
A Visual demonstration339

Figure 1 provides a visual demonstration of the input and output of Erdős’ GNN in a simple instance340

of the maximum clique problem.341

a) Input c) Integral solutionb) GNN output

Figure 1: Illustration of our approach in a toy instance of the maximum clique problem from the
IMDB dataset. a) A random node is selected to act as a ‘seed’. b) Erdős’ GNN outputs a probability
distribution over the nodes (color intensity represents the probability magnitude) by exploring the
graph in the vicinity of the seed. c) A set is sequentially decoded by starting from the node whose
probability is the largest and iterating with the method of conditional expectation. The identified
solution is guaranteed to obey the problem constraints, i.e., to be a clique.

We would like to make two observations. The first has to do with the role of the starting seed in the342

probability assignment produced by the network. In the maximum clique problem we did not require343

the starting seed to be included in the solutions. This allowed the network to flexibly detect maximum344

cliques within its receptive field without being overly constrained by the random seed selection. This345

is illustrated in the example provided in the figure, where the seed is located inside a smaller clique346

and yet the network is able to produce probabilities that focus on the largest clique. On the other hand,347

in the local graph partitioning problem we forced the seed to always lie in the identified solution—this348

was done to ensure a fair comparison with previous methods. Our second observation has to do with349

the sequential decoding process. It is encouraging to notice that, even though the central hub node350

has a considerably lower probability than the rest of the nodes in the maximum clique, the method of351

conditional expectation was able to reliably decode the full maximum clique.352

B Experimental details353

B.1 Datasets354

The following table presents key statistics of the datasets that were used in this study:355

IMDB COLLAB TWITTER RB (Train) RB (Test) RB (Large Inst.) SF-295 FACEBOOK

nodes 19.77 74.49 131.76 216.673 217.44 1013.25 26.06 7252.71
edges 96.53 2457.78 1709.33 22852 22828 509988.2 28.08 276411.19
reduction time 0.0003 0.006 0.024 0.018 0.018 0.252 – –
number of test graphs 200 1000 196 2000 500 40 8055 14

Table 4: Average number of nodes and edges for the considered datasets. Reduction time corresponds
to the average number of seconds needed to reduce a maximum clique instance to a maximum
independent instance. Number of test graphs refers to the number of graphs that the methods were
evaluated on, in a given dataset.

To speed up computation and training, for the Facebook dataset, we kept graphs consisting of at most356

15000 nodes (i.e., 70 out of the total 100 available graphs of the dataset).357

The RB test set can be downloaded from the following link: https://www.dropbox.com/s/358

9bdq1y69dw1q77q/cliques_test_set_solved.p?dl=0. The latter was generated using the359

procedure described by Xu [75]. We used a python implementation by Toenshoff et al. [65] that is360

available on the RUN-CSP repository: https://github.com/RUNCSP/RUN-CSP/blob/master/361
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generate_xu_instances.py. Since the parameters of the original training set were not available,362

we selected a set of initial parameters such that the generated dataset resembles the original training363

set. As seen in Table 4, the properties of the generated test set are close to those of the training364

set. Specifically, the training set contained graphs whose size varied between 50 and 500 nodes and365

featured cliques of size 5 to 25. The test set was made out of graphs whose size was between 50366

and 475 nodes and contained cliques of size 10 to 25. These minor differences provide a possible367

explanation for the drop in test performance of all methods (larger cliques tend to be harder to find).368

All other datasets are publicly available.369

B.2 Neural network architecture370

In both problems, Erdős’ GNN and our own neural baselines were given as node features a one-hot371

encoding of a random node from the input graph. For the local graph partitioning setting, our372

networks consisted of 6 GIN layers followed by a multi-head GAT layer. This depth is consistent373

across all datasets. We employed skip connections and batch-normalization at every layer. For the374

maximum clique problem, we also incorporated graph size normalization for each convolution that375

we found to improve optimization stability. The networks in this setting did not use a GAT layer, as376

we found that multi-head GAT had a significant impact on the speed/memory of the network without377

any significant benefits in accuracy to match that cost. Furthermore, locality was enforced after each378

layer by masking the receptive field. That is, after 1 layer of convolution only 1-hop neighbors were379

allowed to have nonzero values, after 2 layers only 2-hop neighbors could have nonzero values, etc.380

