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Abstract

Conventional Neural Networks can approximate simple arithmetic operations, but1

fail to generalize beyond the range of numbers that were seen during training.2

Neural Arithmetic Units aim to overcome this difficulty, but current arithmetic3

units are either limited to operate on positive numbers or can only represent a4

subset of arithmetic operations. We introduce the Neural Power Unit (NPU) that5

operates on the full domain of real numbers and is capable of learning arbitrary6

power functions in a single layer. The NPU thus fixes the shortcomings of existing7

arithmetic units and extends their expressivity. We achieve this by using complex8

arithmetic without requiring a conversion of the network to complex numbers. A9

simplification of the unit to the RealNPU yields a highly interpretable model. We10

show that the NPUs outperform their competitors in terms of accuracy and sparsity11

on artificial arithmetic datasets, and that the RealNPU can discover the governing12

equations of a dynamical systems only from data.13

1 Introduction14

Numbers and simple algebra are essential not only to human intelligence but also to the survival15

of many other species [Dehaene, 2011, Gallistel, 2018]. A successful, intelligent agent should,16

therefore, be able to perform simple arithmetic. State of the art neural networks are capable of17

learning arithmetic, but they fail to extrapolate beyond the ranges seen during training [Suzgun et al.,18

2018, Lake and Baroni, 2018]. The inability to generalize to unseen inputs is a fundamental problem19

that hints at a lack of understanding of the given task. The model merely memorizes the seen inputs20

and fails to abstract the true learning task. The failure of numerical extrapolation on simple arithmetic21

tasks has been shown by Trask et al. [2018], who also introduced a new class of Neural Arithmetic22

Units with good extrapolation performance on some arithmetic tasks.23

Including Neural Arithmetic Units in standard neural networks, promises to significantly increase their24

extrapolation capabilities due to their inductive bias towards numerical computation. This is especially25

important for tasks in which the data generating process contains mathematical relationships. They26

also promise to reduce the number of parameters needed for a given task, which can improve the27

explainability of the model. We demonstrate this in a Neural Ordinary Differential Equation (NODE,28

Chen et al. [2019]), where a handful of neural arithmetic units can outperform a much bigger network29

built from dense layers (Sec. 4.1). Moreover, our new unit can be used to directly read out the correct30

generating ODE from the fitted model. This is in line with recent efforts to build interpretable models31

instead of explaining black-box models [Rudin, 2019], like conventional neural networks.32

The currently available arithmetic units all have different strengths and weaknesses, but none of33

them solve simple arithmetic completely. The Neural Arithmetic Logic Unit (NALU) by Trask et al.34

[2018], chronologically, was the first arithmetic unit. It can solve addition (+, including subtraction),35

multiplication (×), and division (÷), but is limited to positive inputs. The convergence of the NALU36

is quite fragile due to an internal gating mechanism between addition and multiplication paths as37
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well as the use of a logarithm which is problematic for small inputs. Recently, Schlör et al. [2020]38

introduced the improved NALU (iNALU, to fix the NALU’s shortcomings. It significantly increases its39

complexity, and we observe only a slight improvement in performance. Madsen and Johansen [2020]40

solve (+,×) with two new units: the Neural Addition Unit (NAU), and the Neural Multiplication41

Unit (NMU). Instead of gating between addition and multiplication paths, they are separate units that42

can be stacked. They can work with the full range of real numbers, converge much more reliably, but43

cannot represent division.44

Our Contributions45

Neural Power Unit. We introduce a new arithmetic layer (NPU, Sec. 3) which is capable of46

learning products of power functions (
�

xwi
i ) of arbitrary real inputs xi and power wi, thus including47

multiplication (x1 × x2 = x1
1x

1
2) as well as division (x1 ÷ x2 = x1

1x
−1
2 ). This is achieved by using48

formulas from complex arithmetic (Sec. 3.1). Stacks of NAUs and NPUs can thus learn the full49

