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Abstract

In the world of big data, large but costly to label datasets dominate many fields.
Active learning, a semi-supervised alternative to the standard PAC-learning model,
was introduced to explore whether adaptive labeling could learn concepts with
exponentially fewer labeled samples. While previous results show that active learn-
ing performs no better than its supervised alternative for important concept classes
such as linear separators, we show that by adding weak distributional assumptions
and allowing comparison queries, active learning requires exponentially fewer
samples. Further, we show that these results hold as well for a stronger model of
learning called Reliable and Probably Useful (RPU) learning. In this model, our
learner is not allowed to make mistakes, but may instead answer “I don’t know.”
While previous negative results showed this model to have intractably large sample
complexity for label queries, we show that comparison queries make RPU-learning
at worst logarithmically more expensive in both the passive and active regimes.

1 Introduction

In recent years, the availability of big data and the high cost of labeling has lead to a surge of interest
in active learning, an adaptive, semi-supervised learning paradigm. In traditional active learning,
given an instance space X , a distribution D on X , and a class of concepts c : X → {0, 1}, the
learner receives unlabeled samples x from D with the ability to query an oracle for the labeling
c(x). Classically our goal would be to minimize the number of samples the learner draws before
approximately learning the concept class with high probability (PAC-learning). Instead, active
learning assumes unlabeled samples are inexpensive, and rather aims to minimize expensive queries
to the oracle. While active learning requires exponentially fewer labeled samples than PAC-learning
for simple classes such as thresholds in one dimension, it fails to provide asymptotic improvement
for classes essential to machine learning such as linear separators [1].

However, recent results point to the fact that with slight relaxations or additions to the paradigm,
such concept classes can be learned with exponentially fewer queries. In 2013, Balcan and Long
[2] proved that this was the case for homogeneous (through the origin) linear separators, as long as
the distribution over the instance space X = Rd was (nearly isotropic) log-concave–a wide range of
distributions generalizing common cases such as gaussians or uniform distributions over convex sets.
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Later, Balcan and Zhang [3] extended this to isotropic s-concave distributions, a diverse generalization
of log-concavity including fat-tailed distributions. Similarly, El-Yaniv and Wiener [4] proved that
non-homogeneous linear separators can be learned with exponentially fewer queries over gaussian
distributions with respect to the accuracy parameter, but require exponentially more queries in the
dimension of the instance space X , making their algorithm intractable in high dimensions.

Kane, Lovett, Moran, and Zhang (KLMZ) [5] broke the non-homogeneity barrier for general dis-
tributions in two dimensions by empowering the oracle to compare points rather than just label
them. Queries of this type are called comparisons, and are notable not only for their increase in
computational power, but for their real world applications such as in recommender systems [6]
or for increasing accuracy over purely label-based techniques [7]. Our work adopts a mixture of
the approaches of Balcan, Long, and Zhang, and KLMZ. By leveraging comparison queries, we
provide a computationally efficient algorithm for active learning non-homogeneous linear separa-
tors in exponentially fewer samples as long as the distribution satisfies weak concentration and
anti-concentration bounds, conditions realized by, for instance, (not necessarily isotropic) s-concave
distributions. Further, by introducing a new average case complexity measure, average inference
dimension, that extends KLMZ’s techniques to the distribution dependent setting, we prove that
comparisons provide significantly stronger guarantees than the PAC-learning paradigm.

In the late 80’s, Rivest and Sloan [8] proposed a competing model to PAC-learning called Reliable
and Probably Useful (RPU) learning. This model, a learning theoretic formalization of Chow’s [9]
selective classification, does not allow the learner to make mistakes, but instead allows the answer “I
don’t know” written as “⊥”. Here, error is measured not by the amount of misclassified examples,
but by the measure of examples on which our learner returns ⊥. RPU-learning was for the most
part abandoned by the early 90’s in favor of PAC-learning as Kivinen [10–12] proved the sample
complexity of RPU-learning simple concept classes such as rectangles required an exponential number
of samples even under the uniform distribution. However, the model was recently re-introduced by
El-Yaniv and Wiener [4], who termed it perfect selective classification. El-Yaniv and Wiener prove a
connection between Active and RPU-learning similar to the strategy employed by KLMZ [5] (who
refer to RPU-learners as “confident” learners). We extend the lower bound of El-Yaniv and Wiener
to prove that actively RPU-learning linear separators with only labels is exponentially difficult in
dimension even for nice distributions. On the other hand, through a structural analysis of average
inference dimension, we prove that comparison queries allow RPU-learning with nearly matching
sample and query complexity to PAC-learning, as long as the underlying distribution is sufficiently
nice. This last result has already found further use by Hopkins, Kane, Lovett, and Mahajan [13], who
use our analysis of average inference dimension to extend their comparison-based algorithms for
robustly learning non-homogeneous hyperplanes to higher dimensions.