The output of the final GNN layer was passed through a two layer perceptron giving as output one381

value per node. The aforementioned numbers were re-scaled to lie in [0, 1] (using a graph-wide382

min-max normalization) and were interpreted as probabilities p1, . . . , pn. In the case of local graph383

partitioning, the forward-pass was concluded by the appropriate re-scaling of the probabilities (as384

described in Section 3.1.3).385

B.3 Local graph partitioning setup386

Following the convention of local graph clustering algorithms, for each graph in the test set we387

randomly selected d nodes of the input graph to act as cluster seeds, where d = 10, 30, and 100388

for SF-295, TWITTER, and FACEBOOK, respectively. Each method was run once for each seed389

resulting in d sets per graph. We obtained one number per seed by averaging the conductances of the390

graphs. Table 3 reports the mean and standard deviation of these numbers.1391

The volume-constrained graph partitioning formulation can be used to minimize conductance as392

follows: Perform grid search over the range of feasible volumes and create a small interval around393

each target volume. Then, solve a volume-constrained partitioning problem for each interval, and394

return the set of smallest conductance identified.395

We used a fast and randomized variant of the above procedure with all neural approaches and396

Gurobi (see Section C.2 for more details). Specifically, for each seed node we generated a random397

volume interval within the receptive field of the network, and solved the corresponding constrained398

partitioning problem. Our construction ensured that the returned sets always contained the seed node399

and had a controlled volume. For L1 and L2 GNN, we obtained the set by sampling from the output400

distribution. We drew 10 samples and kept the best. We found that in contrast to flat thresholding401

(like in the maximum clique), sampling yielded better results in this case.402

For the parameter search of local graph clustering methods, we found the best performing parameters403

on a validation set via grid search when that was appropriate. For CRD, we searched for all the404

integer values in the [1,20] interval for all 3 of the main parameters of the algorithm. For Simple405

Local, we searched in the [0,1] interval for the locality parameter. Finally, for Pagerank-Nibble we406

set a lower bound on the volume that is 10 % of the total graph volume. It should be noted, that while407

local graph clustering methods achieved inferior conductance results, they do not require explicit408

specification of a receptive field which renders them more flexible.409

1Please note that the caption of Table 3 incorrectly reports that d = 25 seeds were used for the TWITTER
dataset and that the best conductance was kept for each graph. The correct procedure is the one described here.
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B.4 Hardware and software410

All methods were run on an Intel Xeon Silver 4114 CPU, with 192GB of available RAM. The neural411

networks were executed on a single RTX TITAN 25GB graphics card. The code is executed on412

version 1.1.0 of PyTorch, and version 1.2.0 of PyTorch Geometric.413

B.5 Pre-trained Models414

Pre-trained models of Erdős’ GNN for the maximum clique and the constrained minimum cut415

respectively can be downloaded from the following links:416

https://www.dropbox.com/sh/mdsjrcg9gch8dti/AADW0UUcQMUkChz8SZNXYGnVa?dl=0417

https://www.dropbox.com/sh/z00ictftyxx3ipf/AADirtiMIwI3_sxCep5GzJf_a?dl=0418

C Additional results419

C.1 Maximum clique problem420

The following experiments provide evidence that both the learning and decoding phases of our421

framework are important in obtaining valid cliques of large size.422

C.1.1 Constraint violation423

Table 5 reports the percentage of instances in which the clique constraint was violated in our424

experiments. Neural baselines optimized according to penalized continuous relaxations struggle to425

detect cliques in the COLLAB and TWITTER datasets, whereas Erdős’ GNN always respected the426

constraint.427

IMDB COLLAB TWITTER RB (all datasets)

Erdős’ GNN (fast) 0% 0% 0% 0%
Erdős’ GNN (accurate) 0% 0% 0% 0%
Bomze GNN 0% 11.8% 78.1% –
MS GNN 1% 15.1% 84.7% –

Table 5: Percentage of test instances where the clique constraint was violated.