spectrum of simple arithmetic operations.50

Convergence improvement. We address the known convergence issues of neural arithmetic units51

by introducing a relevance gate that smooths out the loss surface of the NPU (Sec. 3.2). With the52

relevance gate, which helps to learn to ignore variables, the NPU reaches extrapolation error and53

sparsity that is on par with the NMU on (×) and outperform NALU on (÷,
√·).54

Interpretability. We show how a power unit can be used as a highly interpretable model for equation55

discovery of dynamical systems. Specifically, we demonstrate its ability to identify a model that can56

be interpreted as a SIR model with fractional powers (Sec. 4.1) that was used to fit the COVID-1957

outbreak in various countries [Taghvaei et al., 2020].58

2 Related Work59

Several different approaches to automatically solve arithmetic tasks have been studied in recent years.60

Approaches include Neural GPUs [Kaiser and Sutskever, 2016], Grid LSTMs [Kalchbrenner et al.,61

2016], Neural Turing Machines [Graves et al., 2014], and Neural Random Access Machines [Kurach62

et al., 2016]. They solve tasks like binary addition and multiplication, or single-digit arithmetic. The63

Neural Status Register [Faber and Wattenhofer, 2020] focusses on control flow. The Neural Arithmetic64

Expression Calculator [Chen et al., 2018], a hierarchical reinforcement learner, is the only method65

that solves the division problem, but it operates on character sequences of arithmetic expressions.66

Related is symbolic integration with transformers [Lample and Charton, 2019]. Unfortunately, most67

of the named models have severe problems with extrapolation [Madsen and Johansen, 2019, Saxton68

et al., 2019]. A solution to the extrapolation problem could be Neural Arithmetic Units. They are69

designed with an inductive bias towards systematic, arithmetic computation. However, currently, they70

are limited in their capabilities of expressing the full range of simple arithmetic operations (+,×,÷).71

In the following two sections, we briefly describe the currently available arithmetic layers, including72

their advantages and drawbacks.73

2.1 Neural Arithmetic Logic Units74

Trask et al. [2018] have demonstrated the severity of the extrapolation problem of dense networks for75

even the simplest arithmetic operations, such as summing or multiplying two numbers. In order to76

increase the power of abstraction for arithmetic tasks, they propose the Neural Arithmetic Logic Unit77

(NALU), which is capable of learning (+,×,÷). However, the NALU cannot handle negative inputs78

correctly due to the logarithm in Eq. 2:79

Definition (NALU). The NALU consits of a (+) and a (×) path that share their weights Ŵ and M̂ .80

Addition: a = Wx Ŵ = tanh(W )� σ(M) (1)

Multiplication: m = exp Ŵ (log(|x|+ �)) (2)
Output: y = a� g +m� (1− g) g = σ(Gx) (3)

Additionally, the logarithm destabilizes training to the extent that the chance of success can drop81

below 20% for (+,×), it becomes practically impossible to learn (÷) and difficult to learn from small82
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inputs in general [Madsen and Johansen, 2019]. Schlör et al. [2020] provide a detailed description of83

the shortcomings of the NALU, and they suggest an improved NALU (iNALU). The iNALU addresses84

the NALU’s problems through several mechanisms. It has independent addition and multiplication85

weights for Eq. 1 and Eq. 2, clips weights and gradients to improve training stability, regularizes the86

weights to push them away from zero, and, most importantly, introduces a mechanism to recover87

the sign that is lost due to the absolute value in the logarithm. Additionally, the authors propose to88

reinitialize the network if its loss is not improving during training. We include the iNALU in one of89

our experiments and find that it only slightly improves the NALU’s performance (Sec. 4.2) at the cost90

of a significantly more complicated unit. Our NPU avoids all these mechanisms by internally using91

complex arithmetics.92

2.2 Neural Multiplication Unit & Neural Addition Unit93

Instead of trying to fix the NALU’s convergence issues, Madsen and Johansen [2020] propose a new94

unit for (×) only. The Neural Multiplication Unit (NMU) uses explicit multiplications and learns95

to gate between identity and (×) of inputs. The NMU is defined by Eq. 4 and is typically used in96

conjunction with the so-called Neural Addition Unit (NAU) in Eq. 5.97

Definition (NMU & NAU). NMU and NAU are two units that can be stacked to model (+,×).98

