
Hyperparameter Ensembles for
Robustness and Uncertainty Quantification

Florian Wenzel, Jasper Snoek, Dustin Tran, Rodolphe Jenatton
Google Research

{florianwenzel, jsnoek, trandustin, rjenatton}@google.com

Abstract

Ensembles over neural network weights trained from different random initialization,
known as deep ensembles, achieve state-of-the-art accuracy and calibration. The
recently introduced batch ensembles provide a drop-in replacement that is more
parameter efficient. In this paper, we design ensembles not only over weights,
but over hyperparameters to improve the state of the art in both settings. For
best performance independent of budget, we propose hyper-deep ensembles, a
simple procedure that involves a random search over different hyperparameters,
themselves stratified across multiple random initializations. Its strong performance
highlights the benefit of combining models with both weight and hyperparameter
diversity. We further propose a parameter efficient version, hyper-batch ensembles,
which builds on the layer structure of batch ensembles and self-tuning networks.
The computational and memory costs of our method are notably lower than typical
ensembles. On image classification tasks, with MLP, LeNet, ResNet 20 and Wide
ResNet 28-10 architectures, we improve upon both deep and batch ensembles.

1 Introduction

2 4 6 8 10 12 14 16

0.80

0.82

0.84

Ac
cu

ra
cy

2 4 6 8 10 12 14 16
Ensemble size

0.6

0.8

Cr
os

s e
nt

ro
py hyper-deep ensemble

deep ensemble

Figure 1: Comparison of our hyper-deep
ensemble with deep ensemble for different
ensemble sizes using a Wide ResNet 28-10
over CIFAR-100. Combining models with
different hyperparameters is beneficial.

Neural networks are well-suited to form ensembles of
models [30]. Indeed, neural networks trained from
different random initialization can lead to equally well-
performing models that are nonetheless diverse in that
they make complementary errors on held-out data [30].
This property is explained by the multi-modal nature of
their loss landscape [24] and the randomness induced
by both their initialization and the stochastic methods
commonly used to train them [8, 38, 9].

Many mechanisms have been proposed to further foster
diversity in ensembles of neural networks, e.g., based
on cyclical learning rates [36] or Bayesian analysis [17].
In this paper, we focus on exploiting the diversity in-
duced by combining neural networks defined by dif-
ferent hyperparameters. This concept is already well-
established [13] and the auto-ML community actively
applies it [21, 65, 53, 46]. We build upon this research
with the following two complementary goals.

First, for performance independent of computational and memory budget, we seek to improve upon
deep ensembles [43], the current state-of-the-art ensembling method in terms of robustness and
uncertainty quantification [64, 28]. To this end, we develop a simple stratification scheme which
combines random search and the greedy selection of hyperparameters from [13] with the benefit

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

of multiple random initializations per hyperparameter like in deep ensembles. Figure 1 illustrates
our algorithm for a Wide ResNet 28-10 where it leads to substantial improvements, highlighting the
benefits of combining different initialization and hyperparameters.

Second, we seek to improve upon batch ensembles [69], the current state-of-the-art in efficient ensem-
bles. To this end, we propose a parameterization combining that of [69] and self-tuning networks [52],
which enables both weight and hyperparameter diversity. Our approach is a drop-in replacement that
outperforms batch ensembles and does not need a separate tuning of the hyperparameters.

1.1 Related work

Ensembles over neural network weights. Combining the outputs of several neural networks to
improve their single performance has a long history, e.g., [47, 30, 25, 41, 58, 15]. Since the quality
of an ensemble hinges on the diversity of its members [30], many mechanisms were developed
to generate diverse ensemble members. For instance, cyclical learning-rate schedules can explore
several local minima [36, 76] where ensemble members can be snapshot. Other examples are MC
dropout [23] or the random initialization itself, possibly combined with the bootstrap [45, 43]. More
generally, Bayesian neural networks can be seen as ensembles with members being weighted by the
(approximated) posterior distribution over the parameters [34, 51, 56, 7, 71, 72].

Hyperparameter ensembles. Hyperparameter-tuning methods [20] typically produce a pool of
models from which ensembles can be constructed post hoc, e.g., [65]. This idea has been made
systematic as part of auto-sklearn [21] and successfully exploited in several other contexts,
e.g., [19] and specifically for neural networks [53] as well as in computer vision [60] and genetics [35].
In particular, the greedy ensemble construction from [13] (and later variations thereof [12]) was
shown to work best among other algorithms, either more expensive or more prone to overfitting. To
the best of our knowledge, such ensembles based on hyperparameters have not been studied in the
light of predictive uncertainty. Moreover, we are not aware of existing methods to efficiently build
such ensembles, similarly to what batch ensembles do for deep ensembles. Finally, recent research
in Bayesian optimization has also focused on directly optimizing the performance of the ensemble
while tuning the hyperparameters [46].

Hyperparameter ensembles also connect closely to probabilistic models over structures. These works
often analyze Bayesian nonparametric distributions, such as over depth and width of a neural network,
leveraging Markov chain Monte Carlo for inference [37, 1, 18, 42]. In this work, we examine more
parametric assumptions, building on the success of variational inference and mixture distributions:
for example, the validation step in hyper-batch ensemble can be viewed as a mixture variational
posterior and the entropy penalty is the ELBO’s KL divergence toward a uniform prior.

Concurrent to our paper, [75] construct neural network ensembles within the context of neural
architecture search, showing improved robustness for predictions with distributional shift. One of
their methods, NES-RS, has similarities with our hyper-deep ensembles (see Section 3), also relying
on both random search and [13] to form ensembles, but do not stratify over different initializations.
We vary the hyperparameters while keeping the architecture fixed while [75] study the converse.
Furthermore, [75] do not explore a parameter- and computationally-efficient method (see Section 4).

Efficient hyperparameter tuning & best-response function. Some hyperparameters of a neural
network, e.g., its L2 regularization parameter(s), can be optimized by estimating the best-response
function [26], i.e., the mapping from the hyperparameters to the parameters of the neural networks
solving the problem at hand [11]. Learning this mapping is an instance of learning an hypernet-
work [61, 62, 29] and falls within the scope of bilevel optimization problems [14]. Because of
the daunting complexity of this mapping, [50, 52] proposed scalable local approximations of the
best-response function. Similar methodology was also employed for style transfer and image com-
pression [3, 16]. The self-tuning networks from [52] are an important building block of our approach
wherein we extend their setting to the case of an ensemble over different hyperparameters.