Thus, decoding solutions by the method of conditional expectation is crucial to ensure that the clique428

constraint is always satisfied.429

C.1.2 Importance of learning430

We also tested the efficacy of the learned probability distributions produced by our GNN on the431

Twitter dataset. We sampled multiple random seeds and produced the corresponding probability432

assignments by feeding the inputs to the GNN. These were then decoded with the method of433

conditional expectation and the best solution was kept. To measure the contribution of the GNN, we434

compared to random uniform probability assignments on the nodes. In that case, instead of multiple435

random seeds, we had the same number of multiple random uniform probability assignments. Again,436

these were decoded with the method of conditional expectation and the best solution was kept. The437

results of the experiment can be found in Table 6.

Erdős’ GNN U ∼ [0,1]

1 sample 0.821 ± 0.222 0.513 ± 0.266
3 samples 0.875 ± 0.170 0.694 ± 0.210
5 samples 0.905 ± 0.139 0.760 ± 0.172

Table 6: Approximation ratios with sequential decoding using the method of conditional expectation
on the twitter dataset. The second column represents decoding with the probabilities produced by
the GNN. The third column shows the results achieved by decoding random uniform probability
assignments on the nodes.

438
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As observed, the cliques identified by the trained GNN were significantly larger than those obtained439

when decoding a clique from a random probability assignment.440

C.2 Local graph partitioning441

We also attempted to find sets of small conductance using Gurobi. To ensure a fair comparison,442

we mimicked the setting of Erdős’ GNN and re-run the solver with three different time-budgets,443

making sure that the largest budget exceeded our method’s running time by approximately one order444

of magnitude. We used the following integer-programming formulation of the constrained graph445

partitioning problem:446

min
x1,...,xn∈{0,1}

∑
(vi,vj)∈E

(xi − xj)2 (6)

subject to
(

1− 1

4

)
vol ≤

∑
vi∈V

xidi ≤
(

1 +
1

4

)
vol and xs = 1.

Above, vol is a target volume and s is the index of the seed node (see explanation in Section B.3).447

Each binary variable xi is used to indicate membership in the solution set. In order to encourage local448

solutions on a global solver like Gurobi, the generated target volumes were set to lie in an interval449

that is attainable within a fixed receptive field (identically to the neural baselines). Additionally, the450

seed node vs was also required to be included in the solution. The above choices are consistent with451

the neural baselines and the local graph partitioning setting.452

The results are shown in Table 7. Due to its high computational complexity, Gurobi performed poorly453

in all but the smallest instances. In the FACEBOOK dataset, which contains graphs of 7k nodes on454

average, Erdős’ GNN was impressively able to find sets of more than 6× smaller conductance, while455

also being 6× faster.456

SF-295 FACEBOOK TWITTER

Gurobi (0.1s) 0.107 ± 0.000 (0.16 s/g) 0.972 ± 0.000 (799.508 s/g) 0.617 ± 0.012 (3.88 s/g)
Gurobi (1s) 0.106 ± 0.000 (0.16 s/g) 0.972 ± 0.000 (893.907 s/g) 0.544 ± 0.007 (12.41 s/g)
Gurobi (10s) 0.105 ± 0.000 (0.16 s/g) 0.961 ± 0.010 (1787.79 s/g) 0.535 ± 0.006 (52.98 s/g)

Erdős’ GNN 0.124 ± 0.001 (0.22 s/g) 0.156 ± 0.026 (289.28 s/g) 0.292 ± 0.009 (6.17 s/g)

Table 7: Average conductance of sets identified by Gurobi and Erdős’ GNN (these results are
supplementary to those of Table 3).