2 Background and related work

2.1 PAC-learning

Probably Approximately Correct (PAC)-learning is a framework for learning classifiers over an
instance space introduced by Valiant [14] with aid from Vapnik and Chervonenkis [15]. Given an
instance space X , label space Y , and a concept class C of concepts c : X → Y , PAC-learning
proceeds as follows. First, an adversary chooses a hidden distribution D over X and a hidden
classifier c ∈ C. The learner then draws labeled samples from D, and outputs a concept c′ which it
thinks is close to c with respect to D. Formally, we define closeness of c and c′ as the error:

errD(c′, c) = Prx∈D[c′(x) 6= c(x)].

We say the pair (X,C) is PAC-learnable if there exists a learner A which, for all ε, δ > 0, picks in
n(ε, δ) = Poly( 1

ε ,
1
δ ) samples1 a classifier c′ that with probability 1− δ has at most ε error from c:

∃A s.t. ∀c ∈ C,∀D,PrS∼Dn(ε,δ) [errD(A(S), c) < ε] ≥ 1− δ.
The goal of PAC-learning is to compute the sample complexity n(ε, δ) and thereby prove whether
certain pairs (X,C) are efficiently learnable. In this paper, we will be concerned with the case of
binary classification, where Y = {0, 1}. In addition, in the case that C is linear separators we instead
write our concept classes as the sign of a family H of functions h : X → R. Instead of (X,C),

1Formally, n(ε, δ) must also be polynomial in a number of parameters of C.
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we write the hypothesis class (X,H), and each h ∈ H defines a concept ch(x) = sgn(h(x)). The
sample complexity of PAC-learning is characterized by the VC dimension [16–18] of (X,H) which
we denote by k, and is given by:

n(ε, δ) = θ

(
k + log( 1

δ )

ε

)
.

2.2 RPU-learning

Reliable and Probably Useful (RPU)-learning is a stronger variant of PAC-learning introduced by
Rivest and Sloan [8], in which the learner is reliable: it is not allowed to make errors, but may instead
say “I don’t know” (or for shorthand, “⊥”). Since it is easy to make a reliable learner by simply
always outputting “⊥”, our learner must be useful, and may only output “⊥” a small fraction of the
time. Let A be a reliable learner, we define the error of A on a sample S with respect to D, c to be

errD(A(S), c) = Prx∼D[A(S)(x) =⊥].

We call 1− errD(A(S), c) the coverage of the learner A, denoted CD(A(S)), or just C(A) when
clear from context. Finally, we say the pair (X,C) is RPU-learnable if ∀ε, δ, there exists a reliable
learner A which in n(ε, δ) = Poly( 1

ε ,
1
δ ) samples has error ≤ ε with probability ≥ 1− δ:

∃A s.t. ∀c ∈ C,∀D,PrS∼Dn(ε,δ) [errD(A(S), c) ≤ ε] ≥ 1− δ
RPU-learning is characterized by the VC dimension of certain intersections of concepts [11]. Unfor-
tunately, many simple cases turn out to be not RPU-learnable (e.g. rectangles in [0, 1]d, d ≥ 2 [10]),
with even relaxations having exponential sample complexity [12].

2.3 Passive vs active learning

PAC and RPU-learning traditionally refer to supervised learning, where the learning algorithm
receives pre-labeled samples. We call this paradigm passive learning. In contrast, active learning
refers to the case where the learner receives unlabeled samples and may adaptively query a labeling
oracle. Similar to the passive case, for active learning we study the query complexity q(ε, δ), the
minimum number of queries to learn some pair (X,C) in either the PAC or RPU learning models.
The hope is that by adaptively choosing when to query the oracle, the learner may only need to query
a number of samples logarithmic in the sample complexity.

