propose a
principled probabilistic framework for text classification, where natural language Explanations are
treated as Latent Variables (ELV). Variational EM [8] is used for the optimization, and only a set of
human explanations are required for guiding the explanation generation process. In the E-step, the
explanation generation model is trained to approximate the ground truth explanations (for instances
with annotated explanations) or guided by the explanation-augmentation module through posterior
inference (for instances without annotated explanations); in the M-step, the explanation-augmented
prediction model is trained with high-quality explanations sampled from the explanation generation
model. The two modules mutually enhance each other. As human explanations can serve as implicit
logic rules, they can be used for labeling unlabeled data. Therefore, we further extend our ELV
framework to an Explantion-based Self-Training (ELV-EST) model for leveraging a large number of
unlabeled data in the semi-supervised setting.

To summarize, in this paper we make the following contributions:

• We propose a principled probabilistic framework called ELV for text classification, in which natural
language explanation is treated as a latent variable. It jointly trains an explanation generator and an
explanation-augmented prediction model. Only a few annotated natural language explanations are
required to guide the natural language generation process.

• We further extend ELV for semi-supervised learning (the ELV-EST model), which leverages natural
language explanations as implicit logic rules to label unlabeled data.

• We conduct extensive experiments on two tasks: relation extraction and sentiment analysis.
Experimental results prove the effectiveness of our proposed approach in terms of both prediction
and explainability in both supervised and semi-supervised settings.

2 Related Work

Natural language (NL) explanations have been proved very useful for both model explanations and
prediction in a variety of tasks recently [9, 10, 3, 4, 4]. Some early work [11, 9, 10] exploited NL
explanation as additional features for prediction. For example, Srivastava et al. [9] converted NL
explanations into classifier features to train text classification models. Fidler et al. [12] used natural
language explanations to assist in supervising an image captioning model. Very recently, Murty et al.
[10] proposed ExpBERT to directly incorporate NL explanations with BERT. However, most of these
work require the explanations to be available in both training and testing instances, which is not
realistic as annotating the explanation of a huge amount of instances is very time consuming and
expensive. Moreover, the prediction becomes much easier once the explanations are given in the
testing data.

There is some recent work that studied training a natural language explanation model and then used
the generated explanations for prediction. For example, Camburu et al. [3] and Rajani et al. [4]
proposed to separately train a model to generate NL explanations and a classification model that
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Figure 1: Overview of ELV. During E-step, we train our generator p(e|x, y) to generate explanations
given labeled data. For labeled data with annotated explanations (i.e. DE), we maximize the
likelihood of the ground truth explanations. For labeled data without explanations (i.e. DL), we
minimize the KL divergence between the variational distribution qθ(e|x, y) and the ground truth
posterior p(e|x, y), which is calculated with the help of the prediction model. During M-step, we use
the explanation generated in E-step to train the predictor p(y|x, e) with MLE.

takes the generated explanations as additional input. Their approaches have shown very promising
for improving the interpretability of classification models and increasing the prediction performance
with explanations as additional features. However, their approaches require a large number of human
annotated NL explanations to train the explanation generation model. Moreover, these approaches
fail to model the interaction between generating NL explanations and exploiting NL explanations
for prediction. As a result, there is no guarantee that the generated explanations reflect the decision-
making process of the prediction model or beneficial to the prediction model. As reported by Camburu
et al. [3] that interpretability comes at the cost of loss in performance. In this paper, we propose a
principled probabilistic framework with explanations as latent variables to minimize the number of
training instances with explanations by jointly training the natural language explanation module and
the explanation-augmented prediction module.

Another relevant direction is treating natural language explanations as additional supervisions for
semi-supervised learning instead of as additional features [13, 7]. For example, Hancock et al. [13]
utilized a semantic parser to parse the NL explanations into logical forms (i.e., “labeling function”).
The labeling functions are then employed to match the unlabeled examples either hardly [13] or
softly [7] to generate pseudo-labeled datasets used for training models. However, these approaches
require the explanations to be annotated in a form that can be accurately parsed by a semantic
parser to form labeling functions, which may not be possible for many NLP applications. In our
semi-supervised framework, semantic parsing is not required, and natural language explanations
are interpreted with distributed representation obtained by pre-trained language models for labeling
unlabeled data.