It should be noted that the time budget allowed for Gurobi only pertains to the optimization time spent457

(for every seed). There are additional costs in constructing the problem instances and their constraints458

for each graph. These costs become particularly pronounced in larger graphs, where setting up the459

problem instance takes more time than the allocated optimization budget. We report the total time460

cost in seconds per graph (s/g).461

D Deferred technical arguments462

D.1 Proof of Theorem 1463

In the constrained case, the focus is on the probability P ({f(S;G) < ε} ∩ {S ∈ Ω}). Define the464

following probabilistic penalty function:465

fp(S;G) = f(S;G) + 1S/∈Ω β, (7)

where β is any number larger than maxS{f(S;G)}. The key observation is that, if `(D, G) = ε < β,466

then there must exist a valid solution of cost ε. It is a consequence of f(S;G) > 0 and β being an467

upper bound of f that468

P (fp(S;G) < ε) = P (f(S;G) < ε ∩ S ∈ Ω). (8)
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Similar to the unconstrained case, for a non-negative f , Markov’s inequality can be utilized to bound469

this probability:470

P ({f(S;G) < ε} ∩ {S ∈ Ω}) = P (fp(S;G) < ε)

> 1− 1

ε
E [fp(S;G)]

= 1− 1

ε
(E [f(S;G)] + E [1S/∈Ω β])

= 1− 1

ε
(E [f(S;G)] + P (S /∈ Ω)β) . (9)

The theorem claim follows from the final inequality.471

D.2 Iterative scheme for non-linear re-scaling472

Denote by D0 the distribution of sets predicted by the neural network and let p0
1, . . . , p

0
n be the

probabilities that parameterize it. We aim to re-scale these probabilities such that the constraint is
satisfied in expectation:∑

vi∈V
aipi =

bl + bh
2

, where pi = clamp
(
c p0

i , 0, 1
)

and c ∈ R.

This can be achieved by iteratively applying the following recursion:473

pτ+1
i ← clamp(cτpτi , 0, 1), with cτ =

b−
∑
vi∈Qτ ai∑

vi∈V \Qτ aip
τ
i

and Qτ = {vi ∈ V : pτi = 1},

where b = bl+bh
2 .474

The fact that convergence occurs can be easily deduced. Specifically, consider any iteration τ and let475

Qτ be as above. If pτ+1
i < 1 for all vi ∈ V \Qτ , then the iteration has converged. Otherwise, we476

will have Qτ ⊂ Qτ+1. From the latter, it follows that in every τ (but the last), set Qτ must expand477

until either clamp(cτpτi , 0, 1) = b or Qτ = V . The latter scenario will occur if
∑
vi∈V ai ≤ b.478

D.3 Proof of Theorem 2479

Set b = (bl + bh)/2 and δ = (bh − bl)/2. By Hoeffding’s inequality, the probability that a sample of
D will lie in the correct interval is:

P

(∣∣∣∣∣∑
vi∈S

ai − E

[∑
vi∈S

ai

]∣∣∣∣∣ ≤ δ
)

= P

(∣∣∣∣∣∑
vi∈S

ai − b

∣∣∣∣∣ ≤ δ
)
≥ 1− 2 exp

(
− 2δ2∑

i a
2
i

)
.

We can combine this guarantee with the unconstrained guarantee by taking a union bound over the480

two events:481

P

(
f(S;G) < `(D, G) AND

∑
vi∈S

ai ∈ [bl, bh]

)

= 1− P

(
f(S;G) ≥ `(D, G) OR

∑
vi∈S

ai /∈ [bl, bh]

)

≥ 1− P (f(S;G) ≥ `(D, G))− P

(∑
vi∈S

ai /∈ [bl, bh]

)

≥ t− 2 exp

(
− 2δ2∑

i a
2
i

)
The previous is positive whenever t > 2 exp

(
−2δ2/(

∑
i a

2
i )
)
.482
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D.3.1 Proof of Corollary 1483