We will discuss two paradigms of active learning: pool-based, and membership query synthesis
(MQS) [19, 20]. In the former, the learner has access to a pool of unlabeled data and may request that
the oracle label any point. This model matches real-world scenarios where learners have access to
large, unlabeled datasets, but labeling is too expensive to use passive learning (e.g. medical imagery).
Membership query synthesis allows the learner to synthesize points in the instance space and query
their labels. This model is the logical extreme of the pool-based model where our pool is the entire
instance space. Because we consider learning with a fixed distribution, we will slightly modify MQS:
the learner may only query points in the support of the distribution.2 This is the natural specification
to distribution dependent learning, as it still models the case where our pool is as large as possible.

2.4 The distribution dependent case

While PAC and RPU-learning were traditionally studied in the worst-case scenario over distributions,
data in the real world is often drawn from distributions with nice properties such as concentration and
anti-concentration bounds. As such, there has been a wealth of research into distribution-dependent
PAC-learning, where the model has been relaxed only in that some distributional conditions are
known. Distribution dependent learning has been studied in both the passive and the active case
[2, 21–23]. Most closely related to our work, Balcan and Long [2] proved new upper bounds on active
and passive learning of homogeneous (through the origin) linear separators in 0-centered log-concave
distributions. Later, Balcan and Zhang [3] extended this to isotropic s-concave distributions. We
directly extend the original algorithm of Balcan and Long to non-homogeneous linear separators via
the inclusion of comparison queries, and leverage the concentration results of Balcan and Zhang to
provide an inference based algorithm for learning under general s-concave distributions.

2We note that in this version of the model, the learner must know the support of the distribution. Since we
only use the model for lower bounds, we lose no generality by making this assumption.
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2.4.1 Point location

Our results on RPU-learning imply simple linear decision trees (LDTs) for an important problem in
computer science and computational geometry known as point location. Given a set of n hyperplanes
in d dimensions, called a hyperplane arrangement of size n and denoted by H = {h1, . . . , hn}, it is
a classic result that H partitions Rd into O(nd) cells. The point location problem is as follows:

Definition 2.1 (Point Location Problem). Given a hyperplane arrangement H = {h1, . . . , hn} and
a point x, both in Rd, determine in which cell of H x lies.

Instances of this problem show up throughout computer science, such as in k-sum, subset-sum,
knapsack, or any variety of other problems [24]. The best known depth for an LDT solving the point
location problem is from a recent work of Hopkins, Kane, Lovett, and Mahajan [25], who prove
the existence of a nearly optimal Õ(d log(n)) depth LDT for arbitrary H and x. The caveat of this
work is that the LDT uses arbitrary linear queries, which may be too powerful a model in practice.
Kane, Lovett, and Moran [26] offer an Õ(d4 log(n)) depth LDT restricting the model to generalized
comparison queries, queries of the form sgn(a〈h1, x〉 − b〈h2, x〉) for a point x and hyperplanes
h1, h2. These queries are nice as they preserve structural properties of the input H such as sparsity,
but they still suffer from over-complication–any H allows an infinite set of queries.

KLMZ’s [5] original work on inference dimension showed that in the worst case, the depth of a
comparison LDT for point location is Ω(n). However, by restricting H to have good margin or
bounded bit complexity, they build a comparison LDT of depth Õ(d log(n)), which comes with the
advantage of drawing from a finite set of queries for a given problem instance. Our work provides
another result of this flavor: we will prove that ifH is drawn from a distribution with weak restrictions,
for large enough n there exists a comparison LDT with expected depth Õ(d log2(n)).

3 Results

We begin by introducing notation for our learning models. For a distribution D, an instance space
X ⊆ Rd, and a hypothesis class H : X → R, we write the triple (D,X,H) to denote the problem
of learning a hypothesis h ∈ H with respect to D over X . When D is the uniform distribution over
S ⊆ X , we will write (S,X,H) for convenience. We will further denote by Bd the unit ball in d
dimensions, and by Hd hyperplanes in d dimensions. Given h ∈ H and a point x ∈ X , a label query
determines sign(h(x)); given x, x′ ∈ X , a comparison query determines sign(h(x)− h(x′)).