NMU: yj =
�

i

M̂ijzi + 1− M̂ij M̂ij = min(max(Mij , 0), 1) (4)

NAU: y = Âx Âij = min(max(Aij ,−1), 1) (5)

Both NMU and NAU are regularized with R =
�

ij min(|Wij |, |1 −Wij |), and their weights are99

clipped, which biases them towards learning an operation or pruning it completely. The combination100

of NAU and NMU can thus learn (+,×) for both positive and negative inputs. Training NAU and101

NMU is stable and succeeds much more frequently than with the NALU, but they cannot represent102

(÷), which we address with our NPU.103

3 Neural Power Units104

To fix the deficiencies of current arithmetic units, we propose a new arithmetic unit (inspired by105

NALU) that can learn arbitrary products of power functions (
�

xwi
i ) (including ×,÷) for positive106

and negative numbers, and still train well. Combined with the NAU, we solve the full range of107

arithmetic operations. This is possible through a simple modification of the (×)-path of the NALU108

(Eq. 6). We suggest to replace the logarithm of the absolute value by the complex logarithm and109

to allow W to be complex as well. Since the complex logarithm is defined for negative inputs, the110

NPU does not have a problem with negative numbers. A complex W improves convergence at the111

expense of explainability (see Sec. 4.1). The improvement during training might be explained by112

the additional imaginary parameters that make it possible to avoid regions with an uninformative113

gradient signal.114

3.1 Naive Neural Power Unit – NaiveNPU115

With the modifications introduced above we can extend the multiplication path of the NALU from116

m = expW (logreal(|x|+ �)) (6)

to use the complex logarithm (log := logcomplex) and a complex weight W to117

z = exp(W logx) = exp ((Wr + iWi) logx) . (7)

The complex log in Eq. 7 lifts the positivity constraint on x resulting in a layer that can process118

both positive and negative numbers correctly. A complex weight matrix W somewhere in a larger119

network would result in complex gradients in other layers. This would effectively result in doubling120

the number of parameters of the whole network. As we are only interested in real networks outputs,121

we can avoid this doubling by considering only the real part of the output z:122

Re(z) = Re(exp((Wr + iWi)(log r + iπk))) (8)
= exp(Wr log r − πWik)� cos(Wi log r + πWrk). (9)
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r log matmul

abs matmul − exp

x Wr Wi � y

0:π matmul + cos

k matmul

Figure 1: NaiveNPU diagram, with input x
and output y. Vectors in green, trainables in
orange, functions in blue.

r � + log matmul

abs matmul − exp

x g clip 0 1 1-g Wr Wi � y

0:π matmul + cos

k � matmul

Figure 2: NPU diagram. The NPU has a relevance
gate g (hatched background) in front of the input to
the actual unit to prevent zero gradients.

Above we have used Euler’s formula1 and the fact that the complex logarithm for real valued inputs is123

log x = log r + iθ = log r + ikπ, (10)

where k = 0 if r ≥ 0 and k = 1 if r < 0. A diagram of the NaiveNPU is shown in Fig. 1.124

