
Appendix for Solver-in-the-Loop: Learning from Differentiable
Physics to Interact with Iterative PDE-Solvers

Kiwon Um1,2 Robert Brand1 Yun (Raymond) Fei3 Philipp Holl1 Nils Thuerey1

1Technical University of Munich, 2LTCI, Telecom Paris, IP Paris, 3Columbia University

kiwon.um@telecom-paris.fr, robert.brand@tum.de
yf2320@columbia.edu, {philipp.holl, nils.thuerey}@tum.de

Below, we give additional details regarding the steps and numerical methods employed in each of the
interaction variants discussed in the main text. We present details of the simulation setups for the five
scenarios and give more detailed results for each case. Lastly, we discuss performance and list details
of our neural network architectures.

As our experiments in the main text already demonstrate, deep learning algorithms that can closely
interact with a differentiable PDE solver can yield substantially improved performance. This illustrates
how crucial it is for deep learning algorithms that co-exist or interact with numerical solvers in a
recurrent manner to anticipate shifts in the distributions of input features. We present additional
results and show how interactions between PDE solvers and deep neural networks can be formulated.
These interactions help to bridge the gap between distribution shifts that exist between different
discretizations of a PDE. We will demonstrate that avoiding distribution shifts is essential for a model
to infer a correction successfully. In our iterative setting, this, in turn, helps to keep the distributions
aligned over the course of many iterations.

A Correction Functions for PDEs

For completeness, we provide a brief summary of our notation. We consider reference solutions r of
the PDE P that are contained in the phase space manifold R with reference trajectories over time
denoted by {rt, rt+1, · · · , rt+k} for k steps of size ∆t. A more coarsely approximated solution of
the same problem is denoted by s in the manifold S with trajectories {st, st+1, · · · , st+k}. We
typically initialize the source state from the reference version via a transfer operator T with st = T rt
as initial condition. A transfer from source to reference states is denoted by T T .

The learning objective is to find the best possible correction function C(s | θ) given the weights θ
and a network architecture. Without loss of generality, we assume that the correction function is
applied additively, i.e., s̃ = s + C(s | θ), where the tilde in s̃ indicates the corrected state. A new
state is computed in combination with the PDE via s̃t+1 = Ps(st) + C(Ps(st) | θ) for which we
use the short form (PsC)(st) below. Multiple recurrent evaluations of a function are denoted by
s̃t+k = (PsC)k(st) for k steps starting from an unaltered source state st.

For training neural networks, we use an L2-based loss, i.e., L(s̃t, T rt) = ‖s̃t − T rt‖2, which is
typically evaluated for n steps via

∑t+n
i=t L(s̃i, ri) in order to find a solution to the minimization

problem: arg minθ
∑t+n
i=t L(s̃i, ri).

We consider constrained advection-diffusion PDEs: ∂u/∂t = −u · ∇u + ν∇ · ∇u + g subject
to Mu = 0. Here, u, ν, and g denote velocity, diffusivity, and external forces, respectively. The
constraint matrix M contains an additional set of equality constraints imposed on u.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A.1 Learning Without Interaction

In the main text, we use learning via non-interacting trajectories as a baseline learning setup. In this
case, a model is trained to minimize differences between states s and r in a fully supervised manner.
These versions are denoted by NON.

Despite its simplicity, different variants of this learning setup can be considered. In the simplest case,
we initialize the source simulation from the corresponding reference version, evaluate the PDE once,
and then train a model via a large number of such cases. In our notation, this means learning from
states computed as st+1 = Ps(T rt). This effectively takes into account only a single evaluation of
the source PDE, and a model can only learn from numerical differences that build up within this
single step. Hence, a variant of this approach is to allow reference and target version to evolve over
the course of multiple steps such that the errors in the source states s show up more clearly with
respect to r. Similar to the look-ahead discussed in the main text, we can use st+n = Pns (T rt) as
a training data set. We denote such versions that have no interaction but consider multiple steps of
unaltered coarse evolution as NONn below. Note that the previously discussed NON version could
be denoted by NON1, but we keep the label NON for consistency with the main text in the following.

For all choices of n, we obtain the following minimization problem for learning via non-interacting
solvers:

arg min
θ

n∑
i=0

‖st+i + C(st+i | θ)− T rt+i‖2. (1)

Another non-interacting variant could be trained by reversing the setup above and initializing reference
trajectories from source states, i.e., rt+n = PnR(T Tst). Like before, a model could be trained in a
supervised fashion from a data set of s and r states computed in this way. However, as the interesting
structures that make up the reference solutions typically take very long time spans to form (if they
are achievable at all), this variant is clearly sub-optimal. Hence, due to the poor performance of the
NONn versions, we have not included this reversed NON variant in our experiments.

The NON models presented in the main text so far already allow for a first quantification of the
problems caused by the distribution shifts of the input features: across the two-dimensional fluid
flow cases, the unaltered source simulations deviate by more than 50% in terms of MAE from the
corrected simulations. This means that, after applying the corrections, the model receives inputs that
strongly differ from those seen at training time. In terms of content of the input feature vectors, the
MAE measurements show a change of over 50%. Nonetheless, we expect the model to reconstruct
the reference states despite receiving inputs that are significantly different from the inputs seen at the
time of training. Not surprisingly, the models only have limited success achieving this goal.

A.2 Pre-computed Interactions

As an improvement over the non-interacting versions above, we consider a class of models learning
from data generated via pre-computed interactions, denoted by PRE. The pre-computations have the
goal of reducing the gap between source and reference trajectories. The pre-computation changes the
source trajectories and thus provides the learning optimization with modified inputs that are closer to
the reference at inference time. This scenario is common practice, e.g., for weather predictions, where
simulations need to be aligned with real-world measurements, i.e., data assimilation algorithms
[9, 17, 19]. As the data set has to be prepared only once, computationally expensive pre-computation
is often still feasible as this overhead will not influence the performance at inference time. However,
in the context of machine learning, pre-computed corrections can only provide limited improvements
as the correction during the pre-computation phase can only partially mimic the behavior of the
actual, learned version.

For PRE models, two correction functions are used: one for preparing the training data set denoted
by Cpre and the learned correction C. The training data set is computed as s̃t+n = (PsCpre)

n(T rt),
where n denotes the number of steps for independent simulation trajectories in the source and
reference manifolds. Note that, in this context, due to the corrections being applied at the time of
data generation, there is hope for longer unrolling periods (i.e., larger n) to have a positive effect on
the learning outcome (in contrast to the NONn versions above). At inference time, Cpre is no longer
used, and trajectories are instead computed as s̃t+n = (PsC)n(st), in line with the NON variants.
Hence, in total, four versions of a trajectory from a single initial phase space point rt exist: a source

2

trajectory, a source trajectory corrected by pre-computation via Cpre, a source trajectory corrected by
the learned correction function C, and the reference trajectory.

We first describe how to include a pre-computation correction for spatial corrections while taking
into account simulation constraints before including the temporal dimension. For both, we adopt a
constrained version of best linear unbiased estimates [6], which are widely used for data assimilation.

A.2.1 Pre-computed Spatial Regularization

For a constraint-aware interpolation that can serve as a correction operator, consider two vector spaces
R ∈ Rχ and S ∈ Rξ with different dimensionalities ξ, χ ∈ N with ξ < χ. Both vector spaces satisfy
the constraint M , i.e., Mr = 0 for ∀r ∈ R, and Ms = 0 for ∀s ∈ S. Given a finer vector field cR,
e.g., containing the reference solutions, we aim to find the closest vector field cS (∈ S) to cR (∈ R).
Consider an interpolation operator W that introduces new data points within a vector field cS (∈ S),
i.e., W cS ∈ Rχ. We, then, strive to minimize the distance between W cS and cR such that cS can
best represent the information of cR without violating the constraints. Thus, we aim for computing
cS with

arg min
cS

||W cS − cR||2 subject to McS = 0. (2)

This represents a constrained optimization problem with equality constraints, which we can solve via
Lagrange multipliers λ as follows:

Φ = ||W cS − cR||2 + (McS)>λ. (3)

This results in a system of equations:[
W>W −M
−M> 0

] [
cS
λ

]
=

[
W>cR

0

]
. (4)

Using the Schur complement, we can simplify this system to speed up calculations:

M>(W>W)−1Mλ = M>(W>W)−1W>cR, (5)

cS = (W>W)−1(W>cR −Mλ). (6)

In our setting, given source states s and reference states r, we can thus compute a correction vector
field via ct = (W>W)−1(W>(rt −Wst) −Mλ), e.g., using M = (∇·) for Navier-Stokes
scenarios. In order to train a model C(s | θ) to infer the corrections, we can directly use the pre-
computed correction vectors:

arg min
θ

n∑
i=0

‖ct+i − C(s̃t+i|θ)‖2. (7)

We will denote versions using this pre-computation scheme for Cpre with spatial regularization as
PRESR.