3 Methodology

3.1 Problem Definition

Given an input sentence x, we aim to predict its label y and generate a natural language (NL)
explanation e describing why x is classified as y. Specifically, given a few amount of training
example with NL explanation annotation DE = {(x1, y1, e1, ) , ..., (xn, yn, en, )} and a relatively
large set of labeled examples DL = {(xn+1, yn+1) , ..., (xm, ym)}, our goal is to learn: 1) An
explanation generation model Eθ that parametrize q(e|x, y), which takes a labeled example (x, y)
as input and generates a corresponding natural language explanation e, and 2) an explanation-
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augmented prediction model Mφ, which parametrize p(y|x, e) and takes an unlabeled example x and
NL explanations (as implicit rules) E to assign a label y to x.

3.2 Natural Language Explanation as Latent Variables

Given labeled data (x, y), we treat the nature language explanation e as a latent variable. For training,
we aim to optimize the evidence lower bound (ELBO) of log p(y|x), which can be formulated as:

log p(y|x) = log

∫
p(e, y|x)de = log

∫
qθ(e|x, y)

p(e, y|x)
qθ(e|x, y)

de (1)

≥ L(θ, φ) = Eqθ(e|x,y) log
p(e, y|x)
qθ(e|x, y)

= Eqθ(e|x,y) log
pφ(y|e, x)p(e|x)

qθ(e|x, y)
, (2)

where qθ(e|x, y) is the variational distribution of posterior distribution p(e|x, y), p(e|x) is the prior
distribution of explanation e for instance x, and pφ(y|e, x) is the explanation-augmented prediction
model.

Due to the large search space of natural language explanation e, instead of using reprametrization
trick used in variational autoencoder [14], here we use the variational-EM algorithm for optimization.
The overview of ELV is illuatrated in Figure 1. Note that in our training data, the explanations of a
few number of labeled examples (i.e., DE) are given. Therefore, we first initialize the explanation
generation modelEθ = qθ(e|x, y) and the prediction modelMφ = pφ(y|e, x) by training onDE with
maximum likelihood estimation (MLE). Then, we update the aforementioned models by maximizing
the log-likelihood log p(y|x) using DL ∪ DE with variational-EM. In the variational E-step, we train
the explanation generator to minimize the KL divergence between qθ(e|x, y) and p(e|x, y), which
will be detailed in Section 3.3. In the M-step, we fix θ and p(e|x) and update the parameters φ of the
prediction model to maximize the log-likelihood log p(y|x).

3.3 E-step: Explanation Generation model

As the core component of our variational EM framework, the explanation generation model is
expected to generate “soft” logic rules in the form of natural language explanations. However,
training a seq2seq model to generate explanations of high quality from scratch is very challenging.
Motivated by the recent finding that pretrained language models encode various types of factual
knowledge and commonsense knowledge in their parameters [15–17], we employ UniLM [18]—a
unified pre-trained language generation model that achieved state-of-the-art performance on many
text generation tasks—as the explanation generation model Eθ in our framework. Specifically, the
explanation generation model takes as input the concatenation of input sentence x and the text
description of its corresponding label y to generate an explanation, which explains the label decision
in natural language and can be treated as an implicit logic rule that can generalize to other examples.

Note that in the training data, only a small set of labeled examples are provided with explanations.
Therefore, in the variational E-step, for labeled data (x, y) without explanations (i.e. DL), we are
trying to use the variational distribution qθ(e|x, y) to approximate the ground truth posterior p(e|x, y),
which can be calculated as

p(e|x, y) ∼ pφ(y|x, e)p(e|x) (3)

where pφ(y|x, e) is parameterized by the prediction model and provides feedback for generating
meaningful natural language explanations. We will introduce the detailed parametrization of p(e|x)
and pφ(y|x, e) in the M-step.