Definition (NaiveNPU). The Naive Neural Power Unit with matrices Wr and Wi representing real125

and imaginary part of the complex numbers defined as126

z = exp(Wr log r − πWik)� cos(Wi log r + πWrk), where (11)

r = |x|, ki =

�
0 xi ≤ 0

1 xi > 0

3.2 The Relevance Gate – NPU127

The NaiveNPU has difficulties to converge on large scale tasks, and to reach sparse results in cases128

where the input to a given row is small. We demonstrate this on a toy example of learning the identity129

on one of two inputs and neglecting the second one, f(x1, x2) = x1:130

L = |m(x1, x2)− x1|, where m = NPU(2, 1), x1 ∼ U(0, 2), x2 ∼ U(0, 0.05).
The left plot in Fig. 3 depicts the gradient norm of NPU and NaiveNPU for a batch of two-dimensional131

inputs. One input is small and irrelevant. Even in this simple example, gradient of the NaiveNPU132

is close to zero in large parts of the parameter space This can be explained as follows. One row of133

NaiveNPU weights effectively raises each input to a power and multiplies them: xw1
1 xw2

2 . . . xwn
n . If134

a single input xi is constantly close to zero (i.e. irrelevant), the whole row will be zero, no matter135

what its weights are and the gradient information on all other weights is lost. Therefore, we introduce136

a gate on the input of the NPU that can turn irrelevant inputs into 1s. A diagram of the NPU is shown137

in Fig. 2.138

Definition (NPU). The NPU extends the NaiveNPU by the relevance gate g on the input x.139

z = exp(Wr log r − πWik)� cos(Wi log r + πWrk), where (12)

r = ĝ � |x|+ (1− ĝ), ki =

�
0 xi ≤ 0

ĝi xi > 0
, ĝi = min(max(gi, 0), 1) (13)

The central plot of Fig. 3 shows the gradient of the NPU on the identity task with its initial gate140

setting of g1 = g2 = 0.5. The large zero-gradient region of the NaiveNPU is gone. The last plot141

shows the same loss for g1 = 1 and g2 = 0, which corresponds to the correct gates at the end of NPU142

training. The gradient is independent of w2, which means that it can easily be pruned by a simple143

regularization such as L1. In Sec. 4.3 we show how important the relevance gating mechanism is144

for the convergence and sparsity of large models. Sparsity is especially important in order to use the145

NPU as an interpretable model.146

Initialization We recommend initializing the NPU with a Glorot Uniform distribution on the real147

weights Wr. The imaginary weights Wi can be initialized to zeros, so they will only be used where148

necessary, and the gate g with 0.5, so the NPU can choose to output 1.149

Definition (RealNPU). In many practical tasks, such as multiplication or division, the final value of150

Wi should be equal to zero. We will denote NPU with removed parameters for the imaginary part as151

RealNPU and study the impact of this change on convergence in Sec. 4.152

1Euler’s formula states that for any real number x: eix = cosx+ i sinx
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Figure 3: Norm of the gradient of NaiveNPU and NPU for the task of learning the identity on x1.
Inputs and loss are defined on the right, gradient surfaces on the left (black areas are beyond the color
scale). The correct solution is w1 = 1 and w2 = 0. The NaiveNPU has a large zero gradient region
for w2 > 0.75, while the NPU’s surface is much more informative. The gates for central plot are
fixed at g1 = g2 = 0.5 which corresponds to the initial gate parameters. During training they will
adjust as needed, in this case to g1 = 1 and g2 = 0. Wi is set to zero in all plots.

4 Experiments153

In Sec. 4.1, we show how the NPU can help to build better NODE models. Additionally, we use154

the RealNPU as a highly interpretable model, from which we can directly recover the generating155

equation of an ODE containing fractional powers. Subsequent Secs. 4.2 & 4.3 compare the NPU to156

prior art (NALU and NMU) on arithmetic tasks typically used to benchmark arithmetic units.157

4.1 Equation Discovery of an Epidemiological Model158

Data-driven models such as SINDy [Champion et al., 2019] or Neural Ordinary Differential Equations159

(NODE, Chen et al. [2019]) are used more and more in scientific applications. Recently, Universal160