In addition, we will separate our models of learnability into combinations of three classes Q,R, and
S, where Q ∈ {Label, Comparison}, R ∈ {Passive, Pool, MQS}, and S ∈ {PAC, RPU}. Informally,
we say an element Q defines our query type, an element in R our learning regime, and an element
in S our learning model. Learnability of a triple is then defined by the combination of any choice
of query, regime, and model, which we term as the Q-R-S learnability of (D,X,H). Note that in
Comparison-learning we have both a labeling and comparison oracle.

Finally, we will discuss a number of different measures of complexity for Q-R-S learning triples. For
passive learning, we will focus on the sample complexity n(ε, δ). For active learning, we will focus
on the query complexity q(ε, δ). In both cases, we will often drop δ and instead give bounds on the
expected sample/query complexity for error ε denoted E[n(ε)] (or q(ε) respectively), the expected
number of samples/queries needed to reach ε error. A bound for probability 1− δ then follow with
log(1/δ) repetitions by Chernoff. In the case of a finite instance space X of size n, we denote the
expected query complexity of perfectly learning X as E[q(n)].

Finally, we use a subscript d in our asymptotic notation to suppress factors dependent on dimension.

3.1 PAC-Learning

To show the power of active learning with comparison queries in the PAC-learning model, we will
begin by proving lower bounds. In particular, we show that neither active learning nor comparison
queries alone provide a significant speed-up over passive learning. In order to do this, we will assume
the stronger MQS model, as lower bounds here transfer over to the pool-based regime.
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Proposition 3.1. For small enough ε, and δ = 1
2 , the query complexity of Label-MQS-PAC learning

(Bd,Rd, Hd) is:

q(ε, 1/2) = Ωd

((
1

ε

) d−1
d+1

)
.

Thus without enriched queries, active learning fails to significantly improve over passive learning even
over a nice distributions. Likewise, adding comparison queries alone also provides little improvement.

Proposition 3.2. For small enough ε, and δ = 3
8 , the sample complexity of Comparison-Passive-PAC

learning (Bd,Rd, Hd) is:

n(ε, 3/8) = Ω

(
1

ε

)
.

Now we can compare the query complexity of active learning with comparisons to the above. For our
upper bound, we will assume the pool-based model with a Poly(1/ε, log(1/δ)) pool size, as upper
bounds here transfer to the MQS model. Our algorithm for Comparison-Pool-PAC learning combines
a modification of Balcan and Long’s [2] learning algorithm with noisy thresholding to provide an
exponential speed-up for non-homogeneous linear separators.

Theorem 3.3. Let D be a log-concave distribution over Rd. Then the query complexity of
Comparison-Pool-PAC learning (D,Rd, Hd) is

q(ε, δ) = Õ

((
d+ log

(
1

δ

))
log

(
1

ε

))
.

Kulkarni, Mitter, and Tsitsiklis [27] (with analysis from [2]) also give a lower bound of d log(1/ε)
for log-concave distributions for arbitrary binary queries, so Theorem 3.3 is near tight in dimension
and error. It should be noted, however, that to cover non-isotropic distributions, Theorem 3.3 must
know the exact distribution D. This restriction becomes unnecessary if D is promised to be isotropic.

3.2 RPU-Learning

In the RPU-learning model, we will first confirm that passive learning with label queries is intractable
information theoretically, and continue to show that active learning alone provides little improvement.
Unlike in PAC-learning however, we will show that comparisons in this regime provide a significant
improvement in not only active, but also passive learning.

Proposition 3.4. The expected sample complexity of Label-Passive-RPU learning (Bd,Rd, Hd) is:

E[n(ε)] = Θ̃d

((
1

ε

) d+1
2

)
.

Thus we see that RPU-learning linear separators is intractable for large dimension. Further, active
learning with label queries is of the same order of magnitude.

Proposition 3.5. For all δ < 1, the query complexity of Label-MQS-RPU learning (Bd,Rd, Hd) is:

q(ε, δ) = Ωd

((
1

ε

) d−1
2

)
.

In the appendix, we show that this bound is tight up to a logarithmic factor. For passive RPU-learning
with comparison queries, we can inherit the lower bound from the PAC model (Proposition 3.2).