A.2.2 Pre-computed Spatiotemporal Regularization

The vector fields we target are obtained from a numerical simulation, where the underlying PDE
is solved for a finite number of steps from an initial condition. In the context of deep learning, an
important aspect to consider is the sensitivity [10] of the targeted function (i.e., the correction) with
respect to the data at hand, i.e., in our case, the state of a source simulation. The pre-computation
process described in the previous section is typically done on a per-time-step basis, and hence
correction vector fields can vary significantly even for smooth changes of the source simulation. That
means the correction function can have a very nonlinear and difficult to learn relationship with the
observable data in a simulation.

In order to address this difficulty, we include a temporal regularization by limiting the changes over
time for each sample point in space. Consequently, we regularize our correction vector fields such
that they change smoothly in time by penalizing temporal change of the correction vector field within
the Lagrange multiplier framework. We minimize dcS/dt together with the constrained transfer from
fine to coarse discretizations:

arg min
cS

(
||W cS − cR||2 + β||dcS

dt
||2
)

subject to McS = 0. (8)

3

Here, β is the temporal regularization coefficient. A finite difference approximation of the temporal
derivative of the correction field, i.e., dcS/dt, yields the following system of equations:[

W>W + β 2
∆tI −M

−M> 0

] [
cS
λ

]
=

[
W>cR + β 2

∆tc
t−1
S

0

]
, (9)

where ∆t is the time step size, I is the identity matrix, and ct−1
S denotes the correction vector

field evaluated at the previous time step. Following Eq. 7, this data is pre-computed and used for
training a neural network in a supervised manner. Models trained with data from this spatiotemporal
pre-computation as Cpre are denoted by PRE, and we have used a coefficient of β = 1.0 for all PRE
models of our submission.

A.3 Solver-in-the-Loop Interactions via Differentiable Physics

The main goal of training via differentiable physics is to bridge the gap that arises from changes in
the input data distribution and directly train with the environment that the learned model is supposed
to work with at inference time. Hence, the learning process aims to solve the minimization problem

arg min
θ

n−1∑
i=0

‖Ps(s̃t+i) + C(Ps(s̃t+i)|θ)− T rt+i+1‖2, (10)

where the phase space trajectories are computed via s̃t+k = (PsC)k(T rt). This formulation
illustrates that a cyclic dependency between the corrected states s̃ and the learned correction function
C exists for the “solver-in-the-loop” interactions of this section. As both the deep neural network for
C and likewise the PDE Ps are potentially highly non-linear operators, the corresponding coupled
minimization problem for calculating the weights of C is challenging. However, our results clearly
show that stable optimizations can be achieved in practice and that they lead to very significant
improvements of the learned representation.

The recurrent training requires differentiable physics solvers that allow for a back-propagation of
gradients through the discretized physical simulation. In this work, we employ a differentiable PDE
solver from the open source ΦFlow library [8]. This solver builds on the automatic differentiation
of the underlying machine learning framework to compute analytic derivatives and augments them
with custom derivatives where necessary. For example, the pressure correction step of a Navier-
Stokes solver is provided with a custom gradient for performance reasons. This setup allows for a
straightforward integration of solver functionality into machine learning models and enables end-
to-end training in recurrent settings. Although all of our examples use the ΦFlow solver, we do not
leverage any special functionality apart from gradients being provided for all steps of the PDE solve.
Hence, our results should carry over to other types of differentiable physics solvers.

It is worth noting that, in the setup discussed so far, the reference solver does not need to be
differentiable; i.e., the phase space points in R could be provided by a black-box approximation
without gradients as long as a differentiable solver for the source manifold S exists. We demonstrate
the split setup using an external solver for the buoyancy-driven flows below.

Our implementation directly follows Eq. 10. For each mini-batch, we start with a collection of
reference states r for which recurrent trajectories of (PsC)n are unrolled for n steps. The loss with
respect to corresponding reference states is computed over all intermediate states of the trajectory.
Back-propagation, then, unrolls the differences through the sequence of solver steps to update the
weights of the neural network that provides the correction function.

Under the assumption that the training process converges, this entirely removes the problem of
distribution shift. Once the learned correction C converges to a steady-state, it is trained with exactly
the phase state inputs that are produced at inference time. The MAE of the test data samples again
provides a measure of the discrepancies. Compared to the differences of around 50% for non-
interacting variants (measured between source states and corrected states), the deviations grow to 75%
and above for SOL versions. Nonetheless, even this larger difference in terms of input distributions
is unproblematic here as the network receives the modified states at training time. However, we
noticed that, during our training runs, the final states typically do not fully converge, but still show
smaller oscillations in terms of performance. While this could be prevented via learning-rate decay,
we believe the slightly changing states provide robustness similar to dropout or manual injections of
noise [13].

4

While the error accumulates and typically grows over the course of a full trajectory, our key hypoth-
esis here is that a learned approach can nonetheless identify and correct a large part of the error
function based on information from a single phase-space input. For the PDEs we consider, a single
state uniquely describes its future evolution. We have experimented with additionally providing
varying numbers of previous states st−k, ..., st−1 as input to our model. Our tests have not shown
improvements from these additional states and indicate that the components of the error function that
are learned with our approach can be reliably inferred from a single state st.

B Experiments

To acquire our data sets, we generate a set of simulation sequences with varying initial conditions.
These sequences are used for obtaining pairs of source and reference velocity fields for training. The
following PDEs typically work with a continuous velocity field u with d dimensions and components,
i.e., u(x, t) : Rd → Rd. For discretized versions below, di,j will denote the dimensionality of a
field such as the velocity with i ∈ {s, r} denoting source/inference manifold and reference manifold,
respectively. This yields s ∈ Rd×ds,x×ds,y×ds,z and r ∈ Rd×dr,x×dr,y×dr,z with domain size
dx, dy, dz for source and reference. Typically, dr,i > ds,i and dz = 1 for d = 2. For all PDEs, we
use non-dimensional parametrizations as outlined below, and the components of the velocity vector
are denoted by x, y, z subscripts, i.e., u = (ux, uy, uz)

T for d = 3.

The mapping function T denotes a projection to the source manifold by T rt, and we assume that the
transpose transforms to the reference manifold, i.e., T Tst. The mapping function is typically neither
bijective nor unique, i.e., T TT rt 6= rt, however, within this work, we are primarily concerned with
retrieving projected references of the form T rt. The potential null-space of T T is an interesting
topic for super-resolution approaches [3]. We found that a bi- or tri-linear spatial downsampling from
reference to source space is efficient to compute and yields sufficient accuracy for the transfer in
our experiments. In order to make comparisons with the source simulations easier, we visualize the
projected reference solution, i.e., T rt, in the following.

B.1 Unsteady Wake Flow in Two Dimensions

For the unsteady wake flow setup, we use the incompressible Navier-Stokes equations for Newtonian
fluids:

∂ux
∂t

+ u · ∇ux = −1

ρ
∇p+ ν∇ · ∇ux

∂uy
∂t

+ u · ∇uy = −1

ρ
∇p+ ν∇ · ∇uy

subject to ∇ · u = 0,

(11)

where ρ, p, ν, and g denote density, pressure, viscosity, and external forces, respectively. The
constraint, ∇ · u = 0, is particularly important and introduces additional complexity as it restricts
motions to the space of divergence-free (i.e., volume preserving) motions. The flow is integrated
over time with operator splitting, and pressure is solved implicitly with a Chorin projection [2]. The
domain Ω has an extent of 1× 2 with open boundary conditions and a velocity inflow uin = (0, 1)T

at the bottom face of the domain. A circular obstacle with diameter of 0.1 is located at position
(1/2, 1/2)T . For reference simulations, the domain is discretized with dr,x = 128 and dr,y = 256
cells using a staggered layout for the velocity components. The source domain instead contains
ds,x = 32 and dr,y = 64 cells. Data sets from both contain sequences of 500 time steps each.
For the training data, the viscosity coefficient ν is chosen to yield Reynolds numbers Retrain ∈
{97.7, 195.3, 390.6, 781.3, 1562.5, 3125.0}; i.e., there is a factor of more than 30 between smallest
and largest Reynolds numbers in the training data. The test data set instead contains the Reynolds
numbers Retest ∈ {146.5, 293.0, 585.9, 1171.9, 2343.8}, which are denoted as ×1, ×2, ×4, ×8, and
×16 below, respectively.