1.2 Contributions

We examine two regimes to exploit hyperparameter diversity: (a) ensemble performance independent
of budget and (b) ensemble performance seeking parameter efficiency, where, respectively, deep and
batch ensembles [43, 69] are state-of-the-art. We propose one ensemble method for each regime:

2

(a) Hyper-deep ensembles. We define a greedy algorithm to form ensembles of neural networks
exploiting two sources of diversity: varied hyperparameters and random initialization. By stratifying
models with respect to the latter, our algorithm subsumes deep ensembles that we outperform in our
experiments. Our approach is a simple, strong baseline that we hope will be used in future research.

(b) Hyper-batch ensembles. We efficiently construct ensembles of neural networks defined over
different hyperparameters. Both the ensemble members and their hyperparameters are learned end-
to-end in a single training procedure, directly maximizing the ensemble performance. Our approach
outperforms batch ensembles and generalizes the layer structure of [52] and [69], while keeping their
original memory compactness and efficient minibatching for parallel training and prediction.

We illustrate the benefits of our two ensemble methods on image classification tasks, with multi-layer
perceptron, LeNet, ResNet 20 and Wide ResNet 28-10 architectures, in terms of both predictive
performance and uncertainty. The code for generic hyper-batch ensemble layers can be found in
https://github.com/google/edward2 and the code to reproduce the experiments of Section 5.2
is part of https://github.com/google/uncertainty-baselines.

2 Background

We introduce notation and background required to define our approach. Consider an i.i.d. classification
setting with data D = {(xn, yn)}Nn=1 where xn ∈ Rd is the feature vector corresponding to the n-th
example and yn its class label. We seek to learn a classifier in the form of a neural network fθ where
all its parameters (weights and bias terms) are summarized in θ ∈ Rp. In addition to its primary
parameters θ, the model fθ will also depend on m hyperparameters that we refer to as λ ∈ Rm. For
instance, an entry in λ could correspond to the dropout rate of a given layer in fθ.

Equipped with some loss function `, e.g., the cross entropy, and some regularization term Ω(·,λ),
e.g., the squared L2 norm with a strength defined by an entry of λ, we are interested in

θ̂(λ) ∈ arg min
θ∈Rp

E(x,y)∈D
[
L(x, y,θ,λ)

]
with L(x, y,θ,λ) = `(fθ(x,λ), y) + Ω(θ,λ), (1)

where E(x,y)∈D[·] stands for the expectation with a uniform distribution over D. As we shall see
in Section 5, the loss ` = `λ can also depend on λ, for instance to control a label smoothing
parameter [67]. In general, λ is chosen based on some held-out evaluation metric by grid search,
random search [6] or more sophisticated hyperparameter-tuning methods [20].

2.1 Deep ensembles and batch ensembles

Deep ensembles [43] are a simple ensembling method where neural networks with different random
initialization are combined. Deep ensembles lead to remarkable predictive performance and robust
uncertainty estimates [64, 28]. Given some hyperparameters λ0, a deep ensemble of size K amounts
to solving K times (1) with random initialization and aggregating the outputs of {fθ̂k(λ0)(·,λ0)}Kk=1.

Batch ensembles [69] are a state-of-the-art efficient alternative to deep ensembles, preserving their
performance while reducing their computational and memory burden. To simplify the presentation,
we focus on the example of a dense layer in fθ , with weight matrix W ∈ Rr×s where r and s denote
the input and output dimensions of the layer respectively.

A deep ensemble of size K needs to train, predict with, and store K weight matrices {Wk}Kk=1.
Instead, batch ensembles consider a single matrix W ∈ Rr×s together with two sets of auxiliary
vectors [r1, . . . , rK] ∈ Rr×K and [s1, . . . , sK] ∈ Rs×K such that the role of Wk is played by

W ◦ (rks
>
k) for each k ∈ {1, . . . ,K}, (2)

where we denote by ◦ the element-wise product (which we will broadcast row-wise or column-wise
depending on the shapes at play). Not only does (2) lead to a memory saving, but it also allows for
efficient minibatching, where each datapoint may use a different ensemble member. Given a batch of
inputs X ∈ Rb×r, the predictions for the k-th member equal X[W ◦ (rks

>
k)] = [(X ◦ r>k)W] ◦ s>k .

By properly tiling the batch X, the K members can thus predict in parallel in one forward pass [69].

3

https://github.com/google/edward2
https://github.com/google/uncertainty-baselines

In
iti

al
iz

at
io

n

Hyperparameters

fixed init hyper ensembledeep ensemble

0 200 400 600 800 1000
Epochs

3

2

1

0

1

2

3

lo
g 1

0(
)

Dynamic of and its lower/upper bounds

, ensemble member 0
, ensemble member 1
, ensemble member 2

Figure 2: LEFT: Pictorial view of deep ensemble (“column”) and fixed init hyper ensemble (“row”)
for models fθ(·,λ) with parameters θ and hyperparameters λ. Our new method hyper-deep ensemble
can search in the whole “block”, exploiting both initialization and hyperparameter diversity. RIGHT:
Example of the optimization path of hyper-batch ensemble for an entry of the hyperparameters λ
(the L2 parameter of an MLP over CIFAR-100) with its upper/lower bounds (shaded regions). The
lower/upper bounds of the three members converge to a diverse set of hyperparameters.

2.2 Self-tuning networks

Hyperparameter tuning typically involves multiple runs of the training procedure. One efficient
alternative [50, 52] is to approximate the best-response function, i.e., the mapping from λ to optimal
parameters θ̂(λ). The local approximation of [52] captures the changes of λ by scaling and shifting
the hidden units of fθ , which requires in turn extra parameters θ′ ∈ Rp′ , summarized in Θ = {θ,θ′}.
[52] call the resulting approach self-tuning network since fΘ tunes online its own hyperparameters λ.
In the sequel, λ will be continuous such as dropout rates, L2 penalties and label smoothing.

Example of the dense layer. We illustrate the choice and role of θ′ in the example of a dense layer
(the convolutional layer is similar to [59]; see details in [52]). The weight matrix W ∈ Rr×s and bias
b ∈ Rs of a dense layer are defined as (with ∆ and δ of the same shapes as W and b respectively),

W(λ) = W + ∆ ◦ e(λ)> and b(λ) = b + δ ◦ e′(λ), (3)

where e(λ) ∈ Rs and e′(λ) ∈ Rs are real-valued embeddings of λ. In [52], the embedding is linear,
i.e., e(λ) = Cλ and e′(λ) = C′λ. In this example, we have original parameters θ = {W,b} as
well as the additional parameters θ′ = {∆, δ,C,C′}.