Differential Equations (UDEs, Rackauckas et al. [2020]) were introduced which aim to combine161

data-driven models with physically informed differential equations to maximize interpretability/ex-162

plainability of the resulting models.163

If an ODE model is composed of dense layers, its direct interpretation is problematic and has to164

be performed retrospectively. The class of models based on SINDy is interpretable by design,165

however it can only provide explanation within a linear combination of predefined set of basis166

functions. Thus, it cannot learn models with unknown fractional powers. We will demonstrate that167

the NPU is capable of doing so. An example of an ODE that contains powers is a modification of the168

classical epidemiological SIR model [Kermack and McKendrick, 1927] to fractional powers (fSIR,169

Taghvaei et al. [2020]), which was shown to be a beneficial modification for modelling the COVID-19170

outbreak. The classical SIR model is built from three variables: S (susceptible), I (infectious), and171

R (recovered/removed). Arguably the most important part of the model is the transmission rate r,172

which is typically taken to be proportional to the product of S and I . Taghvaei et al. [2020] argue173

that, especially in the initial phase of an epidemic, the boundary areas of infected and susceptible174

cells scale with a fractional power, which leads to Eq. 15:175

dS

dt
= −r(t) + ηR(t),

dI

dt
= r(t)− αI(t),

dR

dt
= αI(t)− ηR(t), (14)

r(t) = βI(t)γS(t)κ, (15)

We have numerically simulated one realization of the fSIR model with the parameters α = 0.05,176

β = 0.06, η = 0.01, γ = κ = 0.5, in 40 time steps that are equally spaced in the time interval177

T = (0, 200), such that the training data X = [St, It, Rt]
40
t=1 contains one time series each for S, I ,178

and R. The initial conditions u0 = [S0, I0, R0] are set to S0 = 100, I0 = 0.01, and R0 = 0, Figure 4179

right. We fit the data with three different NODEs composed of different model types: a dense network,180

the NPU, and the RealNPU. An exemplary model is: NPU = Chain(NPU(3, h),NAU(h, 3)) with181

variable hidden size h. The detailed models are defined in Tab. A1. The training objective is the loss182

L with L1 regularization.183

L = MSE(X,NODEθ(u0)) + β||θ||1. (16)

We train each model for 3000 steps with the ADAM optimizer and a learning rate of 0.005, and184

subsequently with LBFGS until convergence (or for maximum 1000 steps). For each model type, we185

run a small grid search to build a Pareto front with h ∈ {6, 9, 12, 15, 20} and β ∈ {0, 0.01, 0.1, 1},186
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Figure 4: Pareto fronts of the dense network, the NPU, and the RealNPU. The NPU reaches solutions
with lower MSE and fewer parameters than the dense net. The RealNPU mostly yields worse results
than the NPU, just in a few cases it converges to very sparse models with good MSE.
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Figure 5: Visualization of the best RealNPU. Reading from right to left, it takes the SIR variables as
an input, then applies the NPU and the NAU. It correctly identifies r as a fractional product in the
NPU, and gets the rest of the fSIR parameters almost right in the NAU.

where each hyper-parameter pair is run five times. The resulting Pareto front is shown on the left of187

Fig. 4. The NPU reaches much sparser and better solutions than the dense network. The RealNPU188

has problems to converge in the majority of cases, however, there are a few models in the bottom189

left that reach a very low MSE and have very few parameters. The best of these models is shown in190

Fig. 5. It looks strikingly similar to the fSIR model in matrix form:191



Ṡ

İ

Ṙ


 =



−β 0 η

β −α 0

0 α η






IγSκ

I

R


 . (17)

Reading Fig. 5 from right to left, we can extract the ODE that the RealNPU represents. The first192

hidden variable correctly identified the transmission rate as a product of two fractional powers193

r = IγSκ with κ = 0.57 and γ = 0.62, which is close to the true values γ = κ = 0.5. The second,194

third and the last hidden variable were found to be irrelevant (the relevance gate returns 1). The195

fourth hidden variable is a selector of the second input I , and the fifth hidden variable is selector196

of a power of R, R0.64 In the second layer, the NAU combines the correct hidden outputs from the197