Training Procedure The neural network of C is fully convolutional. It consists of five ResBlocks
[5] with 5×5 kernels. The convolutional layers have two times 32 features per block (details of
the architecture are given in App. D). Overall, the model has around 260k trainable parameters. In
addition to the velocity, the model receives a constant field containing the Reynolds number in order
to distinguish the different physical regimes.

5

With the Reynolds number range above, we generate 500 time steps as training data, which contain
temporal dynamics with ca. eight vortex shedding cycles for each case, i.e., they cover a similar
number of eddy turnover times. This leads to roughly 98 million cells of data in the reference
trajectories, which are down-sampled to 6.1 million cells with lower resolution of the source data.
Example flow fields are shown in Fig. 6.

All SOL models are trained with the differentiable physics solver for 99.8k iterations with a batch
size of 3 and a learning rate of 10−4. The NON model uses the same training modalities replacing
the differentiable PDE solver with the supervised loss of Eq. 1. On the other hand, all PRE models
are trained in a supervised manner for 36k iterations with a batch size of 32 and initial learning rate
of 10−3 that is lowered to 5× 10−7 over the course of the training. Here, we augment the training
data via randomized horizontal flipping and use 5% of the training data as validation samples. To
show the stability of training, we train three models for each case below with different random seeds.

Results We present results for the unsteady wake flow scenario using models trained via different
interaction methodologies and evaluate each model on the test set of Reynolds numbers Retest. Each
simulation is computed for 500 time steps using the source solver in combination with a correction
from a trained neural network. Mean errors are computed in comparison to reference phase space
states, i.e., T r. We compute the errors over the three trained models for each variant.

In this scenario, the NON model already leads to a significant reduction of the overall velocity error.
While the regular source simulation (SRC) shows a MAE of 0.146 with respect to the projected
reference states T r, the NON model reduces this error to 0.049. These errors (and the following
measurements) are mean values for all five test Reynolds numbers, which were not seen at training
time. The results are visualized in Fig. 1, and corresponding numeric values are given in Table 1.

The pre-computed variants improve on this behavior, roughly halving the remaining error. The
pre-computed variant without temporal regularization (PRESR) gives a worse performance than the
one with spatiotemporal regularization (PRE) but, nonetheless, fares better than the NON version.

Fig. 1 additionally shows results for different SOL versions trained with the solver-in-the-loop
interaction. While the SOL4 version fares better than NON, it is only roughly on par with PRESR.
Increasing the number of look-ahead steps, however, increases the performance substantially with the
SOL32 model exhibiting a final MAE of only 0.013. Several visual examples of simulated flows from
the five test cases used in these evaluations are shown in Fig. 7. It is visible that the SOL version
matches the behavior of the reference solution much more closely.

We additionally break down the errors with respect to the different Reynolds numbers of the five cases
in Fig. 2. Despite a factor of 16 between the Reynolds numbers, there is no significant decrease in
performance across the different cases. Only the NON version exhibits slightly larger errors for higher
Reynolds numbers. On the other hand, the performance is largely uniform for the SOL versions.

Due to the distinct vortex shedding characteristics of the flow, it is interesting to evaluate the flow
field in terms of its frequency spectrum. As an example, Fig. 3 shows the ux velocity component
over the course of 500 simulation steps at the center of domain, i.e., behind the obstacle, for one of
our test data sets. We show the corresponding evaluation in Fig. 4. Interestingly, especially the PRE
versions fare better in terms of frequency errors. Here the relatively expensive pre-computation step
shows a performance gain. Nonetheless, the models trained via differentiable physics likewise learn
to control the frequency behavior when training with a sufficient number of look-ahead steps as the
SOL32 model yields a substantially lower frequency error than the PRE model.

We additionally show results for a smaller model for a simpler sequential convolutional network
with 57k trainable parameters in Fig. 5. The overall relative ordering of the interaction methods
remains the same. The non-interacting method performs worse than pre-computation, which in turn is
outperformed by the differentiable physics interaction. However, the overall performance is reduced,
e.g., the NON model only reduces the error by ca. 30%. The SOL16 version still outperforms the other
versions. Overall, not surprisingly, the reduced weight count significantly reduces the representational
capabilities of the neural networks and leads to a deteriorated performance. Nonetheless, training via
interactions with differentiable physics is beneficial for inference performance.

To conclude, approximate solutions of the unsteady wake flow case can be corrected substantially by
learned models, and especially training with differentiable physics in the loop yields significantly
reduced errors in long simulated sequences. The SOL32 version with a larger model reduces the

6

MAE with respect to the reference solution to less than 9% (on average) of the error induced by the
source simulation.

SRC NON PRESR PRE SOL4 SOL8 SOL16 SOL32
0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
A

E
V

el
oc

ity

(a) Velocity error for different models
NON PRESR PRE SOL4 SOL8 SOL16 SOL32

0.0

0.2

0.4

0.6

0.8

V
el

oc
ity

E
rr

or
Im

pr
ov

em
en

t

(b) Velocity improvement (relative to SRC) for
different models

Figure 1: Different models applied to five test cases over 500 time steps for the unsteady wake flow
scenario. The SOL32 reduces the error introduced by SRC by a factor of 11.2 on average.

×1 ×2 ×4 ×8 ×16
Reynolds Number

0.00

0.05

0.10

0.15

M
A

E
V

el
oc

ity

SRC
NON
PRESR

PRE
SOL4

SOL8

SOL16

SOL32

(a) Velocity error per Reynolds number

×1 ×2 ×4 ×8 ×16
Reynolds Number

0.0

0.2

0.4

0.6

0.8
V

el
oc

ity
E

rr
or

Im
pr

ov
em

en
t

NON
PRESR

PRE
SOL4

SOL8

SOL16

SOL32

(b) Velocity improvement (relative to SRC)
per Reynolds number

Figure 2: Separate evaluations for five different test cases of the unsteady wake flow scenario.

0 100 200 300 400 500
Step

−0.5

0.0

0.5

u x
-v

el
oc

ity

Reference
SRC
NON
SOL32

Figure 3: ux-velocity at the center of domain for one test data set (Re = ×4).

7

SRC NON PRESR PRE SOL4 SOL8 SOL16 SOL32
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
A

E
Fr

eq
.o

fV
el

oc
ity

(a) Frequency error for different models

×1 ×2 ×4 ×8 ×16
Reynolds Number

0.0

0.2

0.4

0.6

L
2

E
rr

or
of

Fr
eq

.o
fV

el
oc

ity

SRC
NON
PRESR

PRE
SOL4

SOL8

SOL16

SOL32

(b) Frequency error per Reynolds number

Figure 4: Frequency-domain evaluation for the unsteady wake flow scenario. Shown for the five test
cases over 500 time steps.

SRC NON PRESR PRE SOL8 SOL16
0.000

0.025

0.050

0.075

0.100

0.125

0.150

M
A

E
V

el
oc

ity

(a) Velocity error for different smaller models

×1 ×2 ×4 ×8 ×16
Reynolds Number

0.00

0.05

0.10

0.15

M
A

E
V

el
oc

ity

SRC
NON
PRESR

PRE
SOL8

SOL16

(b) Smaller models per Reynolds number

Figure 5: Different models with a smaller network size (57k trainable weights) applied to five test
cases over 500 time steps for the unsteady wake flow scenario.

R
ef

er
en

ce
SR

C

0.0

-1.

1.0

Figure 6: An example sequence of the unsteady wake flow from the training data set for time steps
t ∈ {50, 60, · · · , 200}.

Table 1: Quantitative evaluation of different models for the unsteady wake flow scenario.

Model MAE Velocity, Mean (std. dev.)

SRC NON PRESR PRE SOL4 SOL8 SOL16 SOL32

Regular 0.146 0.049 0.036 0.031 0.041 0.031 0.023 0.013
(0.004) (0.012) (0.009) (0.010) (0.009) (0.012) (0.004) (0.003)

Smaller 0.146 0.092 0.083 0.059 - 0.042 0.035 -
(0.004) (0.028) (0.025) (0.015) - (0.011) (0.010) -

L2 Error of ux Velocity in Frequency Domain
SRC NON PRESR PRE SOL4 SOL8 SOL16 SOL32

Regular 0.557 0.202 0.106 0.087 0.194 0.128 0.101 0.051
Smaller 0.557 0.275 0.244 0.158 - 0.093 0.155 -

8

(a)

R
ef

er
en

ce
SO

L
3
2

SR
C

0.0

-1.

1.0

(b)

R
ef

er
en

ce
SO

L
3
2

SR
C

0.0

-1.

1.0

Figure 7: Time steps of test cases for the unsteady wake flow for t ∈ {50, 60, · · · , 200}: (a) Re = ×1
and (b) Re = ×16.