For labeled data with explanations (i.e. DE), we just need to maximize the likelihood of the ground
truth explanations. Therefore, the overall objective function of E-step can be summarized as:

O =
∑

(x,y)∈DE

log q(e|x, y) +
∑

(x,y)∈DL

KL(q(e|x, y)‖p(e|x, y)) (4)

3.4 M-step: Explanation-Augmented Prediction model

During M-step, the explanation-augmented prediction model is trained to predict the label of input
sentence x with the explanation e generated from the variational distribution q(e|x, y).
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However, note that the label y is not available during testing, and the explanations for the unlabeled x
can only be generated from the prior distribution p(e|x). Therefore, there are some discrepancies
between the distributions of the explanations for labeled data in the training stage and those for unla-
beled data in the testing stage since generating a natural language explanation without conditioning
on a label is harder. To mitigate this issue, in the prediction model, besides sampling an explanation
from the variational distribution, we also add a set of explanations from p(e|x), which retrieves a set
of explanations from similar sentences.

Specifically, given an input sentence x and the set of labeled and pseudo-labeled data consists of
(x′, e′, y′), we retrieve N explanations E := {e′i}Ni=1 of which the corresponding sentences x′ are the
most similar to the input sentence x, measured by the cosine similarity between the embedding of x
and each x′ from DE under SentenceBERT [19], a pretrained sentence embedding model. Note that
we do not directly use a seq2seq model to parametrize p(e|x) because we find generating explanations
without predicted labels often results in irrelevant and even misleading explanations.

Algorithm 1: Explanation-based Self-Training (ELV-EST)
Input: DE = {(x1, y1, e1, ) , ..., (xn, yn, en, )}, DL = {(xn+1, yn+1) , ..., (xm, ym)},

unlabeled data DU = {xm+1, . . . , xN}, Confidence threshold T
Output: Eθ(e|x, y),Mφ(y|x,E)
initialize Eθ and Mφ with DE ∪ DL using ELV
repeat

for each xi ∈ DU do
if maxyMφ(y|x,E) > T then

Assign pseudo-label yi to xi and generate explanation ei with Eθ
Update DL = DL ∪ (xi, yi)
Update DE = DE ∪ (xi, yi, ei) (for explanation retrieval)
Update DU = DU \ xi

end
end
Train Eθ and Mφ on DE ∪ DL with ELV

until Convergence or DU = ∅

Let E = {e1, ..., en} denotes all the explanations of x. For each ei ∈ E , we feed the explanation ei
and the input sentence x, separated by a [SEP]token, to BERT [20] and use the vector at the [CLS]
token to represent the interactions between x and ei as a 768-dimensional feature vector:

I(x, ei) = BERT([[CLS];x; [SEP]; ei]) (5)

Our final classifier takes the concatenation of these vectors and outputs the final prediction as:

Mφ(y|x, E) = MLP [Average(I(x, e1); I(x, e2); ...; I(x, en))] (6)

At test time, for each unlabeled x, we first use p(e|x) to retrieve a set of explanations and then predict
a label with the explanation-augmented prediction model. Afterward, we can further employ the
explanation generation model to generate an NL explanation to explain the prediction decision based
on both the input sentence and the predicted label.

To summarize, by alternating between E-step and M-step where qθ(e|x, y) and pφ(y|e, x) are opti-
mized respectively, the explanation generation model Eθ and the explanation-augmented prediction
model Mφ are jointly optimized and mutually enhanced. Next, we describe how our framework can
be applied to the semi-supervised setting where both human-annotated explanations and ground-truth
labels are limited.

3.5 Explanation-based Self-Training

As natural language explanations can serve as implicit logic rules, which can generalize to new data
and help assign pseudo-labels to unlabeled data. Therefore, we extend the ELV to the semi-supervised
learning setting and propose an Explanation-based Self-Training (ELV-EST) algorithm. In this
setting, we only have limited labeled examples but abundant unlabeled data DU = {xm+1, . . . , xN}.
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Table 1: Statistics of datasets. We present the size of train/dev/test sets for 4 datasets in both
supervised and semi-supervised settings. Moreover, # Exp means the size of initial explanation sets.