NPU such that Ṡ is composed of the negative transmission rate r and positive R. İ and Ṙ are also198

composed of the correct hidden variables, with the parameters α,β, η being not far off from the truth.199

We conclude that even with this very naive approach, the RealNPU can recover a SIR model that200

contains fractional powers.201

In summary, the NPU can work well in sequential tasks, and we have shown that we can reach highly202

interpretable results with the RealNPU, but in practice, using the RealNPU might be difficult due203

to its lower success rate. With a more elaborate analysis, it should be possible to reach the same204

solutions with the full NPU and e.g. a strong regularization of its imaginary parameters, because205

4.2 Simple Arithmetic Task206

In this experiment we compare six different layers (NPU, RealNPU, NMU, NALU, iNALU, Dense) on207

a small problem with two inputs and four outputs. The objective is to learn the function f : R2 → R4208
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Figure 6: Comparison of extrapolation quality of different models learning Eq. 18. Each column
represents the best model of 20 runs that were trained on the range U(0.1, 2). Lighter color implies
lower error.

with a standard MSE loss:209

f(x, y) = (x+ y, xy, x/y,
√
x )T =: t, (18)

L =
1

4

n=4�

i=1

(model(x, y)i − f(x, y)i) = MSE(t̂, t). (19)

Each model has two layers with a hidden dimension h. E.g. the NPU model is defined by NPU =210

Chain(NPU(2, h = 6),NAU(b = 6, 4)). The remaining models that are used in the tables and plots211

are given in Tab. A3. To obtain valid results in case of division we train on positive, non-zero inputs,212

but test on negative, non-zero numbers (except for test inputs to the square-root):213

(xtrain, ytrain) ∼ U(0.1, 2) (xtest, ytest) ∼ R(-4.1:0.2:4) (xtest, sqrt, ytest, sqrt) ∼ R(0.1:0.1:4) (20)

where R denotes a range with start, step, and end. We train each model for 20 000 steps with the214

ADAM optimizer, a learning rate of 0.001, and a batch size of 100. The input samples are generated215

on the fly during training. Fig. 6 shows the error surface of the best of 20 models on each task.216

Tab. A2 lists the corresponding averaged testing errors of all 20 models.217

Both NPUs successfully learn (+,×,÷,
√·) and clearly outperform NALU and iNALU on all tasks.218

The NPUs are on par with the NMU for (+), but the NMU is better at (×) due to its inductive bias.219

The NMU cannot learn (÷,
√·). The fact that the RealNPU performs slightly better than the NPU220

indicates that the task is easy enough to not require the imaginary parameters to help convergence. In221

such a case, the RealNPU generalizes better because it corresponds to the task it is trying to learn.222

4.3 Large Scale Arithmetic Task223

One of the most important properties of a layer in a neural network is its ability to scale. With the224

large scale arithmetic task we show that the NPU works reliably on many-input tasks that are heavily225

over-parametrized. In this section we compare NALU, NMU, NPU, RealNPU, and the NaiveNPU226

on a task that is identical to the ‘arithmetic task’ that Madsen and Johansen [2020] and Trask et al.227

[2018] analyse as well. The goal is to sum two subsets of a 100 dimensional vector and apply an228

operation (like ×) to the two summed subsets. The dataset generation is defined in the set of Eq. 21,229

with the parameters from Tab. A5.230

a =

s1,end�

i=s1,start

xi, b =

s2,end�

i=s2,start

xi, yadd = a+ b, ymul = a× b, ydiv = 1/a, ysqrt =
√
a, (21)

where starting and ending values si,start, si,end of the summations are chosen such that a and b come231

from subsets of the input vector x with a given overlap. The training objective is standard MSE,232

7
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Figure 7: Testing MSE over number of non-zero parameters (wi > 0.001) of the large scale arithmetic
task. Again, the NMU outperforms the NPU on its native tasks, addition and multiplication. The
NPU is the best at division and square-root. The NaiveNPU without the relevance gate is far off,
because it does not have the necessary gradient signal to converge, as discussed in Sec. 3.2

Table 1: Testing errors of the large scale arithmetic task. Each value is obtained by computing median
(and median absolute deviation) of 10 runs.