9

B.2 Buoyancy-driven Fluid Flow

This scenario encompasses a volume of hot smoke rising in a closed container. The motion of the
smoke volume is driven by buoyancy forces computed via a marker field that is passively advected in
the flow, and which marks a region of fluid with lower density. Assuming a small relative change of
density between the marker and the bulk, we compute the resulting forces with a Boussinesq model.
Hence, this scenario is likewise based on the Navier-Stokes equations, but due to the additional
coupled system, it leads to significantly more chaotic and complex behavior than the unsteady wake
flow. In order to target solutions with complex motions, we do not explicitly solve for viscosity
effects, but rely on the numerical viscosity inherent in the discretization. This yields the following
PDE:

∂ux
∂t

+ u · ∇ux = −1

ρ
∇p, ∂uy

∂t
+ u · ∇uy = −1

ρ
∇p+ ηd

subject to ∇ · u = 0,
∂d

∂t
+ u · ∇d = 0 , (12)

where η denotes the buoyancy factor for the Boussinesq model.

We also use this scenario to demonstrate that the reference data can be computed by a discretization
or algorithm that differs from the one used to compute the source trajectories. More specifically,
we use second-order pressure projection scheme for the reference trajectory solutions [20], which
was shown to lead to an improved conservation of energy [4]. In addition, we use a less dissipative
advection scheme for the source and reference solvers [14].

The domain has an extend of 1× 2 units, where the marker density is injected in the lower quadrant.
The reference simulations use a staggered discretization with dr,x = 128 and dr,y = 256, while
the source simulations use a domain with ds,x = 32 and dr,y = 64. We randomize the initial size
of the marker volumes with circular shapes with a radius r ∼ U(0.1, 0.25), where U denotes a
uniform distribution. The training data set consists of 48 different initial conditions simulated for
1000 steps each. Several examples are shown in Fig. 11. For the test scenes, we change the initial
marker distribution d to obtain five simulations containing two circles with r ∼ U(0.05, 0.1) and
another five simulations with r ∼ U(0.2, 0.3). Thus, we obtain ten test scenes, half of which have a
reduced marker quantity compared to the training data and five with an increased quantity. As the d
determines the forces induced by the Boussinesq model, this leads to simulations that are slower and
faster, respectively, than those in the training set.

Training Procedure The neural network architecture for C follows the one described above, but
instead uses four ResBlocks with 16 features each and contains ca. 36k trainable weights. As both
velocity u and marker d determine the dynamics of the flow, the network receives both fields as input,
but still only infers a correction for the velocity; i.e., d is modified only via advection through u, not
directly by C. All SOL and NON models are trained for 294k iterations with a batch size of 4 and
a learning rate of 10−4. We evaluate the models on validation set with 5 simulations and 300 time
steps drawn from the same initial marker distribution as the training data, and keep the model with
the lowest validation loss.

To speed up the pre-computations, we only compute Cpre for cells i, j in the domain with di,j > 10−4

(we validate this choice below). The PRE variants of C are then trained on the resulting, regularized
data for 300k iterations with a batch size of 32 using horizontal flipping as data augmentation.

Results We evaluate different models which are applied to 300 time steps of ten test conditions.
Errors with respect to the reference solutions are computed and averaged across the resulting 3k
phase field states. Numeric error values for the following tests can be found in Table 2.

We evaluate the different baseline versions (NON and PRE) in comparison to the source simulation
(which underlies all other variants) and compare them to SOL versions with increasing look-ahead.
The resulting errors and relative improvements are shown in Fig. 8 and given numerically in Table 2. It
is apparent that the SOL versions yield very significant improvements over the other learned variants.
Besides the velocity errors, we also provide an evaluation of the passively advected marker density d.
This quantity is crucial for the dynamics of the flow, but cannot be influenced directly by the neural
networks. Hence, it provides an additional view on how well the inferred corrections manage to
reduce the numerical errors of the source simulation. The corresponding evaluation highlights that

10

both velocity and density improvements increase consistently with SOL variants that were trained
with larger look-aheads. We also evaluate the different models in terms of kinetic energy of the
flows. As the kinetic energy is agnostic to the direction of the flow, the residual errors of the different
variants do not show up as clearly as in the other evaluations. However, while the density and kinetic
energy improvements are smaller than those for the velocity fields, the SOL128 model nonetheless
clearly outperforms the other variants.

Visualized evolutions of several test simulations are shown in Fig. 12. Here, the bi-modal nature of
the test data with smaller (b) and larger (a,c) initial marker density configurations is shown. The
different initial conditions lead to smaller and larger average velocities and, hence, highlight that the
trained model generalizes very well.

Ablations An evaluation of different neural network architectures for the buoyancy-driven flows
with SOL2 interaction illustrates how improvements stagnate beyond a certain network size and depth.
For example, a model with more than 100k weights and almost three times the size of the regular
model only yields an improvement of 3.6%. Another increase by a factor of four only gives 0.3%
improvement. The corresponding graphs can be found in Fig. 9. Decreasing the network size, on
the other hand, yields a performance that is 8.7% lower or even more for the smallest model. This
motivates our choice to focus on the architecture with 36k trainable parameters, which was used for
all other test with the buoyancy-driven flows.

As discussed in the main text, we also evaluated a method proposed by Sanchez et al. [13] to perturb
inputs to network with noise in order to stabilize predictions. This approach shares our goal to reduce
the shift of distributions for the input data such that the trained networks can produce more reliable
estimates as they encounter new inputs at inference time. However, in contrast to the Lagrangian
graph-based physics predictions, the added noise did not lead to large gains in our context. We test a
variety of trained SOL2 networks for which noise was injected into the input features, i.e., cell-wise
samples of velocity and marker density, from a component-wise normal distribution N (0, σ) with
standard deviation σ.

Details of the results are visualized in Fig. 10. As can be seen in the results, there is only a slight
positive effect across a wide range of different noise strengths. The networks with σ ∼ 10−4 show
the best results. However, the improvements of up to 34.6% via noise perturbations are surpassed by
the SOLn models, where the best one yields an improvement of 59.8%. We think that the gains of our
interacting model compared to injecting noise come from the systematic improvements of the SOL
training, which potentially provides more reliable inputs at training time than stochastic perturbations.
The fully convolutional nature of the networks additionally provides regularization at training time.

We have also evaluated how sub-optimal choices for solver interactions affect the inference perfor-
mance. We train several NON models that are allowed to evolve for n time steps without interaction,
while computing a regular L2 loss via Eq. 1. These versions are denoted with NONdn for n steps
of diverging evolution. In addition, we evaluate a model PRESR using a pre-computed interaction
without temporal regularization (i.e., only spatial) and one version (PREF) that uses the full spatiotem-
poral regularization without a density threshold; i.e., it requires several times more pre-computation
by solving the Lagrange-multiplier minimization for the full spatial domains. Especially, the NONdn
variants perform badly and exhibit large errors, with NONd8 significantly distorting the flow behavior,
instead of improving it. The corresponding evaluations are visualized in Fig. 13. It is likewise
apparent that the additional PRE variants deteriorate the ability of the ANNs to correct the numerical
errors of the source simulations.

To summarize, despite the complexity of the buoyancy-driven flows and the difficult reference
trajectories produced by a higher-order PDE solver, the numerical errors of the source simulation can
be reduced very successfully by training with the solver in the training loop.

11

SRC PRE NON SOL2 SOL4 SOL8 SOL16 SOL32 SOL64 SOL128
0.0

0.5

1.0

1.5

2.0

2.5

M
A

E
V

el
oc

ity

(a) Velocity error
SRC PRE NON SOL2 SOL4 SOL8 SOL16 SOL32 SOL64 SOL128

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
A

E
D

en
si

ty

(b) Marker advection error
SRC PRE NON SOL2 SOL4 SOL8 SOL16 SOL32 SOL64 SOL128

0

250

500

750

1000

1250

1500

M
A

E
K

in
et

ic
E

ne
rg

y

(c) Kinetic energy error

PRE NON SOL2 SOL4 SOL8 SOL16 SOL32 SOL64 SOL128
0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
el

oc
ity

E
rr

or
Im

pr
ov

em
en

t

(d) Velocity improvement
PRE NON SOL2 SOL4 SOL8 SOL16 SOL32 SOL64 SOL128

0.0

0.1

0.2

0.3

0.4

D
en

si
ty

E
rr

or
Im

pr
ov

em
en

t

(e) Impr. of marker advection
PRE NON SOL2 SOL4 SOL8 SOL16 SOL32 SOL64 SOL128

0.0

0.2

0.4

0.6

0.8

1.0

K
in

et
ic

E
ne

rg
y

Im
pr

ov
em

en
t

(f) Impr. of kin. energy

Figure 8: Velocity, marker advection, and kinetic energy errors for different models, especially
for different SOL versions with increasing look-ahead. In the second row, we show improvements
relative to the source version SRC.