Corollary 3.6. For small enough ε, and δ = 3
8 , any algorithm that Comparison-Passive-RPU learns

(Bd,Rd, Hd) must use at least

n(ε, 3/8) = Ω

(
1

ε

)
samples.
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Note that unlike the case of label queries, this lower bound is not exponential in dimension. In fact,
not only is this bound tight up to a linear factor in dimension, comparison queries in general shift
the RPU model from being intractable to losing only a logarithmic factor over PAC-learning in both
the passive and active regimes. We need one definition: two distributions D,D′ over Rd are affinely
equivalent if there is an invertible affine map f : Rd → Rd such that D(x) = D′(f(x)).

Theorem 3.7. Let D be a distribution over Rd that is affinely equivalent to a distribution D′ over
Rd, for which the following holds:

1. ∀α > 0, Prx∼D′ [||x|| > dα] ≤ c1
α

2. ∀α > 0, 〈v, ·〉+ b ∈ Hd, Prx∼D′ [|〈x, v〉+ b| ≤ α] ≤ c2α

The sample complexity of Comparison-Passive-RPU-learning (D,Rd, Hd) is:

n(ε, δ) = Õ

(
d log

(
1
δ

)
log
(

1
ε

)
ε

)
,

and the query complexity of Comparison-Pool-RPU learning (D,Rd, Hd) is:

q(ε, δ) = Õ

(
d log

(
1

δ

)
log2

(
1

ε

))
.

Note that the constants have logarithmic dependence on c1 and c2.

Theorem 3.7 is not only computationally efficient, running in time Poly(d, 1/ε, log(1/δ)), but also
applies to a wide range of distributions. It includes, for instance, the class of s-concave distributions
for s ≥ − 1

2d+3 [3], notably removing the common requirement of isotropy [2, 28, 3].

We view Theorem 3.7 and its surrounding context as this work’s main technically novel contribution.
In particular, to prove the result, we introduce a new average-case complexity measure called average
inference dimension that extends the theory of inference dimension from [5] (See Section 4.2).
Further, this framework allows our analysis to extend to the point location problem as well.
Theorem 3.8. Let D be a distribution satisfying the criterion of Theorem 3.7, x ∈ Rd, and
h1, . . . , hn ∼ D. Then for large enough n there exists an LDT using only label and compari-
son queries solving the point location problem with expected depth Õ(d log2(n)).

For ease of viewing, we summarize our main results on expected sample/query complexity in Tables 1
and 2 for the special case of the uniform distribution over the unit ball. The bounds not novel to this
work are the Label-Passive-PAC bounds [21, 18], and the lower bound on Comparison-Pool/MQS-
PAC learning [2, 27]. Note also that lower bounds for PAC learning carry over to RPU learning.

Table 1: Expected sample and query complexity for PAC learning (Bd,Rd, Hd).

PAC Passive Pool MQS

Label Θ
(
d
ε

)
[21, 18] Ωd

((
1
ε

) d−1
d+1

)
Ωd

((
1
ε

) d−1
d+1

)
Comparison Ω

(
1
ε

)
Θ̃
(
d log

(
1
ε

))
Θ̃
(
d log

(
1
ε

))
[2, 27]

Table 2: Expected sample and query complexity for RPU learning (Bd,Rd, Hd).

RPU Passive Pool MQS

Label Θ̃d

((
1
ε

) d+1
2

)
Ω̃d

((
1
ε

) d−1
2

)
Ω̃d

((
1
ε

) d−1
2

)
Comparison Õ

(
d
ε

)
Õ
(
d log2

(
1
ε

))
Õ
(
d log2

(
1
ε

))
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4 Techniques

4.1 Lower bounds: caps and polytopes

Our lower bounds for both the PAC and RPU models rely mainly on high-dimensional geometry. For
PAC-learning, we consider spherical caps, portions of Bd cut off by a hyperplane. Our two lower
bounds, Label-MQS-PAC, and Comparison-Passive-PAC, consider different aspects of these objects.
The former (Proposition 3.1) employs a packing argument: if an adversary chooses a hyperplane
uniformly among a set defining some packing of (sufficiently large) caps, the learner is forced to
query a point in many of them in order to distinguish which is labeled negatively. The latter bound
(Proposition 3.2), follows from an indistinguishability argument: if an adversary chooses just between
one hyperplane defining some (sufficiently large) cap, and the corresponding parallel hyperplane
tangent to Bd, the learner must draw a point near the cap before it can distinguish between the two.

