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Abstract

Generalizable, transferrable, and robust representation learning on graph-structured
data remains a challenge for current graph neural networks (GNNs). Unlike what
has been developed for convolutional neural networks (CNNs) for image data,
self-supervised learning and pre-training are less explored for GNNs. In this
paper, we propose a graph contrastive learning (GraphCL) framework for learning
unsupervised representations of graph data. We first design four types of graph
augmentations to incorporate various priors. We then systematically study the
impact of various combinations of graph augmentations on multiple datasets, in
four different settings: semi-supervised, unsupervised, and transfer learning as well
as adversarial attacks. The results show that, even without tuning augmentation
extents nor using sophisticated GNN architectures, our GraphCL framework can
produce graph representations of similar or better generalizability, transferrability,
and robustness compared to state-of-the-art methods. We also investigate the
impact of parameterized graph augmentation extents and patterns, and observe
further performance gains in preliminary experiments. Our codes are available at:
https://github.com/Shen-Lab/GraphCL.

1 Introduction

Graph neural networks (GNNs) [1, 2, 3], following a neighborhood aggregation scheme, are increas-
ingly popular for graph-structured data. Numerous variants of GNNs have been proposed to achieve
state-of-the-art performances in graph-based tasks, such as node or link classification [1, 2, 4, 5, 6],
link prediction [7] and graph classification [8, 3]. Intriguingly, in most scenarios of graph-level
tasks, GNNs are trained end-to-end under supervision. For GNNs, there is little exploration (except
[9]) of (self-supervised) pre-training, a technique commonly used as a regularizer in training deep
architectures that suffer from gradient vanishing/explosion [10, 11]. The reasons behind the intriguing
phenomena could be that most studied graph datasets, as shown in [12], are often limited in size and
GNNs often have shallow architectures to avoid over-smoothing [13] or “information loss” [14].

We however argue for the necessity of exploring GNN pre-training schemes. Task-specific labels
can be extremely scarce for graph datasets (e.g. in biology and chemistry labeling through wet-lab
experiments is often resource- and time-intensive) [15, 9], and pre-training can be a promising
technique to mitigate the issue, as it does in convolutional neural networks (CNNs) [16, 17, 18]. As to
the conjectured reasons for the lack of GNN pre-training: first, real-world graph data can be huge and
even benchmark datasets are recently getting larger [12, 19]; second, even for shallow models, pre-
training could initialize parameters in a “better" attraction basin around a local minimum associated
with better generalization [11]. Therefore, we emphasize the significance of GNN pre-training.

Compared to CNNs for images, there are unique challenges of designing GNN pre-training schemes
for graph-structured data. Unlike geometric information in images, rich structured information of
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various contexts exist in graph data [20, 21] as graphs are abstracted representations of raw data with
diverse nature (e.g. molecules made of chemically-bonded atoms and networks of socially-interacting
people). It is thus difficult to design a GNN pre-training scheme generically beneficial to down-stream
tasks. A naïve GNN pre-training scheme for graph-level tasks is to reconstruct the vertex adjacency
information (e.g. GAE [22] and GraphSAGE [23] in network embedding). This scheme can be very
limited (as seen in [20] and our Sec. 5) because it over-emphasizes proximity that is not always
beneficial [20], and could hurt structural information [24]. Therefore, a well designed pre-training
framework is needed to capture highly heterogeneous information in graph-structured data.

Recently, in visual representation learning, contrastive learning has renewed a surge of interest
[25, 26, 27, 18, 28]. Self-supervision with handcrafted pretext tasks [29, 30, 31, 32] relies on heuristics
to design, and thus could limit the generality of the learned representations. In comparison, contrastive
learning aims to learn representations by maximizing feature consistency under differently augmented
views, that exploit data- or task-specific augmentations [33], to inject the desired feature invariance.
If extended to pre-training GCNs, this framework can potentially overcome the aforementioned
limitations of proximity-based pre-training methods [22, 23, 34, 35, 36, 37, 38, 39]. However, it
is not straightforward to be directly applied outside visual representation learning and demands
significant extensions to graph representation learning, leading to our innovations below.