Training objective. Since θ′ captures changes in θ induced by changes in λ, [50, 52] replace the
typical objective (1), defined for a single value of λ, with an expected objective [50, 52, 16],

min
Θ∈Rp+p′

Eλ∼p(λ),(x,y)∈D
[
L(x, y,Θ,λ)

]
, (4)

where p(λ) denotes some distribution over the hyperparameters λ. When p is kept fixed during the
optimization of (4), the authors of [50] observed that θ̂(λ) is not well approximated and proposed
instead to use a distribution pt(λ) = p(λ|ξt) varying with the iteration t. In our work we choose
p(·|ξt) to be a log-uniform distribution with ξt containing the bounds of the ranges of λ (see
Section 4). The key benefit from (4) is that a single (though, more costly) training gives access to a
mapping λ 7→ fΘ̂(·,λ) which approximates the behavior of fΘ̂ for hyperparameters in the support
of p(λ).

Alternating optimization. The procedure followed by [52] consists in alternating between training
and tuning steps. First, the training step performs a stochastic gradient update of Θ in (4), jointly
sampling λ ∼ p(λ|ξt) and (x, y) ∈ D. Second, the tuning step makes a stochastic gradient update
of ξt by minimizing some validation objective (e.g., the cross entropy):

min
ξt

Eλ∼p(λ|ξt),(x,y)∈Dval

[
`val(fΘ(x,λ), y)

]
. (5)

In (5), derivatives are taken through samples λ ∼ p(λ|ξt) by applying the reparametrization trick [39].
To prevent p(λ|ξt) from collapsing to a degenerate distribution, and inspired by variational inference,
the authors of [52] add an entropy regularization termH[·] controlled by τ ≥ 0 so that (5) becomes

min
ξt

Eλ∼p(λ|ξt),(x,y)∈Dval

[
`val(fΘ(x,λ), y)− τH[p(λ|ξt)]

]
. (6)

4

3 Hyper-deep ensembles

Figure 2-(left) visualizes different models fθ(·,λ) according to their hyperparameters λ along the
x-axis and their initialization θinit. on the y-axis. In this view, a deep ensemble corresponds to a
“column” where models with different random initialization are combined together, for a fixed λ. On
the other hand, a “row” corresponds to the combination of models with different hyperparameters.
Such a “row” typically stems from the application of some hyperparameter-tuning techniques [20].

Fixed initialization hyper ensembles. Given the simplicity, broad applicability, and performance
of the greedy algorithm from [13]—e.g., in auto-ML settings [21], we use it as our canonical
procedure to generate a “row”, i.e., an ensemble of neural networks with fixed parameter initialization
and various hyperparameters. We refer to it as fixed init hyper ensemble. For completeness, we
recall the procedure from [13] in Appendix A (Algorithm 2, named hyper_ens). Given an input
set of models (e.g., from random search), hyper_ens greedily grows an ensemble until some target
size K is met by selecting the model with the best improvement of some score, e.g., the validation
log-likelihood. We select the models with replacement to be able to learn weighted combinations
thereof (see Section 2.1 in [13]). Note that the procedure from [13] does not require the models to
have a fixed initialization: we consider here a fixed initialization to isolate the effect of just varying
the hyperparameters (while deep ensembles vary only the initialization, with fixed hyperparameters).

Our goal is two-fold: (a) we want to demonstrate the complementarity of random initialization and
hyperparameters as sources of diversity in the ensemble, and (b) design a simple algorithmic scheme
that exploits both sources of diversity while encompassing the construction of deep ensembles as a
subcase. We defer to Section 5 the study of (a) and next focus on (b).

Hyper-deep ensembles. We proceed in three main steps, as summarized in Algorithm 1. In lines
1-2, we first generate one “row” according to hyper_ens based on the results of random search [6]
as input. We then tile and stratify that “row” by training the models for different random initialization
(see lines 4-7). The resulting set of models is illustrated in Figure 2-(left). In line 10, we finally
re-apply hyper_ens on that stratified set of models to extract an ensemble that can exploit the two
sources of diversity. By design, a deep ensemble is one possible outcome of this procedure—one
“column”—and so is fixed init hyper ensemble described in the previous paragraph—one “row”.

Algorithm 1: hyper_deep_ens(K,κ)
1 M0 = {fθj

(·,λj)}κj=1←− rand_search(κ);
2 E0 ←− hyper_ens(M0, K) and Estrat. = { };
3 foreach fθ(·,λ) ∈ E0.unique() do
4 foreach k ∈ {1, . . . ,K} do
5 θ′ ←− random initialization;
6 fθk

(·,λ)←− train fθ′(·,λ);
7 Estrat. = Estrat. ∪ { fθk

(·,λ)};
8 end
9 end

10 return hyper_ens(Estrat., K);

In lines 1-2, running random search leads to a set of κ
models (i.e.,M0). If we were to stratify all of them,
we would need K seeds for each of those κ models,
hence a total of O(κK) models to train. However, we
first apply hyper_ens to extract K models out of the
κ available ones, with K � κ. The stratification then
needs K seeds for each of those K models (lines 4-7),
thus O(K2) models to train. We will see in Section 5
that even with standard hyperparameters, e.g., dropout
or L2 parameters, Algorithm 1 can lead to substantial
improvements over deep ensembles. In Appendix C.7.5,
we conduct ablation studies to relate to the top-K strategy used in [60] and NES-RS from [75].

4 Hyper-batch ensembles

This section presents our efficient approach to construct ensembles over different hyperparameters.

4.1 Composing the layer structures of batch ensembles and self-tuning networks

The core idea lies in the composition of the layers used by batch ensembles [69] for ensembling
parameters and self-tuning networks [52] for parameterizing the layer as an explicit function of
hyperparameters. The composition preserves complementary features from both approaches.