1.3k 5.1k 35.9k 100.1k 400.9k

Model Size
0

100000

200000

300000

400000

N
um

be
ro

fW
ei

gh
ts

(a) Trainable weights

1.3k 5.1k 35.9k 100.1k 400.9k

Model Size
0.0

0.5

1.0

1.5

2.0

M
A

E
V

el
oc

ity

(b) Velocity error

1.3k 5.1k 35.9k 100.1k 400.9k

Model Size
0.0

0.2

0.4

0.6

0.8
M

A
E

D
en

si
ty

(c) Marker error

1.3k 5.1k 35.9k 100.1k 400.9k

Model Size
0.0

0.1

0.2

0.3

0.4

0.5

V
el

oc
ity

E
rr

or
Im

pr
ov

em
en

t
(d) Velocity improvement

Figure 9: SOL2 training with different architectures that strongly vary the number of trainable
parameters (a). While the smaller two models lead to a clear drop in accuracy, the larger two
architectures yield small gains despite the increased weight count.

1e−6 1e−5 3e−5 1e−4 3e−4 0.001 0.003 0.01 0.03 0.1 0.3

Noise Strength
0.0

0.1

0.2

0.3

0.4

V
el

oc
ity

E
rr

or
Im

pr
ov

em
en

t

(a) Velocity improvement

1e−6 1e−5 3e−5 1e−4 3e−4 0.001 0.003 0.01 0.03 0.1 0.3

Noise Strength
0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

E
rr

or
Im

pr
ov

em
en

t

(b) Improvement of marker advection

Figure 10: Varying levels of noise injected into the input features for SOL2 at training time. While
values around 10−4 lead to slight positive effects, the improvements are negligible compared to those
achievable by the SOL variants.

R
ef

.
SR

C

0.5

0.0

1.0

Figure 11: An example sequence of the buoyancy scenario from the training data set for time steps
t ∈ {0, 25, · · · , 375}.

12

(a)

R
ef

.
SO

L
1
2
8

SR
C

0.5

0.0

1.0

(b)

R
ef

.
SO

L
1
2
8

SR
C

0.5

0.0

1.0

(c)

R
ef

.
SO

L
1
2
8

SR
C

0.5

0.0

1.0

Figure 12: Several time steps t ∈ {50, 60, · · · , 200} of three buoyancy-driven fluid flow test cases
(a)-(c).

NONd8 NONd4 NONd2 NON PRESR PREF PRE
0

2

4

6

8

M
A

E
V

el
oc

ity

(a) Velocity error
NONd8 NONd4 NONd2 NON PRESR PREF PRE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
A

E
D

en
si

ty

(b) Density error
NONd8 NONd4 NONd2 NON PRESR PREF PRE

−4

−3

−2

−1

0
V

el
oc

ity
E

rr
or

Im
pr

ov
em

en
t

(c) Velocity improvement

Figure 13: A comparison of models trained with a variety of sub-optimal interaction schemes for the
buoyancy scenario. NONdn allows non-interacting models to evolve and diverge over n steps, while
PRESR employs only spatial regularization in the pre-computation. PREF resembles PRE, but was
trained without a density threshold. Especially, the changes relative to SRC in (c) highlight that the
NONdn variants have a negative effect.

Table 2: Quantitative evaluation of models for the buoyancy-driven flow scenario. MXS,S,L,XL

denote different model sizes, while σ1,2,3 denote models trained with noise of σ = 10−3,−4,−5.

Quantity MAE Velocity, Mean (std. dev.)

SRC NON PRE SOL2 SOL16 SOL32 SOL64 SOL128

Velocity 1.590 1.079 1.373 1.027 0.859 0.775 0.695 0.620
(1.032) (0.658) (0.985) (0.656) (0.539) (0.482) (0.420) (0.389)

Marker d 0.677 0.499 0.579 0.484 0.430 0.419 0.401 0.391
(0.473) (0.336) (0.409) (0.325) (0.281) (0.277) (0.262) (0.253)

MXS MS ML MXL σ1 σ2 σ3 NONd4

Velocity 1.228 1.193 0.982 0.969 1.070 1.056 1.078 3.196
(0.746) (0.826) (0.646) (0.626) (0.683) (0.700) (0.706) (1.404)

Marker d 0.521 0.494 0.461 0.466 0.503 0.496 0.503 0.656
(0.352) (0.349) (0.313) (0.318) (0.341) (0.339) (0.345) (0.426)

13

B.3 Forced Advection-Diffusion

In the forced advection-diffusion scenario, we target a PDE environment with a constant, randomized
forcing term. This forcing continuously injects energy into the dissipative system and takes the form
of a spectrum of parametrized bands of sine waves. In this scenario, we target Burgers’ equation. It
represents a well-studied advection-diffusion PDE:

∂ux
∂t

+ u · ∇ux = ν∇ · ∇ux + gx(t),
∂uy
∂t

+ u · ∇uy = ν∇ · ∇uy + gy(t), (13)

where ν and g denote diffusion constant and external forces, respectively. Our setup resembles a 2D
variant of the tests employed by the work on learning data-driven discretizations [1]; correspondingly,
we extend the forcing terms described there to 2D. We generate the forces from 20 overlapping sine
functions each with a random direction, amplitude, and phase shift:

gx(t) =

20∑
i=1

cos(αi)ai sin(ωit− kx+ φi), gy(t) =

20∑
i=1

sin(αi)ai sin(ωit− kx+ φi). (14)

This PDE scenario does not involve any equality constraints, i.e., M = 0.

Similar to the previous scenarios, we discretize the system on a staggered grid and compute the
advection operator with a semi-Lagrangian scheme [16]. The domain has a square, normalized size of
1× 1 with reference trajectories computed via a resolution of dr,x=dr,y=128. The source domain
correspondingly uses ds,x=ds,y=32.

Training Procedure and Results As training data, ten simulations of 200 steps each are used. An
example sequence of the data is shown in Fig. 14. The SOL and NON models are trained for 38.4k
steps with a batch size of five with a learning rate of 10−4, while the PRE model is trained for 25k
steps with a batch size of 32 using an initial learning rate of 10−3 that was lowered to 5× 10−7 over
the course of the training. The PRE model additionally uses 5% of the training data set for validation.
The test data set contains five cases with different initial conditions and force fields over the course of
200 time steps. All models use a neural network architecture with five ResBlocks with 32 features
each.

As summarized in the main text, the learned correction functions can significantly decrease the
numerical errors of the source simulation. Across the different test cases (partly shown in Fig. 15),
the best models achieve a reduction by over 67%. The corresponding MAE measurements are given
in Table 3, and Fig. 16 provides an overview of the performance per test case. While the PRE model
shows a lower performance, most likely due to an overly strong temporal regularization, the NON
model is close to the best SOL model in this case with an MAE of 0.159 compared to 0.148 for SOL2.
Interestingly, this behavior matches the results of Bar-Sinai et al. [1]. They experimented with up
to eight recurrent steps of a 1D Burgers’ simulation, but did not report significant advantages from
training with the 1D solver in the loop.

In contrast, we found that more interactions show their advantage in a deterministic scenario, where
we exclude the external forces from the Burgers’ equation above, i.e., Eq. 13. As this versions exhibits
less chaotic behavior, the SRC version generally shows smaller errors compared to the SRC version
in the forced scenario. The SOL versions now yield further improvements when trained with more
look-ahead: SOL4 yields an improvement of 10% over SRC, SOL16 yields 12%, while the SOL32

version reduces the error by 17%. Table 3 shows the corresponding MAE measurements.

Our results highlights that deep learning via physical simulations works particularly well when the
ANNs can actually learn to predict the behavior of the dynamics and, thus, compensate for the
numerical errors that will occur. If, on the other hand, external and unpredictable influences such as
the randomized forcing terms dominate the behavior, the model has a reduced chance to predict the
right correction function.

14

Table 3: Quantitative evaluation of different models for the forced advection-diffusion scenario. MAE
values without forcing are given with a ×100 factor.

MAE Velocity, Mean (std. dev.)

With forcing SRC PRE NON SOL2 SOL4 SOL8

0.248 0.218 0.159 0.148 0.152 0.158
(0.019) (0.017) (0.015) (0.016) (0.015) (0.017)

Without forcing SRC NON SOL4 SOL8 SOL16 SOL32

(×100) 0.306 0.272 0.276 0.277 0.268 0.253
(0.020) (0.028) (0.037) (0.040) (0.030) (0.020)

R
ef

.
SR

C

0.0

 π

−π

Figure 14: An example sequence from the training data set of the forced advection-diffusion test case.