Dataset # Explanations # Train (Supervised) # Train (Semi-supervised) # Dev # Test
SemEval [21] 203 7,016 1,210 800 2,715
TACRED [22] 139 68,006 2,751 22,531 15,509
Laptop 70 1,806 135 462 638
Restaurant 75 2,830 107 720 1,120

As illustrated in Algorithm 1, we first use ELV to initializeEθ andMφ with the limited labeled corpus
DE ∪ DL. Afterward, we iteratively use Mφ to assign pseudo-labels to unlabeled examples in DU to
extend the labeled data DL. We then use ELV to jointly train Eθ and Mφ with the augmented labeled
dataset. At the same time, we also employ Eθ to generate new explanations with unlabeled examples
and their pseudo-labels. In this way, we can harvest massive pseudo-labels and pseudo-explanations
with unlabeled examples. The pseudo-labeled examples can be used to improve the models while
also enable us to generate more NL explanations. In return, the newly generated explanations can not
only improve the explanation generation model but also serve as implicit rules that help the prediction
model assign more accurate pseudo-labels in the next iteration.

The proposed ELV-EST approach is different from the conventional self-training method in two
perspectives. First, in addition to predicting pseudo-labels for unlabeled data, our method also
discovers implicit logic rules in the form of natural language explanations, which in return helps
the prediction model to better assign noisy labels to the unlabeled data. Second, our approach can
produce explainable predictions with Eθ. Compared to recent works [7, 13] that parse explanations
to logic forms, our approach does not require task-specific semantic parsers and matching models,
making it task-agnostic and applicable to various natural language understanding tasks with minimal
additional efforts.

4 Experiments

4.1 Datasets

We conduct experiments on two tasks: relation extraction (RE) and aspect-based sentiment classifica-
tion (ASC). For relation extraction we choose two datasets, TACRED [23] and SemEval [21] in our
experiments. We use two customer review datasets, Restaurant and Laptop, which are part of SemEval
2014 Task 4 [24] for the aspect-based sentiment classification task. We use the human-annotated
explanations collected in [7] for training our explanation-based models.

4.2 Experimental Settings

We conduct experiments in both the supervised setting where we have access to all labeled examples
in the dataset and the semi-supervised setting where we only use a small fraction of labeled examples
and considering the rest labeled examples in the original dataset as unlabeled examples by ignoring
their labels. In both settings, only a few human-annotated NL explanations are available. The number
of explanations, labeled data used in supervised/unsupervised setting, and the statistics of the datasets
are presented in Table 1.

We employ BERT-base and UniLM-base as the backbone of our prediction model and explana-
tion generation model, respectively. We select batch size over {32, 64} and learning rate over
{1e-5, 2e-5, 3e-5}. The number of retrieved explanations is set to 10 for all tasks. We train the
prediction model for 3 epochs and the generation model for 5 epochs in each EM iteration. We use
Adam optimizers and early stopping with the best validation F1-score.

4.3 Compared Methods

In the supervised setting, we compare ELV with the BERT-base baseline that directly fine-tunes
the pre-trained BERT-base model on the target datasets. To show the importance of modeling the
interactions between the explanation generation model and the explanation-augmented prediction
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Table 2: Results (Micro-F1) on Relation Extrac-
tion datasets in supervised setting.

Method TACRED SemEval

BERTEM[25] 66.3 76.9
BERTEM+MTB[25] 67.1 77.5
BERT-large 66.4 78.8

BERT-base 64.7 78.3

ELV (M-step only) 65.4 80.2
ELV (ours) 65.9 80.7

Table 3: Results (Macro-F1) on ASC datasets in
supervised setting.

Method Restaurant Laptop

ASGCN [26] 72.2 71.1
BERT-PT [27] 77.0 75.1
BERT-SPC [28] 77.0 75.0

BERT-base 75.4 72.4

ELV (M-step only) 76.2 74.1
ELV (ours) 77.8 75.2

Table 4: Results (Micro-F1) on Relation Extrac-
tion datasets in semi-supervised setting.