We continue the example of the dense layer from Section 2.1-Section 2.2. The convolutional layer is
described in Appendix B.1. Assuming an ensemble of size K, we have for k ∈ {1, . . . ,K}

Wk(λk) = W ◦ (rks
>
k) + [∆ ◦ (ukv

>
k)] ◦ e(λk)> and bk(λk) = bk + δk ◦ e′(λk), (7)

5

where the rk’s (respectively, uk’s) in Rr and sk’s (respectively, vk’s) in Rs are vectors which diversify
the shared matrix W (respectively, ∆) in Rr×s; and the bk’s in Rs and δk’s in Rs are the bias terms
for each of the K ensemble members. We comment on some important properties of (7):

• As noted by [69], formulation (2) includes a set of rank-1 factors which diversify individual
ensemble member weights. In (7), the rank-1 factors rks

>
k and ukv

>
k capture this weight

diversity for each respective term.

• As noted by [52], formulation (3) captures local hyperparameter variations in the vicinity of
some λ. The term [∆ ◦ (ukv

>
k)] ◦ e(λk)> in (7) extends this behavior to the vicinity of the

K hyperparameters {λ1, . . . ,λK} indexing the K ensemble members.

• Equation (7) maintains the compactness of the original layers of [52, 69] with a resulting
memory footprint about twice as large as [69] and equivalent to [52] up to the rank-1 factors.

• Given K hyperparameters {λ1, . . . ,λK} and a batch of inputs X ∈ Rb×r, the structure
of (7) preserves the efficient minibatching of [69]. If 1b is the vector of ones in Rb, we can
tile X, 1bλ

>
k and 1be(λk)>, enabling all K members to predict in a single forward pass.

• From an implementation perspective, (7) enables direct reuse of existing code, e.g.,
DenseBatchEnsemble and Conv2DBatchEnsemble from [68]. The implementation of
our layers can be found in https://github.com/google/edward2.

4.2 Objective function: from single model to ensemble

We first need to slightly overload the notation from Section 2.2 and we write fΘ(x,λk) to denote
the prediction for the input x of the k-th ensemble member indexed by λk. In Θ, we pack all the
parameters of f , as those described in the example of the dense layer in Section 4.1. In particular,
predicting with λk is understood as using the corresponding parameters {Wk(λk),bk(λk)} in (7).

Training and validation objectives. We want the ensemble members to account for a diverse
combination of hyperparameters. As a result, each ensemble member is assigned its own distribution
of hyperparameters, which we write pt(λk) = p(λk|ξk,t) for k ∈ {1, . . . ,K}. Along the line of (4),
we consider an expected training objective which now simultaneously operates over ΛK = {λk}Kk=1

min
Θ

EΛK∼qt,(x,y)∈D

[
L(x, y,Θ,ΛK)

]
with qt

(
ΛK

)
= q(ΛK |{ξk,t}Kk=1) =

K∏
k=1

pt(λk) (8)

and where L, compared with (1), is extended to handle the ensemble predictions

L(x, y,Θ,ΛK) = `
(
{fΘ(x,λk)}Kk=1, y

)
+ Ω

(
Θ, {λk}Kk=1

)
.

For example, the loss ` can be the ensemble cross entropy or the average ensemble-member cross
entropy (in our experiments, we will use the latter as recent results suggests it often generalizes better
[17]). The introduction of one distribution pt per ensemble member also affects the validation step of
the alternating optimization, in particular we adapt (6) to become

min
{ξk,t}Kk=1

EΛK∼qt,(x,y)∈Dval

[
`val({fΘ(x,λk)}Kk=1, y)− τH

[
qt
(
ΛK

)]]
. (9)

Note that the extensions (8)-(9) with K = 1 fall back to the standard formulation of [52]. In our
experiments, we take Ω to be L2 regularizers applied to the parameters Wk(λk) and bk(λk) of each
ensemble member. In Appendix B.2, we show how to efficiently vectorize the computation of Ω
across the ensemble members and mini-batches of {λk}Kk=1 sampled from qt, as required by (8). In
practice, we use one sample of ΛK for each data point in the batch: for MLP/LeNet (Section 5.1), we
use 256, while for ResNet-20/W. ResNet-28-10 (Section 5.2), we use 512 (64 for each of 8 workers).

Definition of pt. In the experiments of Section 5, we will manipulate hyperparameters λ that
are positive and bounded (e.g., a dropout rate). For each ensemble member with hyperparameters
λk ∈ Rm, we thus define its distribution pt(λk) = p(λk|ξk,t) to be m independent log-uniform
distributions (one per dimension in λk), which is a standard choice for hyperparameter tuning,
e.g., [5, 6, 53]. With this choice, ξk,t contains 2m parameters, namely the bounds of the ranges of

6

https://github.com/google/edward2

Table 1: Comparison over CIFAR-100 and Fashion MNIST with MLP and LeNet models. We
report means ± standard errors (over the 3 random seeds and pooled over the 2 tuning settings).
“single” stands for the best between rand search and Bayes opt. “fixed init ens” is a shorthand
for fixed init hyper ens, i.e., a “row” in Figure 2-(left). We separately compare the efficient
methods (3 rightmost columns) and we mark in bold the best results (within one standard error). Our
two methods hyper-deep/hyper-batch ensembles improve upon deep/batch ensembles respectively
(in Appendix C.7.2, we assess the statistical significance of those improvements with a Wilcoxon
signed-rank test, paired along settings, datasets and model types).

single (1) fixed init ens (3) hyper-deep ens (3) deep ens (3) batch ens (3) STN (1) hyper-batch ens (3)

cifar100
(mlp)

nll ↓ 2.977 ± 0.010 2.943 ± 0.010 2.953 ± 0.058 2.969 ± 0.057 3.015 ± 0.003 3.029 ± 0.006 2.979 ± 0.004
acc ↑ 0.277 ± 0.002 0.287 ± 0.003 0.291 ± 0.004 0.289 ± 0.003 0.275 ± 0.001 0.268 ± 0.002 0.281 ± 0.002
ece ↓ 0.034 ± 0.008 0.029 ± 0.007 0.022 ± 0.007 0.038 ± 0.014 0.022 ± 0.002 0.033 ± 0.004 0.030 ± 0.002

cifar100
(lenet)

nll ↓ 2.399 ± 0.204 2.259 ± 0.067 2.211 ± 0.066 2.334 ± 0.141 2.350 ± 0.024 2.329 ± 0.017 2.283 ± 0.016
acc ↑ 0.420 ± 0.011 0.439 ± 0.008 0.452 ± 0.007 0.421 ± 0.026 0.438 ± 0.003 0.415 ± 0.003 0.428 ± 0.003
ece ↓ 0.064 ± 0.036 0.049 ± 0.023 0.039 ± 0.013 0.050 ± 0.015 0.058 ± 0.015 0.024 ± 0.007 0.058 ± 0.004