For RPU-learning, our lower bounds rely on the average and worst-case complexity of polytopes.
For Label-Passive-RPU learning (Propositions 3.4), we consider random polytopes, convex hulls
of samples S ∼ Dn, whose complexity E(D,n) is the expected probability mass across samples
of size n. In this regime, we consider an adversary who, with high probability, picks a distribution
in which almost all samples are entirely positive. As a result, the learner cannot infer any point
outside of the convex hull of their sample, which bounds their expected coverage by E(D,n). For
Label-MQS-RPU learning (Proposition 3.5), the argument is much the same, substituting maximum
probability mass for expectation. These techniques are generalizations of El-Yaniv and Wiener’s [4]
algorithm specific lower bounds, which also employ random polytope complexity.

4.2 Upper Bounds: Average Inference Dimension

We focus in this section on techniques used to prove our RPU-learning upper bounds, which we
consider our most technically novel contribution. To prove our Comparison-Pool-RPU upper bound
and corresponding point location result, Theorems 3.7 and 3.8, we introduce a novel extension to the
inference dimension framework of KLMZ [5]. Inference dimension is a combinatorial complexity
measure that characterizes the distribution independent query complexity of active learning with
enriched queries. KLMZ show, for instance, that linear separators in R2 may be Comparison-Pool-
PAC learned in only Õ(log( 1

ε )) queries, but require Ω
(

1
ε

)
queries in three or more dimensions.

Given a hypothesis class (X,H), and a set of binary queries Q (e.g. labels and comparisons), denote
the answers to all queries on S ⊆ X by Q(S). Inference dimension examines the size of S necessary
to infer another point x ∈ X , where S infers the point x under h, denoted

S →h x,

if Q(S) under h determines the label of x. As an example, let H be linear separators in d dimensions,
Q be label queries, and our sample d+ 1 points in convex position, positively labeled under some
classifier h. Due to linearity, any point inside the convex hull of S is inferred by S under h.

Then in greater detail, the inference dimension of (X,H) is the minimum k such that in any subset
of X of size k, at least one point can be inferred from the rest:

Definition 4.1 (Inference Dimension [5]). The inference dimension of (X,H) with query set Q is
the smallest k such that for any subset S ⊂ X of size k, ∀h ∈ H , ∃x ∈ S s.t. Q(S − {x}) infers x
under h.

KLMZ show that finite inference dimension implies distribution independent query complexity that
is logarithmic in the sample complexity. On the other hand, they prove a lower bound showing that
PAC learning classes with infinite inference dimension requires at least Ω(1/ε) queries.

To overcome this lower bound (which holds for linear separators in three plus dimensions), we
introduce a distribution dependent version of inference dimension which examines the probability
that a sample contains no point which can be inferred from the rest.

Definition 4.2 (Average Inference Dimension). We say (D,X,H) has average inference dimension
g(n), if:

∀h ∈ H,PrS∼Dn [@x s.t. S − {x} →h x] ≤ g(n).
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Small average inference dimension implies that finite samples have low inference dimension with
high probability (Obs 4.6, Appendix). Theorems 3.7 and 3.8 then follow from our main technical
contribution (Thm 4.10, Appendix): the average inference dimension of (D,Rd, Hd) with respect to
comparisons is 2−Ωd(n2), so long as D satisfies the weak distributional requirements of Theorem 3.7.

5 Experimental results

To confirm our theoretical findings, we have implemented a variant of Theorem 3.7 for finite samples.
For a given sample size or dimension, the query complexity we present is averaged over 500 trials of
the algorithm.

5.1 Algorithm

We first note a few practical modifications. First, our algorithm labels finite samples drawn from the
uniform distribution over Bd. Second, to match our methodology in lower bounding Label-Pool-RPU
learning, we will draw our classifier uniformly from hyperplanes tangent to the unit ball. Finally,
because the true inference dimension of the sample might be small, our algorithm guesses a low
potential inference dimension to start, and doubles its guess on each iteration with low coverage.