To ensure that the loss function is non-negative, we will work with the translated objective function484

f(S;G) = γ − w(S), where the term γ is any upper bound of w(S) for all S.485

Theorem 1 guarantees that if486

E [f(S;G)] + P (S /∈ Ω)β ≤ `clique(D, G) ≤ ε (10)

and as long as maxS f(S;G) = γ − minS w(S) ≤ γ ≤ β, then with probability at least t, set487

S∗ ∼ D satisfies γ − ε/(1− t) < w(S∗).488

Denote by xi a Bernoulli random variable with probability pi. It is not difficult to see that489

E [w(S)] = E

 ∑
(vi,vj)∈E

wijxixj

 =
∑

(vi,vj)∈E

wijpipj (11)

We proceed to bound P (S /∈ Ωclique). Without loss of generality, suppose that the edge weights have
been normalized to lie in [0, 1]. We define w̄(S) to be the volume of S on the complement graph:

w̄(S) ,
∑

vi,vj∈S
{(vi, vj) /∈ E}

By definition, we have that P (S /∈ Ωclique) = P (w̄(S) ≥ 1) . Markov’s inequality then yields490

P (S /∈ Ωclique) ≤ E [w̄(S)] = E
[
|S|(|S| − 1)

2

]
− E [w(S)]

=
1

2
E

(∑
vi∈V

xi

)2

−
∑
vi∈V

xi

− E [w(S)]

=
1

2

∑
vi 6=vj

E [xixj ] +
1

2

∑
vi∈V

E
[
x2
i

]
−
∑
vi∈V

E [xi]−
1

2
E [w(S)]

=
1

2

∑
vi 6=vj

pipj +
1

2

∑
vi∈V

pi −
1

2

∑
vi∈V

pi − E [w(S)] =
1

2

∑
vi 6=vj

pipj − E [w(S)] . (12)

It follows from the above derivations that491

γ − E [w(S)] + P (S /∈ Ω)β ≤ γ − E [w(S)] +
β

2

∑
vi 6=vj

pipj − βE [w(S)]

= γ − (1 + β)E [w(S)] +
β

2

∑
vi 6=vj

pipj

= γ − (1 + β)
∑

(vi,vj)∈E

wijpipj +
β

2

∑
vi 6=vj

pipj . (13)

The final expression is exactly the probabilistic loss function for the maximum clique problem.492

D.4 Proof of Corollary 2493

Denote by S the set of nodes belonging to the cut, defined as S = {vi ∈ V, such that xi = 1}. Our
first step is to re-scale the probabilities such that, in expectation, the following is satisfied:

E [vol(S)] =
vl + vh

2
.

This can be achieved by noting that the expected volume is494

E [vol(S)] = E

[∑
vi∈V

dixi

]
=
∑
vi∈V

dipi
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and then using the procedure described in Section D.2.495

With the probabilities p1, . . . , pn re-scaled, we proceed to derive the probabilistic loss function496

corresponding to the min cut.497

The cut of a set S ∼ D can be expressed as498

cut(S) =
∑
vi∈S

∑
vj /∈S

wij =
∑

(vi,vj)∈E

wijzij , (14)

where zij is a Bernoulli random variable with probability pi which is equal to one if exactly one of499

the nodes vi, vj lies within set S. Formally,500

zij = |xi − xj | =
{

1 with probability pi − 2pipj + pj
0 with probability 2pipj − (pi + pj) + 1

(15)

It follows that the expected cut is given by501

E [cut(S)] =
∑

(vi,vj)∈E

wij E [zij ]

=
∑

(vi,vj)∈E

wij(pi − 2pipj + pj)

=
∑

(vi,vj)∈E

wij(pi + pj)− 2
∑

(vi,vj)∈E

pipjwij =
∑
vi∈V

dipi − 2
∑

(vi,vj)∈E

pipjwij .

We define, accordingly, the min-cut probabilistic loss as

`cut(D;G) =
∑
vi∈V

dipi − 2
∑

(vi,vj)∈E

pipjwij

Then, for any t ∈ (0, 1], Markov’s inequality yields:

P

(
cut(S) <

`cut(D;G)

1− t

)
> t

The proof then concludes by invoking Theorem 2502
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