fmnist
(mlp)

nll ↓ 0.323 ± 0.003 0.312 ± 0.003 0.310 ± 0.001 0.319 ± 0.005 0.351 ± 0.004 0.316 ± 0.003 0.308 ± 0.002
acc ↑ 0.889 ± 0.002 0.893 ± 0.001 0.895 ± 0.001 0.889 ± 0.003 0.884 ± 0.001 0.890 ± 0.001 0.892 ± 0.001
ece ↓ 0.013 ± 0.003 0.012 ± 0.005 0.014 ± 0.003 0.010 ± 0.003 0.020 ± 0.001 0.016 ± 0.001 0.016 ± 0.001

fmnist
(lenet)

nll ↓ 0.232 ± 0.002 0.219 ± 0.002 0.216 ± 0.002 0.226 ± 0.004 0.230 ± 0.005 0.224 ± 0.003 0.212 ± 0.001
acc ↑ 0.919 ± 0.001 0.924 ± 0.001 0.926 ± 0.002 0.920 ± 0.002 0.920 ± 0.001 0.920 ± 0.001 0.924 ± 0.001
ece ↓ 0.017 ± 0.005 0.014 ± 0.004 0.018 ± 0.002 0.013 ± 0.004 0.017 ± 0.002 0.015 ± 0.001 0.009 ± 0.001

the m distributions. Similar to [52], at prediction time, we take λk to be equal to the means λmean
k of

the distributions pt(λk). In Appendix B.3, we provide additional details about pt.

The validation steps (6) and (9) seek to optimize the bounds of the ranges. More specifically, the loss
`val favors compact ranges around a good hyperparameter value whereas the entropy term encourages
wide ranges, as traded off by τ . We provide an example of the optimization trajectory of λ and its
range in Figure 2-(right), where λ corresponds to the mean of the log-uniform distribution.

5 Experiments

Throughout the experiments, we use both metrics that depend on the predictive uncertainty—negative
log-likelihood (NLL) and expected calibration error (ECE) [55]—and metrics that do not, e.g.,
the classification accuracy. The supplementary material also reports Brier score [10] (for which
we typically observed a strong correlation with NLL). Moreover, as diversity metric, we take the
predictive disagreement of the ensemble members normalized by (1-accuracy), as used in [22]. In the
tables, we write the number of ensemble members in brackets “(·)” next to the name of the methods.

5.1 Multi-layer perceptron and LeNet on Fashion MNIST & CIFAR-100

To validate our approaches and run numerous ablation studies, we first focus on small-scale models,
namely MLP and LeNet [44], over CIFAR-100 [40] and Fashion MNIST [73]. For both models, we
add a dropout layer [66] before their last layer. For each pair of dataset/model type, we consider two
tuning settings involving the dropout rate and different L2 regularizers defined with varied granularity,
e.g., layerwise. Appendix C.1 gives all the details about the training, tuning and dataset definitions.

Baselines. We compare our methods (i) hyper-deep ens: hyper-deep ensemble of Section 3
and (ii) hyper-batch ens: hyper-batch ensemble of Section 4, to (a) rand search: the best
single model after 50 trials of random search [6], (b) Bayes opt: the best single model after
50 trials of Bayesian optimization [63, 27], (c) deep ens: deep ensemble [43] using the best
hyperparameters found by random search, (d) batch ens: batch ensemble [69], (e) STN: self-tuning
networks [52], and (f) fixed init hyper ens: defined in Section 3. The supplementary material
details how we tune the hyperparameters specific to batch ens, STN and hyper-batch ens (see
Appendix C.2, Appendix C.3 and Appendix C.4 and further ablations about e in Appendix C.5 and τ
in Appendix C.6). Note that batch ens needs the tuning of its own hyperparameters and those of
the MLP/LeNet models, while STN and hyper-batch ens automatically tune the latter.

We highlight below the key conclusions from Table 1 with single models and ensemble of sizes 3.
The same conclusions can also be drawn for the ensemble of size 5 (see Appendix C.7.1).

7

Table 2: Performance of ResNet-20 (upper table) and Wide ResNet-28-10 (lower table) models on
CIFAR-10/100. We separately compare the efficient methods (2 rightmost columns) and we mark in
bold the best results (within one standard error). Our two methods hyper-deep/hyper-batch ensembles
improve upon deep/batch ensembles.

(ResNet-20) single (1) deep ens (4) hyper-deep ens (4) batch ens (4) hyper-batch ens (4)

cifar100
nll ↓ 1.178 ± 0.020 0.908 ± 0.003 0.896 ± 0.003 1.235 ± 0.007 1.152 ± 0.015
acc ↑ 0.682 ± 0.005 0.751 ± 0.002 0.754 ± 0.002 0.697 ± 0.000 0.699 ± 0.002
ece ↓ 0.064 ± 0.005 0.070 ± 0.005 0.050 ± 0.004 0.119 ± 0.001 0.095 ± 0.002
div ↑ – 1.332 ± 0.051 1.356 ± 0.049 0.154 ± 0.006 0.159 ± 0.007

cifar10
nll ↓ 0.262 ± 0.006 0.172 ± 0.003 0.173 ± 0.003 0.278 ± 0.004 0.235 ± 0.004
acc ↑ 0.927 ± 0.001 0.946 ± 0.000 0.947 ± 0.000 0.929 ± 0.000 0.929 ± 0.001
ece ↓ 0.035 ± 0.001 0.011 ± 0.001 0.011 ± 0.001 0.039 ± 0.001 0.017 ± 0.000
div ↑ – 1.398 ± 0.005 1.446 ± 0.004 0.789 ± 0.010 0.821 ± 0.013