Our algorithm will reference two sub-routines employed by the original inference dimension algorithm
in [5], Query(Q,S), and Infer(S,C). Query(Q,S) simply returns Q(S), the oracle responses to all
queries on S of type Q. Infer(S,C) builds a linear program from constraints C (solutions to some
Query(Q,S)), and returns which points in S are inferred.

Algorithm 1: Perfect-Learning(N,Q, d, c)

Result: Labels all points in sample S ∼ (Bd)N using query set Q
1 S ∼ (Bd)N ; Classifier ∼ Sd, B1;
2 Subsample_Size = d+ 1; Uninferred = S; Subsample_List = [];
3 while size(Uninferred) > c · size(Subsample_Size) do
4 Subsample ∼ Uninferred[Subsample_Size];
5 Subsample_List.extend(Subsample);
6 Inferred_Points = Infer(Uninferred, Query(Q, Subsample_List));
7 if size(Inferred_Points) < size(Uninferred)/2 then
8 Subsample_Size ∗ = 2;
9 end

10 Uninferred.remove(Inferred_Points)
11 end
12 Query(Label,Uninferred)

Algorithm 1 is efficient. The while loop runs at most log(N) times and solves at most N linear
programs with O(fQ(N)) constraints in d+ 1 variables, giving a total running time of Poly(N, d).

5.2 Query complexity

Theorem 3.7 states that for an adversarial choice of classifier, the number of queries Perfect-
Learning(N , Comparison, d) performs is logarithmic compared to Perfect-Learning(N , Labels,
d). The left graph in Figure 1 shows this correspondence for uniformly drawn hyperplanes tangent to
the unit ball and sample values ranging from 1 to 210 in log-scale. It is easy to see the exponential
difference between the Label query complexity in blue, and the Comparison query complexity in
orange. Further, Theorem 3.7 also suggests that Perfect-Learning(N , Comparison, d) should scale
near linearly in dimension. The right graph in Figure 1 confirms that this is true in practice as well.

6 Further Directions

6.1 Average Inference Dimension and Enriched Queries

KLMZ [5] propose looking for a simple set of queries with finite inference dimension k for d-
dimensional linear separators. In particular, they suggest looking at extending to t-local relative
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Figure 1: Left: log-scale comparison of Perfect-Learning(N , Label, 3, 1) and Perfect-Learning(N ,
Comparison, 3, 2). Right: scaling of Perfect-Learning(256, Comparison, d) with dimension.

queries, questions which ask comparative questions about t points. Unfortunately, simple general-
izations of comparison queries seem to fail, but the problem of analyzing their average inference
dimension remains open. When moving from 1-local to 2-local queries, our average inference
dimension improved from:

2−Õ(n) → 2−Õ(n2)

If there exist simple relative t-local queries with average inference dimension 2−Õ(nt) over some
distribution D, then it would imply a passive RPU-learning algorithm over D with sample complexity

n(ε, δ) = O

(
log
(

1
ε

)1/(t−1)

ε
log

(
1

δ

))

and query complexity

q(ε, δ) ≤ O
(

2fQ

(
4 log1/(t−1)(n)

)
log

(
1

δ

)
log(n)

)
One such candidate 3-local query given points x1, x2, and x3 is the question: is x1 closer to x2, or
x3? KLMZ suggest looking into this query in particular, and other similar types of relative queries
are studied in [29–35].

6.2 Noisy and Agnostic Learning

The models we have proposed in this paper are unrealistic in the fact that they assume a perfect
oracle. RPU-learning in particular must be noiseless due to its zero-error nature. This raises a
natural question: can inference dimension techniques be applied in a noisy or non-realizable setting?
Hopkins, Kane, Lovett, and Mahajan [13] recently made progress in this direction, introducing a
relaxed version of RPU-learning called Almost Reliable and Probably Useful learning. They are able
to provide learning algorithms under the popular [7, 2, 28, 36–39] Massart [40] and Tsybakov noise
[41, 42] models.

However, many problems in this direction remain completely open, such as agnostic or more
adversarial noise. It remains unclear whether inference based techniques are robust to these settings,
since small adversarial adjustments to the inference LP can cause substantial corruption to its output.

Broader Impact

Since this work is theoretical in nature, we do not foresee any particular applications.
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