Our Contributions. In this paper, we have developed contrastive learning with augmentations
for GNN pre-training to address the challenge of data heterogeneity in graphs. (i) Since data
augmentations are the prerequisite for constrastive learning but are under-explored in graph-data
[40], we first design four types of graph data augmentations, each of which imposes certain prior
over graph data and parameterized for the extent and pattern. (ii) Utilizing them to obtain correlated
views, we propose a novel graph contrastive learning framework (GraphCL) for GNN pre-training, so
that representations invariant to specialized perturbations can be learned for diverse graph-structured
data. Moreover, we show that GraphCL actually performs mutual information maximization, and
the connection is drawn between GraphCL and recently proposed contrastive learning methods that
we demonstrate that GraphCL can be rewritten as a general framework unifying a broad family
of contrastive learning methods on graph-structured data. (iii) Systematic study is performed to
assess the performance of contrasting different augmentations on various types of datasets, revealing
the rationale of the performances and providing the guidance to adopt the framework for specific
datasets. (iv) Experiments show that GraphCL achieves state-of-the-art performance in the settings of
semi-supervised learning, unsupervised representation learning and transfer learning. It additionally
boosts robustness against common adversarial attacks.

2 Related Work

Graph neural networks. In recent years, graph neural networks (GNNs) [1, 2, 3] have emerged as
a promising approach for analyzing graph-structured data. They follow an iterative neighborhood
aggregation (or message passing) scheme to capture the structural information within nodes’ neigh-
borhood. Let G = {V, E} denote an undirected graph, with X ∈ R|V|×N as the feature matrix where
xn = X[n, :]T is the N -dimensional attribute vector of the node vn ∈ V . Considering a K-layer
GNN f(·), the propagation of the kth layer is represented as:

a(k)
n = AGGREGATION(k)({h(k−1)

n′ : n′ ∈ N (n)}), h(k)
n = COMBINE(k)(h(k−1)

n ,a(k)
n ), (1)

where h
(k)
n is the edmbedding of the vertex vn at the kth layer with h

(0)
n = xn, N (n) is a set of

vertices adjacent to vn, and AGGREGATION(k)(·) and COMBINE(k)(·) are component functions
of the GNN layer. After the K-layer propagation, the output embedding for G is summarized on layer
embeddings through the READOUT function. Then a multi-layer perceptron (MLP) is adopted for
the graph-level downstream task (classification or regression):

f(G) = READOUT({h(k)
n : vn ∈ V, k ∈ K}), zG = MLP(f(G)). (2)

Various GNNs have been proposed [1, 2, 3], achieving state-of-the-art performance in graph tasks.

Graph data augmentation. Augmentation for graph-structured data still remains under-explored,
with some work along these lines but requiring prohibitive additional computation cost [40]. Tra-
ditional self-training methods [40, 13] utilize the trained model to annotate unlabelled data; [41]
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proposes to train a generator-classifier network in the adversarial learning setting to generate fake
nodes; and [42, 43] generate adversarial perturbations to node feature over the graph structure.

Pre-training GNNs. Although (self-supervised) pre-training is a common and effective scheme for
convolutional neural networks (CNNs) [16, 17, 18], it is rarely explored for GNNs. One exception
[9] is restricted to studying pre-training strategies in the transfer learning setting, We argue that a
pre-trained GNN is not easy to transfer, due to the diverse fields that graph-structured data source
from. During transfer, substantial domain knowledge is required for both pre-training and downstream
tasks, otherwise it might lead to negative transfer [9, 44].

Contrastive learning. The main idea of contrastive learning is to make representations agree with
each other under proper transformations, raising a recent surge of interest in visual representation
learning [45, 25, 26, 27, 18]. On a parallel note, for graph data, traditional methods trying to
reconstruct the adjacency information of vertices [22, 23] can be treated as a kind of “local contrast”,
while over-emphasizing the proximity information at the expense of the structural information [24].
Motivated by [46, 47], [24, 21, 48] propose to perform contrastive learning between local and global
representations to better capture structure information. However, graph contrastive learning has not
been explored from the perspective of enforcing perturbation invariance as [27, 18] have done.

3 Methodology

3.1 Data Augmentation for Graphs

Data augmentation aims at creating novel and realistically rational data through applying certain
transformation without affecting the semantics label. It still remains under-explored for graphs except
some with expensive computation cost (see Sec. 2). We focus on graph-level augmentations. Given
a graph G ∈ {Gm : m ∈ M} in the dataset of M graphs, we formulate the augmented graph Ĝ
satisfying: Ĝ ∼ q(Ĝ|G), where q(·|G) is the augmentation distribution conditioned on the original
graph, which is pre-defined, representing the human prior for data distribution. For instance for image
classification, the applications of rotation and cropping encode the prior that people will acquire the
same classification-based semantic knowledge from the rotated image or its local patches [49, 50].