Method TACRED SemEval

BERT-base 25.1 49.3

Pseudo-Labeling [29] 28.6 50.2
Self-Training [30] 36.9 59.5
Data Programming [13] 25.8 47.9

ELV-EST (ours) 42.5 66.4

Table 5: Results (Macro-F1) on ASC datasets in
semi-supervised setting.

Method Restaurant Laptop

BERT-base 32.2 34.6

Pseudo-Labeling [29] 42.5 38.2
Self-Training [30] 47.2 42.3
Data Programming [13] 38.2 36.3

ELV-EST (ours) 59.5 63.6

model, we also compare with a variant of our model, which only trains the explanation-augmented
prediction module with all the explanations generated from the prior distribution, denoted as ELV
(M-step only)). We also compare with some state-of-the-art algorithms on the RE and SA tasks.

In the semi-supervised setting, we compare ELV-EST against several competitive semi-supervised
text classification methods including Pseudo-Labeling [29], Self-Training [30], and Data Program-
ming [13] which incorporates NL explanations to perform semi-supervised text classification. Note
that all compared model variants incorporate BERT-base as the backbone model.

4.4 Experimental Results

Results on supervised setting. We first present the results in the supervised setting in Table 2
and 3. ELV significantly outperforms the strong BERT baseline in all four datasets, demonstrating
the effectiveness of exploiting NL explanations as additional information for natural language
understanding. ELV also consistently outperforms the ELV (M-step only), showing that ELV’s
variational EM training effectively models the interactions between explanation and prediction. Also,
the performance of ELV compares favorably against several competitive recent studies focusing on
RE and ASC respectively, further demonstrating the effectiveness of ELV.

Results on semi-supervised setting. The results in the semi-supervised setting are presented in
Table 4 and 5. In the semi-supervised scenario, ELV-EST method significantly outperforms various
semi-supervised text classification methods, as well as the data programming approach. The latter
uses pre-defined rules to parse the NL explanations into logic forms and match unlabeled examples,
on all four datasets. The improvement upon the BERT-base + self-training baseline is around 7 points
for RE datasets and over 15 points for ASC datasets in terms of F1 score. This demonstrates the
effectiveness of ELV-EST in the semi-supervised setting.

Results on explanation generation. We further evaluate the quality of the explanation generation
model with human evaluation. We invite 5 graduate students with enough English proficiency to
score the explanations generated on the test set with input sentences and the labels predicted by the
explanation-augmented prediction module3. The annotation scenarios include the explanantions’
informativeness (Info.), correctness (Corr.), and consistency (Cons.) with respect to the model
prediction. The inner-rater agreement is at 0.51 Kappa score. The details of human evaluation and
examples of generated explanations are presented in the Appendix due to space constraints.

3The prediction module is jointly trained with the explanation generation module
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Table 6: Human evaluation results. The
scores scale from 1 to 5 (the larger, the
better). The inner-rater agreement mea-
sured by Kappa score is 0.51.

Model Inf. Corr. Cons.

Seq2Seq 2.43 3.27 2.68
Transformer 2.35 3.12 2.62
UniLM 3.48 3.94 3.14

ELV (ours) 3.87 4.20 3.51

Table 7: Results on ASC datasets with expla-
nations with words randomly corrupted (80%).
Orig + Rand Exp is the 1:1 mix of original and
randomly corrupted explanations.

Method Restaurant Laptop

BERT-base 75.4 72.4

w. 80% Rand Word 73.2 70.9
Orig + Rand Exp 76.9 74.0
ELV (ours) 77.8 75.2

For comparison, we include a fine-tuned UniLM model with annotated NL explanations, as well as
two baselines trained from scratch using annotated NL explanations, one with a vanilla transformer
model and the other an attention-based LSTM seq2seq model. The results are in Table 6. The
explanations generated by our ELV framework are substantially better than those generated by the
fine-tuned UniLM model. ELV generates better NL explanations that are relevant to the model’s
decision-making process, because it models the interactions of the explanation generation model and
the prediction model.