(WRN-28-10) single (1) deep ens (4) hyper-deep ens (4) batch ens (4) hyper-batch ens (4)

cifar100
nll ↓ 0.811 ± 0.026 0.678 ± 0.013 0.636 ± 0.013 0.690 ± 0.005 0.678 ± 0.005
acc ↑ 0.801 ± 0.004 0.819 ± 0.001 0.831 ± 0.001 0.819 ± 0.001 0.820 ± 0.000
ece ↓ 0.062 ± 0.001 0.021 ± 0.002 0.021 ± 0.002 0.026 ± 0.002 0.022 ± 0.001
div ↑ – 0.954 ± 0.002 1.142 ± 0.001 0.761 ± 0.014 0.996 ± 0.015

cifar10
nll ↓ 0.152 ± 0.009 0.108 ± 0.005 0.108 ± 0.004 0.136 ± 0.001 0.126 ± 0.001
acc ↑ 0.961 ± 0.001 0.968 ± 0.000 0.969 ± 0.000 0.963 ± 0.001 0.963 ± 0.000
ece ↓ 0.023 ± 0.005 0.007 ± 0.003 0.008 ± 0.002 0.017 ± 0.001 0.009 ± 0.001
div ↑ – 0.982 ± 0.002 1.087 ± 0.002 0.444 ± 0.003 0.874 ± 0.026

Ensembles benefit from both weight and hyperparameter diversity. With the pictorial view
of Figure 2 in mind, fixed init hyper ens, i.e., a “row”, tends to outperform deep ens, i.e., a
“column”. Moreover, those two approaches (as well as the other methods of the benchmark) are
outperformed by our stratified procedure hyper-deep ens, demonstrating the benefit of combining
hyperparameter and initialization diversity (see Appendix C.7.2 for the detailed assessment of the
statistical significance). In Appendix C.7.3, we study more specifically the diversity and we show
that hyper-deep ens has indeed more diverse predictions than deep ens.

Efficient ensembles benefit from both weight and hyperparameter diversity. Among the effi-
cient approaches (the three rightmost columns of Table 1), hyper-batch ens performs best. It
improves upon both STN and batch ens, the two methods it builds upon. In line with [52], STN
typically matches or improves upon rand search and Bayes opt. As explained in Section 4.1,
hyper-batch ens has however twice the number of parameters of batch ens. In Appendix C.7.4,
we thus compare with a “deep ensemble of two batch ensembles” (i.e., resulting in the same number of
parameters but twice as many members as for hyper-batch ens). In that case, hyper-batch ens
also either improves upon or matches the performance of the combination of two batch ens.

5.2 ResNet-20 and Wide ResNet-28-10 on CIFAR-10 & CIFAR-100

We evaluate our approach in a large-scale setting with ResNet-20 [31] and Wide ResNet 28-10
models [74] as they are simple architectures with competitive performance on image classification
tasks. We consider six different L2 regularization hyperparameters (one for each block of the ResNet)
and a label smoothing hyperparameter. We show results on CIFAR-10, CIFAR-100 and corruptions on
CIFAR-10 [33, 64]. Moreover, in Appendix D.3, we provide additional out-of-distribution evaluations
along the line of [32]. Further details about the experiment settings can be found in Appendix D.

CIFAR-10/100. We compare hyper-deep ens with a single model (tuned as next explained)
and deep ens of varying ensemble sizes. Our hyper-deep ens is constructed based on 100 trials
of random search while deep ens and single take the best hyperparameter configuration found by
the random search procedure. Figure 1 displays the results on CIFAR-100 along with the standard
errors and shows that throughout the ensemble sizes, there is a substantial performance improvement
of hyper-deep ensembles over deep ensembles. The results for CIFAR-10 are shown in Appendix D
where hyper-deep ens leads to consistent but smaller improvements, e.g., in terms of NLL. We
next fix the ensemble size to four and compare the performance of hyper-batch ens with the direct
competing method batch ens, as well as with hyper-deep ens, deep ens and single.

8

1 2 3 4 5
Shift intensity

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

hyper-deep ens.
deep ens.
hyper-batch ens.
batch ens.
single

Figure 3: CIFAR-10 corruptions. Each box shows the quar-
tiles summarizing the results across all types of shifts while
the error bars give the min/max across different shift types.

The results1 are reported in Table 2.
On CIFAR-100, hyper-batch ens
improves, or matches, batch ens
across all metrics. For instance,
in terms of NLL, it improves upon
batch ens by about 7% and 2%
for ResNet-20 and Wide ResNet
28-10 respectively. Moreover, the
members of hyper-batch ens make
more diverse predictions than those
of batch ens. On CIFAR-10
hyper-batch ens also achieves a
consistent improvement, though less
pronounced (see Table 2). On the same Wide ResNet 28-10 benchmark, with identical training and
evaluation pipelines (see https://github.com/google/uncertainty-baselines), variational
inference [70] leads to (NLL, ACC, ECE)=(0.211, 0.947, 0.029) and (NLL, ACC, ECE)=(0.944,
0.778, 0.097) for CIFAR-10 and CIFAR-100 respectively, while Monte Carlo dropout [23] gets (NLL,
ACC, ECE)=(0.160, 0.959, 0.024) and (NLL, ACC, ECE)=(0.830, 0.776, 0.050) for CIFAR-10 and
CIFAR-100 respectively.

We can finally look at how the joint training in hyper-batch ens leads to complementary ensemble
members. For instance, for Wide ResNet 28-10 on CIFAR-100, while the ensemble performance
are (NLL, ACC)=(0.678, 0.820) (see Table 2), the individual members obtain substantially poorer
performance, as measured by the average ensemble-member metrics (NLL, ACC)=(0.904, 0.788).

Training time and memory cost. Both in terms of the number of parameters and training time,
hyper-batch ens is about twice as costly as batch ens. For CIFAR-100, hyper-batch ens takes
2.16 minutes/epoch and batch ens 1.10 minute/epoch. More details are available in Appendix D.6.

Calibration on out of distribution data. We measure the calibrated prediction on corrupted
datasets, which is a type of out-of-distribution examples. We consider the recently published dataset
by [33], which consists of over 30 types of corruptions to the images of CIFAR-10. A similar
benchmark can be found in [64]. On Figure 3, we find that all ensembles methods improve upon the
single model. The mean accuracies are similar for all ensemble methods, whereas hyper-batch ens
shows more robustness than batch ens as it typically leads to smaller worst values (see bottom
whiskers in Figure 3). Plots for calibration error and NLL can be found in Appendix D.5.

6 Discussion

We envision several promising directions for future research.

Towards more compact parametrization. In this work, we have used the layers from [52] that
lead to a 2x increase in memory compared with standard layers. In lieu of (3), low-rank parametriza-
tions, e.g., W +

∑h
j=1 ej(λ)gjh

>
j , would be appealing to reduce the memory footprint of self-

tuning networks and hyper-batch ensembles. We formally show in Appendix E that this family of
parametrizations is well motivated in the case of shallow models where they enjoy good approximation
guarantees.