(a)

R
ef

.
SO

L
2

SR
C

0.0

 π

−π

(b)

R
ef

.
SO

L
2

SR
C

0.0

 π

−π

(c)

R
ef

.
SO

L
2

SR
C

0.0

 π

−π

Figure 15: Time steps of three test cases (a)-(c) from the forced advection-diffusion scenario.

15

A B C D E
0.00

0.05

0.10

0.15

0.20

0.25

M
A

E
V

el
oc

ity

SRC
PRE
NON
SOL2

SOL4

SOL8

(a) Velocity error per test case
A B C D E

0.0

0.1

0.2

0.3

0.4

0.5
V

el
oc

ity
E

rr
or

Im
pr

ov
em

en
t

PRE
NON
SOL2

SOL4

SOL8

(b) Velocity improvement (relative to SRC) per test
case

Figure 16: Separate evaluations for five different test cases of the forced advection-diffusion scenario.

16

B.4 Inference of Initial Guesses for Conjugate Gradient Solvers

In this section, we investigate the interaction of learning models with conjugate gradient (CG) solvers
[7]. We target Poisson problems, which often arise many PDEs, e.g., in electrostatics or in fluid
flow problems where the pressure p is computed via ∇ · ∇p = ∇ · u. Specifically, we explore the
iteration behavior of the CG solver given an initial state predicted by a trained model. To this end, we
compare three main methods: A solver-in-the-loop (SOLn) approach, a non-interacting supervised
approach (NON), and a differentiable physics-based (SOLDIV), which is trained to directly minimize
the PDE residual. In general, the CG solver iterations converge toward a reference pressure field p
such that Ap = ∇ · u with A = ∇ · ∇. For an intermediate solution p̂, the residual r = ∇ · u−Ap̂
measures how far away the approximated pressure p̂ is from the true solution. Thus, as the solver
converges, r decreases and the difference p̂− p converges to zero. In the following, we employ the
neural network C to infer a pressure field given a velocity sample u, i.e., p̂ = C(u). We focus on 2D
cases, i.e., u ∈ R2×dx×dy and p, r ∈ Rdx×dy .

Loss Functions The NON version employs a regular supervised loss, i.e., the difference of the
predicted pressure p̂ from the pre-computed reference pressure p for j different samples:

LNON = ‖C(u)− p‖2. (15)

We additionally compare to a variant that is often referred to as unsupervised in previous work, and
which is in line with other physics-based or physics-informed loss constructions [11, 15]. Specifically,
the SOLDIV version replicates the setup described in [18] and uses the PDE ∇2p − ∇ · u = 0 as
loss for the training of a neural network. Given an input velocity u∗, the goal is to infer a pressure
function p̂(∇ · u∗) such that the PDE residual is minimized:

LSOLDIV = ‖∇ · u∗ −∇ · ∇C(u)‖2. (16)

This version represents a different form of differentiable PDE solvers, namely including them in
the loss formulation, and hence we denote it with SOLDIV. However, due to a lack of iterating
calculations for this variant, a more appropriate name would be “solver-in-the-loss” rather than

“solver-in-the-loop”.

As a third variant, we employ a solver-in-the-loop interaction that employs a differentiable CG solver
and uses a learning objective to minimize the PDE residual after n iterations of the CG solver. In this
scenario, Ps represents a linear operator, i.e., one step of the CG method to approximate∇−2 (∇·u),
and the loss function is given by:

LSOLn
= ‖Pns (C(u))− C(u)‖2. (17)

Thus, the SOLn and SOLDIV both minimize the same residual divergence r; while the SOLDIV
loss aims to do so directly, the SOLn version instead sees how the iterative solver performs. At
training time, the SOLn variant receives gradients through n iterations of the iterative solver via
back-propagation.

Training Procedure The trained models in this section all use the same convolutional U-net
architecture [12] with 22 layers of strided convolutions and 5×5 kernels, containing around 127k
trainable parameters (see App. D for details). The training data set was generated using the conjugate
gradient solver from the ΦFlow framework [8]. It is comprised of 3k fluid simulations on a domain
with dx = dy = 64 and closed boundaries. Each simulation consists of a randomly generated density
and velocity field, which are integrated over time for 16 steps. Each model was trained for 300k
steps with a learning rate of 2× 10−4 and training batch size of 16. The reference solutions were
pre-computed with a CG solver using an accuracy threshold of 10−6 for the residual norm.

Results We now compare the different loss functions by their performance in conjunction with the
CG solver. We compute averages for 100 test cases each time, i.e., samples that were not seen at
training time. As baseline, we denote a CG solving process that starts from a zero guess as SRC.

We first compare how many CG iterations are required to reach a certain target accuracy given the
inferred solutions by the three different types of models. The results are shown in Table 4 and
visualized in Fig. 17. Initially, SOLDIV reaches an accuracy of almost 10−2, closely followed by
SOL5. While the supervised NON version produces pressure predictions that seem quite close to the

17

reference, its initial accuracy is only slightly better than the zero guess employed by SRC. This is due
to the error being measured locally per grid point, while the correctness of larger structures becomes
more important after in interactions with the CG solvers. Over the first five to ten CG iterations, the
accuracy of SOL5 improves very quickly, overtaking the other methods. To reach an accuracy of
10−2, the CG solver requires an average of around two steps in conjunction with SOL5, nine steps
with NON, 28 steps with SOLDIV and 78 steps starting from zero. When running the CG solver for
more iterations, the accuracy increases similarly for all methods, with SOL5 retaining its advantage.

Comparing SOL5 to SOLDIV shows the importance of training with the solver in the loop: the SOLDIV
model does not receive any feedback regarding the behavior of the solver. It predicts solutions that
satisfy the loss – measured per grid point – but do not match the large-scale structures of the true
solution. Consequently, this task is left to the CG solver, which requires many iterations to work out
the correct global solution. The SOL5 model, however, sees the corrections performed by the CG
solver at training time and can learn to adjust its guess accordingly.

When investigating the inferred pressure fields themselves (Fig. 18), we see that the guesses of the
SOL5 model come closest to the reference, followed by those of the NON variant. The SOLDIV
differs more strongly, and the residual divergence, shown in Fig. 19, highlights that it has a noticeable
error pattern near the outer border of the domain. This provides an explanation for the poor behavior
of the SOLDIV model for the initial CG solver iterations: while it minimizes the PDE-based loss in an
absolute sense, it does not receive information about how different parts of the solution influence
the future iterations of the solver. This ambiguity is alleviated to some extent by the pre-computed
reference solutions for NON, but especially the SOL5 version receives this feedback in terms of
gradient from the differentiable solver and, in this way, can best adapt to the requirements for future
iterations.

We also experimented with varying the number of look-ahead steps for SOLn models in the loss
function of Eq. 17. This ablation study (Fig. 20) shows how too few iterations clearly deteriorate
the performance, while more than 5 iterations lead to a slight increase in the required iterations. We
assume that this behavior is potentially caused by evaluating the loss only for the final output of the n
iterations.

Discussion Our results highlight the advantages of training with the solver in the loop for fully
implicit PDE solvers. Likewise, it shows that a physics-informed loss formulation alone yields only
a partial view of the problem. While a loss-based residual cannot adapt to iterative algorithms, the
solver-in-the-loop models directly receive gradient-based feedback at training time.

The combination of an inferred initial guess with a traditional solver represents a particularly interest-
ing hybrid algorithm, as it gives convergence guarantees that a learned approach alone would not be
able to provide. Even if a trained model generates a sub-optimal solution, the solver can improve the
solution until it matches the desired accuracy threshold. On the other hand, pre-training a model for a
known problem domain can significantly reduce the required number of iterations and, consequently,
reduce the workload in scenarios where PDEs from the same problem domain need to be solved
repeatedly and in large numbers. Here, the current hardware developments provide an additional
promise: the advances in terms of highly specialized hardware for evaluating neural networks can
provide a substantial future speed-up even for a fixed, pre-trained model.

10−1 10−2 10−3 10−4 10−5 10−6

Target Accuracy

0

50

100

150

200

It
er

at
io

ns

SRC
SOLDIV

NON
SOL5

(a)

0 25 50 75 100 125 150 175 200
Iterations

10−6

10−4

10−2

100

R
es

id
uu

m
M

ax

SRC
SOL5

SOLDIV

NON

(b)

Figure 17: (a) Iterations needed to reach target accuracy and (b) comparison of maximum residual
error over iterations.