When it comes to graphs, the same spirit could be followed. However, one challenge as stated in Sec.
1 is that graph datasets are abstracted from diverse fields and therefore there may not be universally
appropriate data augmentation as those for images. In other words, for different categories of graph
datasets some data augmentations might be more desired than others. We mainly focus on three
categories: biochemical molecules (e.g. chemical compounds, proteins) [9], social networks [1] and
image super-pixel graphs [12]. Next, we propose four general data augmentations for graph-structured
data and discuss the intuitive priors that they introduce.

Table 1: Overview of data augmentations for graphs.
Data augmentation Type Underlying Prior

Node dropping Nodes, edges Vertex missing does not alter semantics.
Edge perturbation Edges Semantic robustness against connectivity variations.
Attribute masking Nodes Semantic robustness against losing partial attributes per node.

Subgraph Nodes, edges Local structure can hint the full semantics.

Node dropping. Given the graph G, node dropping will randomly discard certain portion of vertices
along with their connections. The underlying prior enforced by it is that missing part of vertices
does not affect the semantic meaning of G. Each node’s dropping probability follows a default i.i.d.
uniform distribution (or any other distribution).

Edge perturbation. It will perturb the connectivities in G through randomly adding or dropping
certain ratio of edges. It implies that the semantic meaning of G has certain robustness to the edge
connectivity pattern variances. We also follow an i.i.d. uniform distribution to add/drop each edge.

Attribute masking. Attribute masking prompts models to recover masked vertex attributes using
their context information, i.e., the remaining attributes. The underlying assumption is that missing
partial vertex attributes does not affect the model predictions much.

Subgraph. This one samples a subgraph from G using random walk (the algorithm is summarized in
Appendix A). It assumes that the semantics of G can be much preserved in its (partial) local structure.
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Figure 1: A framework of graph contrastive learning. Two graph augmentations qi(·|G) and qj(·|G) are sampled
from an augmentation pool T and applied to input graph G. A shared GNN-based encoder f(·) and a projection
head g(·) are trained to maximize the agreement between representations zi and zj via a contrastive loss.

The default augmentation (dropping, perturbation, masking and subgraph) ratio is set at 0.2.

3.2 Graph Contrastive Learning

Motivated by recent contrastive learning developments in visual representation learning (see Sec. 2),
we propose a graph contrastive learning framework (GraphCL) for (self-supervised) pre-training of
GNNs. In graph contrastive learning, pre-training is performed through maximizing the agreement
between two augmented views of the same graph via a contrastive loss in the latent space as shown in
Fig. 1. The framework consists of the following four major components:

(1) Graph data augmentation. The given graph G undergoes graph data augmentations to obtain
two correlated views Ĝi, Ĝj , as a positive pair, where Ĝi, Ĝj ∼ q(·|G) independently. For different
domains of graph datasets, how to strategically select data augmentations matters (Sec. 4).

(2) GNN-based encoder. A GNN-based encoder f(·) (defined in (2)) extracts graph-level represen-
tation vectors hi,hj for augmented graphs Ĝi, Ĝj . Graph contrastive learning does not apply any
constraint on the GNN architecture.

(3) Projection head. A non-linear transformation g(·) named projection head maps augmented
representations to another latent space where the contrastive loss is calculated, as advocated in [18].
In graph contrastive learning, a two-layer perceptron (MLP) is applied to obtain zi, zj .

(4) Contrastive loss function. A contrastive loss function L(·) is defined to enforce maximizing
the consistency between positive pairs zi, zj compared with negative pairs. Here we utilize the
normalized temperature-scaled cross entropy loss (NT-Xent) [51, 25, 52].

During GNN pre-training, a minibatch of N graphs are randomly sampled and processed through
contrastive learning, resulting in 2N augmented graphs and corresponding contrastive loss to optimize.
Negative pairs are not explicitly sampled but generated from the other N − 1 augmented graphs
within the same minibatch as in [53, 18]. Denoting the cosine similarity function as sim(zi, zj) =
zT
i zj/‖zi‖‖zj‖, NT-Xent for a positive pair of examples i, j is defined as:

`i,j = −log
exp(sim(zi, zj)/τ)∑N
k=1 exp(sim(zi, zk)/τ)

, (3)

where τ denotes the temperature parameter. The final loss is computed across all positive pairs in the
minibatch. The proposed graph contrastive learning is summarized in Appendix A.