Architecture diversity. Our proposed hyperparameter ensembles provide diversity with respect to
hyperparameters related to regularization and optimization. We would like to go further in ensembling
very different functions in the search space, such as network width, depth [2], and the choice of
residual block. Doing so connects to older work on Bayesian marginalization over structures [37, 1].
More broadly, we can wonder what other types of diversity matter to endow deep learning models
with better uncertainty estimates?

1[17] report an accuracy of 82.7% for deep ens for Wide ResNet 28-10 in a similar setting. The gap may be
due to a more thorough tuning of the hyperparameters. Note that the results for hyper-deep ens are based on
the same random search that led to the 81.9% reported here; a better tuning of the hyperparameters would also
benefit to hyper-deep ens.

9

https://github.com/google/uncertainty-baselines

Broader Impact

Our work belongs to a broader research effort that tries to quantify the predictive uncertainty for deep
neural networks. Those models are known to generalize poorly to small changes to the data while
maintaining high confidence in their predictions.

Who may benefit from this research? The broader topic of our work is becoming increasingly
important in a context where machine learning systems are being deployed in safety-critical fields,
e.g., medical diagnosis [54, 49] and self-driving cars [48]. Those examples would benefit from the
general technology we contribute to. In those cases, it is essential to be able to reliably trust the
uncertainty output by the models before any decision-making process, to possibly escalate uncertain
decisions to appropriate human operators.

Who may be put at disadvantage from this research? We are not aware of a group of people
that may be put at disadvantage as a result of this direct research.

What are the consequences of failure of the system? By definition, our research could contribute
to aspects of machine-learning systems used in high-risk domains (e.g., we mentioned earlier
medical fields and self-driving cars) which involves complex data-driven decision-making processes.
Depending on the nature of the application at hand, a failure of the system could lead to extremely
negative consequences. A case in point is the recent screening system used by one third of UK
government councils to allocate welfare budget. 2

Do the task/method leverage biases in the data? The method we develop in this work is domain-
agnostic and does not rely on specific data assumptions. Our method also does not contain components
that would prevent its combination with existing fairness or privacy-preserving technologies [4].

Acknowledgments

We would like to thank Nicolas Le Roux, Alexey Dosovitskiy and Josip Djolonga for insightful
discussions at earlier stages of this project. Moreover, we would like to thank Sebastian Nowozin,
Klaus-Robert Müller and Balaji Lakshminarayanan for helpful comments on a draft of this paper.

References

[1] R. Adams, H. Wallach, and Z. Ghahramani. Learning the structure of deep sparse graphical
models. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 1–8, 2010.

[2] J. Antorán, J. U. Allingham, and J. M. Hernández-Lobato. Depth uncertainty in neural networks.
arXiv preprint arXiv:2006.08437, 2020.

[3] M. Babaeizadeh and G. Ghiasi. Adjustable real-time style transfer. In International Conference
on Learning Representations, 2019.

[4] S. Barocas, M. Hardt, and A. Narayanan. Fairness and machine learning. fairmlbook. org, 2018.
URL: http://www. fairmlbook. org, 2018.

[5] J. Bergstra, R. Bardenet, Y. Bengio, B. Kégl, et al. Algorithms for hyper-parameter optimization.
In Advances in Neural Information Processing Systems, volume 24, pages 2546–2554, 2011.

[6] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305, 2012.

[7] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural
network. In International Conference on Machine Learning, pages 1613–1622, 2015.

[8] L. Bottou. Online algorithms and stochastic approximations. Online Learning and Neural
Networks, 5, 1998.

2 Link to the corresponding article in The Guardian, October 2019:
https://www.theguardian.com/society/2019/oct/15/councils-using-algorithms-make-welfare-decisions-benefits.

10

https://www.theguardian.com/society/2019/oct/15/councils-using-algorithms-make-welfare-decisions-benefits

[9] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
Siam Review, 60(2):223–311, 2018.

[10] G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly weather review,
78(1):1–3, 1950.

[11] A. Brock, T. Lim, J. M. Ritchie, and N. J. Weston. Smash: One-shot model architecture search
through hypernetworks. In International Conference on Learning Representations, 2018.

[12] R. Caruana, A. Munson, and A. Niculescu-Mizil. Getting the most out of ensemble selection.
In Sixth International Conference on Data Mining (ICDM’06), pages 828–833. IEEE, 2006.

[13] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes. Ensemble selection from libraries of
models. In Proceedings of the International Conference on Machine Learning (ICML), page 18.
ACM, 2004.

[14] B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of
operations research, 153(1):235–256, 2007.

[15] T. G. Dietterich. Ensemble methods in machine learning. In International workshop on multiple
classifier systems, pages 1–15. Springer, 2000.

[16] A. Dosovitskiy and J. Djolonga. You only train once: Loss-conditional training of deep networks.
In International Conference on Learning Representations, 2020.

[17] M. W. Dusenberry, G. Jerfel, Y. Wen, Y.-a. Ma, J. Snoek, K. Heller, B. Lakshminarayanan,
and D. Tran. Efficient and scalable bayesian neural nets with rank-1 factors. In International
conference on machine learning, 2020.

[18] D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum, and G. Zoubin. Structure discovery in
nonparametric regression through compositional kernel search. In International Conference on
Machine Learning, pages 1166–1174, 2013.

[19] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. Practical automated
machine learning for the automl challenge 2018. In International Workshop on Automatic
Machine Learning at ICML, 2018.

[20] M. Feurer and F. Hutter. Hyperparameter optimization. In Automated Machine Learning, pages
3–33. Springer, 2019.

[21] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. Efficient and
robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 2962–2970,
2015.

[22] S. Fort, H. Hu, and B. Lakshminarayanan. Deep ensembles: A loss landscape perspective. arXiv
preprint arXiv:1912.02757, 2019.

[23] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In International conference on machine learning, pages 1050–1059,
2016.

[24] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points—online stochastic gradient
for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

[25] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1–58, 1992.

[26] R. Gibbons et al. A primer in game theory. Harvester Wheatsheaf New York, 1992.

[27] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley. Google vizier: A
service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1487–1495, 2017.

[28] F. K. Gustafsson, M. Danelljan, and T. B. Schon. Evaluating scalable bayesian deep learning
methods for robust computer vision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, pages 318–319, 2020.

[29] D. Ha, A. Dai, and Q. V. Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

[30] L. K. Hansen and P. Salamon. Neural network ensembles. IEEE transactions on pattern analysis
and machine intelligence, 12(10):993–1001, 1990.