18

Sa
m

pl
e

0
Sa

m
pl

e
1

REF

Sa
m

pl
e

2

SOL5 SOLDIV NON

−2.5

0.0

2.5

−5
0
5

0.0

2.5

(a)

Sa
m

pl
e

0
Sa

m
pl

e
1

SOL5

Sa
m

pl
e

2

SOLDIV NON

−0.5

0.0

−1

0

1

0.0

0.5

(b)

Figure 18: (a) Sample outputs of the models and (b) difference of output from reference.

Sa
m

pl
e

0

SOL5

Sa
m

pl
e

1

SOLDIV NON

0.02

0.04

0.025
0.050

Sa
m

pl
e

2

SOL5

Sa
m

pl
e

3

SOLDIV NON

0.025
0.050

0.025
0.050
0.075

Figure 19: Residual error after one CG solver iteration.

10−1 10−2 10−3 10−4 10−5 10−6

Target Accuracy

0

25

50

75

100

125

150

175

It
er

at
io

ns

SOL1

SOL2

SOL5

SOL10

SOL15

0 10 20 30 40 50 60 70
Iterations

10−3

10−2

10−1

R
es

id
uu

m
M

ax

SOL1

SOL2

SOL5

SOL10

SOL15

Figure 20: Comparison of SOL models with different look-ahead steps.

Table 4: Evaluation of the CG solver performance for different models.

Model Iterations for Accuracy, Mean (std. dev.)

10−1 10−2 10−3 10−4 10−5 10−6

NON 1.67 9.33 52.16 109.12 155.37 186.12
(1.010) (5.428) (17.540) (15.875) (10.155) (5.719)

SOLDIV 0.0 27.79 79.06 117.97 155.76 181.07
(0.0) (15.255) (10.042) (13.234) (9.403) (6.052)

SOL5 0.03 1.97 29.59 88.37 133.59 167.37
(0.171) (1.118) (14.832) (13.465) (11.605) (8.549)

19

B.5 Three-dimensional Unsteady Wake Flow

As a final scenario, we target a three-dimensional fluid flow problem. The third spatial dimension
leads to a large increase in terms of degrees of freedom, especially in the finer reference manifold.
Additionally, the three axes of rotation lead to significantly more complicated flow structures.

Overall, we target a setup that represents an extension of the 2D unsteady wake flow case of App. B.1.
Instead of a circular obstacle, the flow now faces a cylindrical obstacle in a 3D domain with extent of
1× 1× 2. The cylinder with diameter 0.1 is located at position (1/2, 1/2, 0)T and has an extent of
1 unit along the z-axis. We use the incompressible Navier-Stokes equations in three dimensions as
underlying PDE:

∂ux
∂t

+ u · ∇ux = −1

ρ
∇p+ ν∇ · ∇ux

∂uy
∂t

+ u · ∇uy = −1

ρ
∇p+ ν∇ · ∇uy

∂uz
∂t

+ u · ∇uz = −1

ρ
∇p+ ν∇ · ∇uz

subject to ∇ · u = 0. (18)

For reference simulations, the domain is discretized with dr,x=dr,y=128 and dr,z= 256 cells using
a staggered layout for the velocity components. The source domain has a resolution of ds,x=ds,y=32
and dr,z= 64 cells. Data sets from both domains contain phase space trajectories of 500 time steps.
For the training data, the viscosity coefficient ν is chosen to yield Reynolds numbers Retrain ∈
{58.6, 78.1, 117.2, 156.3, 234.4, 312.5, 468.8, 625.0}. While the range of Reynolds numbers covers
a slightly reduced range compared to the 2D case, there is still a factor of more than ten between
largest and smallest ones, and the 3D nature of the flow introduces a significant amount of complexity.
The example visualizations of a training data set in Fig. 21 highlight the complexity of the flows.

For the test set, we use different Reynolds numbers, namely Retest ∈ {68.4, 97.7, 195.3, 136.7, 273.4,
390.6, 546.9}. The following test evaluations were computed for the seven Reynolds numbers in
Retest over 300 time steps. Numeric values are given in Table 5.

Training Procedure For the 3D case, we use a ResNet that largely follows the architecture of the
2D cases, but employs 3D convolutions instead. The ResNet contains six blocks with kernel sizes of
5×5×5 and 3×3×3 for the two convolutional layers per block. The number of filters is increases to
48 in the center of the network, yielding 1002k trainable parameters (also see App. D). As for the 2D
case, the inputs for the 3D models contain a constant field indicating the targeted Reynolds number.
All models were trained for 300k iterations using a learning rate of 10−4 and a batch-size of four. We
then use three validation simulations with Reval ∈ {61.0 , 305.2 , 470.0} to select the best performing
model.

Due to the increased computational workload to train the 3D models, we focus on a NON variant and
a SOL16 version, which uses the same differentiable Navier-Stokes solver for producing gradient
information over the course of up to 16 unrolled simulation and inference steps for each iteration at
training time. This version was trained with SOL8 for 200k iterations and then for an additional 100k
iterations as SOL16.

Results The 3D flow represents a significant increase in terms of complexity for the deep learning
models. Among others, we were not able to train a stable NON version despite numerous tests.
While the models performed well for ca. 100 to 150 time steps, small scale oscillations induced
by the corrections accumulate and start to strongly distort the flow. This is a good example of the
undesirable shift of distributions for the inputs: once the phase space trajectories produced by the
hybrid method leave the distribution of the regular source states seen at training time, the model fails
to infer reasonable corrections.

In contrast, the SOL16 version retains its stability over the course of long simulations with several
hundred steps. This is reflected in the MAE measurements of the velocity fields over the test cases:
the regular source simulation induces an error of 0.167, which the NON version reduces to 0.143.
The SOL16 reduces the error to 0.130 instead, which however only gives a partial view of the overall

20

behavior of the different versions. The graphs over time shown in Fig. 22a illustrate the diverging
behavior of the NON version. While it does very well initially, even slightly surpassing SOL16 around
frame 100, the errors quickly grow afterwards, eventually leading to a performance that is worse than
the source simulation.

The frequency graphs of the kinetic energy in Fig. 22b, measured for an array of 53 sample points
at the center of the domain, instead show that the SOL16 simulations closely match the frequency
distribution of the reference simulations. It succeeds in restoring the change of frequencies across the
different temporal scales of the flow significantly better than the SRC and NON models. The source
simulation instead underestimates larger frequencies and over-estimates smaller ones.

Fig. 23 visualizes the vorticity magnitude of several test cases with Reynolds numbers not seen during
training. The SOL16 model manages to correct the vortex shedding behavior of the source simulation
and closely matches the reference. As we visualize in the supplemental video, the NON version starts
to oscillate, injecting undesirable distortions into the velocity field.

(a)

R
ef

er
en

ce
SR

C

0.8

0.4

0.0

(b)

R
ef

er
en

ce
SR

C

0.8

0.4

0.0

Figure 21: Two example sequences with (a) Re=117.2 and (b) Re=273.4 of the three-dimensional
wake flow from the training data set. Each row shows 200 time steps for SRC (top) and reference
versions (bottom) in terms of vorticity magnitude.

0 100 200 300
Step

0.00

0.05

0.10

0.15

0.20

M
A

E
V

el
oc

ity

SRC
NON
SOL16

(a) Velocity error over time

100 101

Frequency

10−2

10−1

100

A
m

pl
itu

de
of

K
in

ec
tic

E
ne

rg
y

Ref.
SRC
NON
SOL16

(b) Frequency error

Figure 22: Evolutions of velocity MAE and frequency errors over the course of 300 time steps
averaged for the seven test cases of the three-dimensional wake flow. (a) The NON versions perform
well initially, but strongly diverges for later frames. (b) The SOL16 shows a clearly improvement in
terms of the frequency distribution of the kinetic energies. The overall curve of SOL16 closely follows
the reference with an initial offset over the reference, which inherits from the source simulation.

21

(a)

R
ef

.
SO

L
1
6

SR
C

0.8

0.4

0.0

(b)

R
ef

.
SO

L
1
6

SR
C

0.8

0.4

0.0

(c)

R
ef

.
SO

L
1
6

SR
C

0.8

0.4

0.0

Figure 23: Three test cases with (a) Re=68.4, (b) Re=136.7, and (c) Re=546.9. Each row shows
time steps over the course of 200 time steps for SRC, SOL16, and the reference (top to bottom). The
SOL16 model interacting with the source solver successfully preserves the complex rotating motions
behind the cylindrical obstacle (middle), which the regular source solver cannot resolve (top).

Table 5: Quantitative evaluation of different models for the three-dimensional wake flow scenario.

MAE Velocity, Mean (std. dev.) Freq. MAE Kinetic Energy, Mean (std. dev.)