Task NPU RealNPU NALU NMU NaiveNPU

+ 0.092 ± 0.031 0.063 ± 0.014 740.0 ± 330.0 0.00602 ± 0.00019 161.65 ± 0.11
× 4.28 ± 0.9 3.09 ± 0.74 2.9e83 ± 2.9e83 1.7 ± 1.4 3750.0 ± 870.0
÷ 1.0e-7 ± 1.0e-7 1.4e-6 ± 4.0e-7 530.0 ± 200.0 1.622 ± 0.081 5.4e17 ± 5.4e17√· 0.054 ± 0.0078 0.017 ± 0.011 7300.0 ± 7200.0 10.96 ± 0.89 9.3e8 ± 9.3e8

regularized with L1:233

L = MSE(model(x), y) + β||θ||1, (22)

where β is scheduled to be low in the beginning of training and stronger towards the end. Specifics234

of the used models and their hyper-parameters are defined in Tab. A4 & A6. Madsen and Johansen235

[2020] perform an extensive analysis of this task with different subset and overlap ratios, varying236

model and input sizes, and much more, establishing that the combination of NAU/NMU outperforms237

the NALU. We focus on the comparison of NPU, RealNPU, NMU, and NALU on the default238

parameters of Madsen and Johansen [2020] which sets the subset ratio to 0.5 and the overlap ratio239

to 0.25 (details in Tab. A5). We include the NaiveNPU (without the relevance gate) to show how240

important the gating mechanism is for both sparsity and overall performance.241

Fig. 7 plots testing errors over the number of non-zero parameters for all models and tasks. The242

addition plot shows that NMU, NPU, and RealNPU successfully learn and extrapolate on (+) with243

the NMU converging to the sparsest and most accurate models. On (×), the best NMU models244

outperform the NPU and RealNPU, but some NMUs do not converge at all. The testing MSE of the245

NALU is so large that it is excluded from the plot. On (÷,
√·) the NPU clearly outperforms all other246

layers in MSE and sparsity. Generally, the difference between the NaiveNPU and the other NPUs is247

huge and demonstrates how important the relevance gate is both for convergence and sparsity. The248

NPUs with relevance gates effectively convert irrelevant inputs to 1s, while the NaiveNPU is stuck on249

the zero gradient plateau.250

5 Conclusion251

We introduced the Neural Power Unit that addresses the deficiencies of current arithmetic units:252

it can learn arbitrary power functions for positive, negative, and small numbers. We showed that253

the NPU outperforms its main competitor (NALU) and reaches performance that is on par with the254

multiplication specialist NMU (Sec. 4.2 & 4.3).255

Additionally, we have demonstrated that the NPU converges consistently, even on sequential tasks.256

The RealNPU can be used as a highly interpretable model that is capable of recovering the governing257

equations of dynamical systems purely from the data (Sec. 4.1).258
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6 Statement of Broader Impact259

Current neural network architectures are often perceived as black box models that are difficult to260

explain or interpret. This becomes highly problematic if ML models are involved in high stakes261

decisions in e.g. criminal justice, healthcare, or control systems. With the NPU, we hope to contribute262

to the broad topic of interpretable machine learning, with a focus on scientific applications.263

Additionally, learning to abstract (mathematical) ideas and extrapolate is a fundamental goal that264

might contribute to more reliable machine learning systems.265
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