11

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[32] M. Hein, M. Andriushchenko, and J. Bitterwolf. Why relu networks yield high-confidence
predictions far away from the training data and how to mitigate the problem. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 41–50, 2019.

[33] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corrup-
tions and perturbations. In International Conference on Learning Representations, 2018.

[34] G. E. Hinton and D. Van Camp. Keeping the neural networks simple by minimizing the descrip-
tion length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pages 5–13, 1993.

[35] S. Höllerer, L. Papaxanthos, A. C. Gumpinger, K. Fischer, C. Beisel, K. Borgwardt, Y. Benenson,
and M. Jeschek. Large-scale dna-based phenotypic recording and deep learning enable highly
accurate sequence-function mapping. bioRxiv, 2020.

[36] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger. Snapshot ensembles:
Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

[37] C. Kemp and J. B. Tenenbaum. The discovery of structural form. Proceedings of the National
Academy of Sciences, 105(31):10687–10692, 2008.

[38] D. Kingma and J. Ba. Adam: A method for stochastic optimization. Technical report, preprint
arXiv:1412.6980, 2014.

[39] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[40] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[41] A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In
Advances in neural information processing systems, pages 231–238, 1995.

[42] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[43] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty
estimation using deep ensembles. In Advances in Neural Information Processing Systems
(NIPS), pages 6402–6413, 2017.

[44] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and L. D.
Jackel. Handwritten digit recognition with a back-propagation network. In Advances in neural
information processing systems, pages 396–404, 1990.

[45] S. Lee, S. Purushwalkam, M. Cogswell, D. Crandall, and D. Batra. Why m heads are better than
one: Training a diverse ensemble of deep networks. arXiv preprint arXiv:1511.06314, 2015.

[46] J.-C. Lévesque, C. Gagné, and R. Sabourin. Bayesian hyperparameter optimization for en-
semble learning. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, pages 437–446, 2016.

[47] E. Levin, N. Tishby, and S. A. Solla. A statistical approach to learning and generalization in
layered neural networks. Proceedings of the IEEE, 78(10):1568–1574, 1990.

[48] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer,
O. Pink, V. Pratt, et al. Towards fully autonomous driving: Systems and algorithms. In 2011
IEEE Intelligent Vehicles Symposium (IV), pages 163–168. IEEE, 2011.

[49] Y. Liu, A. Jain, C. Eng, D. H. Way, K. Lee, P. Bui, K. Kanada, G. de Oliveira Marinho,
J. Gallegos, S. Gabriele, et al. A deep learning system for differential diagnosis of skin diseases.
Nature Medicine, pages 1–9, 2020.

[50] J. Lorraine and D. Duvenaud. Stochastic hyperparameter optimization through hypernetworks.
arXiv preprint arXiv:1802.09419, 2018.

[51] D. J. MacKay et al. Ensemble learning and evidence maximization. In Advances in neural
information processing systems, 1995.

12

[52] M. Mackay, P. Vicol, J. Lorraine, D. Duvenaud, and R. Grosse. Self-tuning networks: Bilevel
optimization of hyperparameters using structured best-response functions. In International
Conference on Learning Representations, 2018.

[53] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter. Towards automatically-
tuned neural networks. In ICML Workshop on Automatic Machine Learning, pages 58–65,
2016.

[54] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley. Deep patient: an unsupervised representation to
predict the future of patients from the electronic health records. Scientific reports, 6(1):1–10,
2016.

[55] M. P. Naeini, G. Cooper, and M. Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[56] R. M. Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.
[57] J. Nixon, M. W. Dusenberry, L. Zhang, G. Jerfel, and D. Tran. Measuring calibration in deep

learning. In CVPR Workshops, pages 38–41, 2019.
[58] D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal of artificial

intelligence research, 11:169–198, 1999.
[59] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a

general conditioning layer. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
[60] T. Saikia, T. Brox, and C. Schmid. Optimized generic feature learning for few-shot classification

across domains. arXiv preprint arXiv:2001.07926, 2020.
[61] J. Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent

networks. Neural Computation, 4(1):131–139, 1992.
[62] J. Schmidhuber. A ‘self-referential’weight matrix. In International Conference on Artificial

Neural Networks, pages 446–450. Springer, 1993.
[63] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning

algorithms. In Advances in Neural Information Processing Systems, pages 2960–2968, 2012.
[64] J. Snoek, Y. Ovadia, E. Fertig, B. Lakshminarayanan, S. Nowozin, D. Sculley, J. Dillon, J. Ren,

and Z. Nado. Can you trust your model’s uncertainty? evaluating predictive uncertainty under
dataset shift. In Advances in Neural Information Processing Systems, pages 13969–13980,
2019.

[65] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat,
and R. Adams. Scalable Bayesian optimization using deep neural networks. In Proceedings of
the International Conference on Machine Learning (ICML), pages 2171–2180, 2015.

[66] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[67] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2818–2826, 2016.

[68] D. Tran, M. W. Dusenberry, D. Hafner, and M. van der Wilk. Bayesian Layers: A module for
neural network uncertainty. In Neural Information Processing Systems, 2019.

[69] Y. Wen, D. Tran, and J. Ba. Batchensemble: an alternative approach to efficient ensemble and
lifelong learning. In International Conference on Learning Representations, 2019.

[70] Y. Wen, P. Vicol, J. Ba, D. Tran, and R. Grosse. Flipout: Efficient pseudo-independent weight
perturbations on mini-batches. In International Conference on Learning Representations, 2018.

[71] F. Wenzel, K. Roth, B. S. Veeling, J. Świątkowski, L. Tran, S. Mandt, J. Snoek, T. Salimans,
R. Jenatton, and S. Nowozin. How good is the bayes posterior in deep neural networks really?
In International Conference on Machine Learning, 2020.

[72] A. G. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. In International Conference on Machine Learning, 2020.

[73] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

13

[74] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

[75] S. Zaidi, A. Zela, T. Elsken, C. Holmes, F. Hutter, and Y. W. Teh. Neural ensemble search for
performant and calibrated predictions. arXiv preprint arXiv:2006.08573, 2020.

[76] R. Zhang, C. Li, J. Zhang, C. Chen, and A. G. Wilson. Cyclical stochastic gradient mcmc for
bayesian deep learning. In International Conference on Learning Representations, 2019.

14