4.5 Analysis

number of explanations

F1
 S

co
re

75

76

77

78

20 30 40 50 60 70

ELV (M-step only) ELV

number of explanations

F1
 S

co
re

30

40

50

60

20 30 40 50 60 70

ELV (M-step only) Data Programming ELV-EST

Figure 2: Performance with different number of explanations. We compare our method with
baseline(s) in both supervised setting (left) and semi-supervised setting (right).
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Figure 3: Performance with different number of labeled or unlabeled data in supervised setting (left)
and semi-supervised setting (right) respectively.

Performance with corrupted explanations. We first investigate the model performance w.r.t. the
quality of the retrieved explanations. We compare with corrupted explanations which randomly
replace 80% of the words in the original explanations, results shown in Table 7. The performance
with corrupted explanations significantly decreases as expected. The high-quality explanations help
the model better generalize while the random ones may confuse the model.

Performance with different numbers of explanations. We then investigate the performances with
different amounts of explanations. As illustrated in Figure 2 (left), with as few as 15 annotated
explanations, ELV significantly outperforms its counterpart trained without the variational EM
framework in the supervised setting. The performance of ELV continues to improve with more
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explanations but the performance of ELV (M-step only) starts to saturate with 45 explanations,
showing the importance of modeling the interactions between the explanation generation model
and explanation-augmented prediction model. Similar results are observed in the semi-supervised
learning setting in Figure 2 (right).

Performance with different numbers of labeled/unlabeled data. We also investigate the perfor-
mance of different models with different proportions of training data. From Figure 3 (left), we can
see that ELV consistently outperforms the BERT baseline with different amounts of labeled data.
Especially, the improvement is the most significant when only 10% of labeled data is used. This is
because human explanations provide additional supervision and can serve as implicit logic rules to
help generalization. In the semi-supervised learning setting (Figure 3, right), ELV-EST outperforms
traditional self-training methods by a large margin, especially with fewer unlabeled data, further
confirming the improved generalization ability from explanations.

5 Conclusion

In this paper, we propose ELV, a novel framework for training interpretable natural language
understanding models with limited human annotated explanations. Our framework treats natural
language explanations as latent variables that model the underlying reasoning process to enable
interactions between explanation generation and explanation-based classification. Experimental
results in both supervised and semi-supervised settings show that ELV can not only make effective
predictions but also generate meaningful explanations. In the future, we plan to apply our framework
to other natural language understanding tasks. In addition, we plan to test the effectiveness of
our framework on other pre-trained language models that are either stronger (e.g., XLNet [31],
RoBERTa [32], ALBERT [33], ELECTRA [34], etc.) or more computationally efficient. (e.g.,
DistilBERT [35], BERT-of-Theseus [36], DeeBERT [37], PABEE [38], etc.)

Broader Impact

Deep learning has achieved great success in natural language understanding. However, most existing
systems are not interpretable, which limit their applications to many domains such as healthcare,
finance, and legislation. In these domains, interpretability is a high priority. This paper proposed a
principled probabilistic model for text classification, which not only makes effective prediction but
also offers good explainability. Though the model is developed for the task of text classification, it is
a very general framework and could be generalized to other tasks in natural language understanding.
Such a system could be useful in a variety of tasks such as decision making with clinical notes in
healthcare, justice, and criminal identification with legal data, and risk management in finance.

On the other hand, such a system also brings potential risks depending on the quality of the generated
natural language explanations. For example, the generated natural language could have certain biases,
which have been reported in many natural language understanding systems [39, 40]. How to mitigate
these risks will be our future work. Another potential risk is that the explanation generation model
in our framework generates ad-hoc explanations that are not necessarily informative about how the
model makes its predictions, since the model can come up with whatever explanation it thinks would
pair with its predicted label. This is a common drawback for current explanation generation models.
Our framework partially mitigates this problem since the generated explanations are in return used in
the training process of the explanation-augmented classifier through the explanation retrieval process.
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