SRC NON SOL16 SRC NON SOL16

0.167 (0.035) 0.143 (0.070) 0.130 (0.024) 0.0614 (0.133) 0.074 (0.209) 0.058 (0.088)

C Performance

We measure the computational performance of our models in comparison to a reference simulation
on a workstation with an Intel Xeon E5-1650 CPU with 12 virtual cores at 3.60GHz and an NVIDIA
GeForce GTX 1080 Ti GPU. As reference solver, we employ a CPU-based simulator using OpenMP
parallelization. We compare this with our (relatively un-optimized) differentiable physics framework,
which evaluates the PDE and the trained model within TensorFlow on the GPU.

For the buoyancy-driven flow simulation, the CPU-based reference simulation requires 5.79 seconds
on average for 100 time steps. Instead, evaluating the SOL128 neural network model itself requires
an accumulated 0.43 seconds. For comparison, computing 100 time steps of the source solver takes
0.476 seconds. In comparison to the inference for forward simulations with a pre-trained model, each
iteration during training is significantly more expensive: for the SOL8, SOL16, and SOL32 models of
the 2D wake flow case, a training iteration took 0.6, 1.3, and 2.5 seconds on average, respectively. As

22

this is a one-time, pre-processing cost, the gains in performance of the resulting hybrid solver can
quickly offset the computational expense for training a model.

The computational workload for PDE solvers typically rises super-linearly with the number of degrees
of freedom. Hence, the gap is even more pronounced when considering the 3D wake flow case. Here,
the reference simulation requires 913.2 seconds for 100 time steps, while the SOL16 version requires
13.3 seconds on average. Thus, the source simulation with learned corrections is more than 68 times
faster than the reference simulation.

Despite the substantial reduction in terms of runtime, we believe these performance results are
preliminary, and far from the speed-up that could be achieved in optimal settings with a learning-
augmented PDE solver. An inherent advantage of combining an approximate PDE solver with a
deep-learning-based corrector ANN stems from the fact that a relatively simple solver suffices as a
basis. Hence, while existing reference solvers in scientific computing fields might come with vast
existing code-bases, the source solver could encompass only a small subset of the full solver and
introduce the residual dynamics via a learned component. This would also reduce the work to provide
gradients for the source solver, which many existing simulation frameworks do not readily offer. Due
to its reduced scope, the source solver would also be significantly easier to optimize. Additionally, the
learned corrector component would trivially benefit from all future hardware advances for efficient
evaluations of neural networks. Hence, we believe that, in practice, a much more substantial speed-up
will be achievable than the ones we have measured for the two- and three-dimensional simulation
scenarios of this work.

D Neural Network Architectures

Below, we give additional details of the network architectures used for the five different scenarios.
We intentionally slightly vary the architecture to demonstrate that our solver-in-the-loop approach
does not rely on a single, specific architecture. We employ ResNets for the large majority of the PDE
interaction models as the correction task resembles a translation from phase space input quantities to
a field of localized corrections. The CG solver scenario, on the other hand, requires a more global
view, which motivates our choice of a U-net architecture. The overall structure with kernel sizes and
feature maps of both types of networks is illustrated in Fig. 24. We additionally list hyperparameters
for each architecture in Table 6.

In
2 32 32 32 32 32 32

Out
2

Block 0 Block 1 Block 2

...

...
32 32

Block 3

32 32

Block 4

32

5x5 conv

5x5 conv, Leaky ReLU

skip connection
(𝐹(𝑥) + 𝑥)

Leaky ReLU

Div
32

32
1 32

32
4 32

32
4

16
16

4 16
16

8 16
16

8

8
8

8 8
8

16 8
8

16

4
4

16 4
4

32 4
4

32 4
4

32

32
32

4 32
32

4
32

32
4

32
P

32
1

16
16

8 16
16

816
16

8

8
8

16 8
8

168
8

16

5x5 conv, stride 2, ReLU

5x5 conv, ReLU

upsample 2x2 +
5x5 conv, ReLU

concat (after upsample,
before conv)

5x5 conv, no activation

Figure 24: A visual summary of the two main architectures of the neural networks used for Sect. B.1
to B.3 (left), and Sect. B.4 (right).

References
[1] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. Learning data-driven discretizations for partial

differential equations. Proceedings of the National Academy of Sciences, 116(31):15344–15349, 2019.

[2] A. J. Chorin. The numerical solution of the navier-stokes equations for an incompressible fluid. Bulletin of
the American Mathematical Society, 73(6):928–931, 1967.

[3] K. Fukami, K. Fukagata, and K. Taira. Super-resolution reconstruction of turbulent flows with machine
learning. Journal of Fluid Mechanics, 870:106–120, 2019.

[4] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration: structure-preserving algorithms
for ordinary differential equations, volume 31. Springer Science & Business Media, 2006.

23

Table 6: Hyperparameters of neural network architectures.

Experiment Arch. Layers Features Conv. Kernels Train. Weights

2D Wake Flow B.1 Res-Net 12 32 52 260,354
2D Wake Flow B.1, Small Sequential 3 32, 64 52 56,898
Buoyancy B.2, MXS Res-Net 6 4 52, 32 1,310
Buoyancy B.2, MS Res-Net 8 8 52, 32 5,114
Buoyancy B.2, Regular Res-Net 10 16 52, 32 35,954
Buoyancy B.2, ML Res-Net 14 16, 32 52, 32 100,114
Buoyancy B.2, MXL Res-Net 14 32, 64 52, 32 400,930
Forced Adv.-diff. B.3 Res-Net 12 32 52 261,154
CG Solver App. B.4 U-Net 22 4, 8, 16, 32 52 127,265
3D Wake Flow B.5 Res-Net 14 24,48 53, 33 1,002,411

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv:1512.03385
[cs], Dec. 2015.

[6] C. R. Henderson. Best linear unbiased estimation and prediction under a selection model. Biometrics,
pages 423–447, 1975.

[7] M. R. Hestenes, E. Stiefel, et al. Methods of conjugate gradients for solving linear systems. Journal of
research of the National Bureau of Standards, 49(6):409–436, 1952.

[8] P. Holl, V. Koltun, and N. Thuerey. Learning to control pdes with differentiable physics. International
Conference on Learning Representations (ICLR), 2020.

[9] C. Jones and B. Macpherson. A latent heat nudging scheme for the assimilation of precipitation data into
an operational mesoscale model. Meteorological Applications, 4(3):269–277, 1997.

[10] J. M. Murphy, D. M. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth.
Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature,
430(7001):768, 2004.

[11] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: A navier-stokes informed deep
learning framework for assimilating flow visualization data. arXiv:1808.04327, 2018.

[12] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages
234–241. Springer, 2015.

[13] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia. Learning to simulate
complex physics with graph networks. arXiv:2002.09405, 2020.

[14] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac. An unconditionally stable maccormack method.
Journal of Scientific Computing, 35(2-3):350–371, June 2008.

[15] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential equations.
Journal of Computational Physics, 375:1339–1364, 2018.

[16] J. Stam. Stable fluids. In SIGGRAPH ’99, pages 121–128. ACM, 1999.

[17] K. Stephan, S. Klink, and C. Schraff. Assimilation of radar-derived rain rates into the convective-scale
model cosmo-de at dwd. Quarterly Journal of the Royal Meteorological Society, 134(634):1315–1326,
2008.

[18] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. Accelerating eulerian fluid simulation with
convolutional networks. In Proceedings of Machine Learning Research, pages 3424–3433, 2017.

[19] J. Xi, P. Lamata, W. Shi, S. Niederer, S. Land, D. Rueckert, S. G. Duckett, A. K. Shetty, C. A. Rinaldi,
R. Razavi, et al. An automatic data assimilation framework for patient-specific myocardial mechanical
parameter estimation. In International Conference on Functional Imaging and Modeling of the Heart,
pages 392–400. Springer, 2011.

[20] J. Zehnder, R. Narain, and B. Thomaszewski. An advection-reflection solver for detail-preserving fluid
simulation. ACM Trans. Graph., 37(4):85:1–85:8, July 2018.

24

	Correction Functions for PDEs
	Learning Without Interaction
	Pre-computed Interactions
	Pre-computed Spatial Regularization
	Pre-computed Spatiotemporal Regularization

	Solver-in-the-Loop Interactions via Differentiable Physics

	Experiments
	Unsteady Wake Flow in Two Dimensions
	Buoyancy-driven Fluid Flow
	Forced Advection-Diffusion
	Inference of Initial Guesses for Conjugate Gradient Solvers
	Three-dimensional Unsteady Wake Flow

	Performance
	Neural Network Architectures