Discussion. We first show that GraphCL can be viewed as one way of mutual information maximiza-
tion between the latent representations of two kinds of augmented graphs. The full derivation is in
Appendix F, with the loss form rewritten as below:

` = EPĜi
{−EP(Ĝj |Ĝi)

T (f1(Ĝi), f2(Ĝj)) + log(EPĜj
eT (f1(Ĝi),f2(Ĝj)))}, (4)

The above loss essentially maximizes a lower bound of the mutual information between hi =

f1(Ĝi),hj = f2(Ĝj) that the compositions of (f1, Ĝi), (f2, Ĝj) determine our desired views of
graphs. Furthermore, we draw the connection between GraphCL and recently proposed contrastive
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Figure 2: Semi-supervised learning accuracy gain (%) when contrasting different augmentation pairs, compared
to training from scratch, under four datasets: NCI1, PROTEINS, COLLAB, and RDT-B. Pairing “Identical"
stands for a no-augmentation baseline for contrastive learning, where the positive pair diminishes and the
negative pair consists of two non-augmented graphs. Warmer colors indicate better performance gains. The
baseline training-from-scratch accuracies are 60.72%, 70.40%, 57.46%, 86.63% for the four datasets respectively.

learning methods that we demonstrate that GraphCL can be rewrited as a general framework unifying
a broad family of contrastive learning methods on graph-structured data, through reinterpreting (4). In
our implementation, we choose f1 = f2 and generate Ĝi, Ĝj through data augmentation, while with
various choices of the compositions result in (4) instantiating as other specific contrastive learning
algorithms including [54, 55, 56, 21, 57, 58, 59] also shown in in Appendix F.

4 The Role of Data Augmentation in Graph Contrastive Learning

Table 2: Datasets statistics.

Datasets Category Graph Num. Avg. Node Avg. Degree
NCI1 Biochemical Molecules 4110 29.87 1.08

PROTEINS Biochemical Molecules 1113 39.06 1.86
COLLAB Social Networks 5000 74.49 32.99

RDT-B Social Networks 2000 429.63 1.15

In this section, we assess and rationalize
the role of data augmentation for graph-
structured data in our GraphCL frame-
work. Various pairs of augmentation
types are applied, as illustrated in Fig.
2, to three categories of graph datasets
(Table 2, and we leave the discussion on
superpixel graphs in Appendix C). Experiments are performed in the semi-supervised setting, follow-
ing the pre-training & finetuning approach [18]. Detailed settings are in Appendix B.

4.1 Data Augmentations are Crucial. Composing Augmentations Benefits.

We first examine whether and when applying (different) data augmentations helps graph contrastive
learning in general. We summarize the results in Fig. 2 using the accuracy gain compared to training
from scratch (no pre-training). And we list the following Observations.

Obs. 1. Data augmentations are crucial in graph contrastive learning. Without any data aug-
mentation graph contrastive learning is not helpful and often worse compared with training from
scratch, judging from the accuracy losses in the upper right corners of Fig. 2. In contrast, composing
an original graph and its appropriate augmentation can benefit the downstream performance. Judging
from the top rows or the right-most columns in Fig. 2, graph contrastive learning with single best aug-
mentations achieved considerable improvement without exhaustive hyper-parameter tuning: 1.62%
for NCI1, 3.15% for PROTEINS, 6.27% for COLLAB, and 1.66% for RDT-B.

The observation meets our intuition. Without augmentation, graphCL simply compares two original
samples as a negative pair (with the positive pair loss becoming zero), leading to homogeneously
pushes all graph representations away from each other, which is non-intuitive to justify. Importantly,
when appropriate augmentations are applied, the corresponding priors on the data distribution are
instilled, enforcing the model to learn representations invariant to the desired perturbations through
maximizing the agreement between a graph and its augmentation.

Obs. 2. Composing different augmentations benefits more. Composing augmentation pairs of a
graph rather than the graph and its augmentation further improves the performance: the maximum
accuracy gain was 2.10% for NCI1, 3.15% for PROTEINS, 7.11% for COLLAB, and 1.85% for
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Figure 3: Contrastive loss curves for different augmentation pairs. In the two figures of the left attribute masking
is contrasted with other augmentations and that of the right for edge perturbation, where contrasting the same
augmentations always leads to the fastest loss descent.

RDT-B. Interestingly, applying augmentation pairs of the same type (see the diagonals of Fig. 2) does
not usually lead to the best performance (except for node dropping), compared with augmentation
pairs of different types (off-diagonals). Similar observations were made in visual representation
learning [18].As conjectured in [18], composing different augmentations avoids the learned features
trivially overfitting low-level “shortcuts”, making features more generalizable.

Here we make a similar conjecture that contrasting isogenous graph pairs augmented in different types
presents a harder albeit more useful task for graph representation learning We thus plot the contrastive
loss curves composing various augmentations (except subgraph) together with attribute masking or
edge perturbation for NCI1 and PROTEINS. Fig. 3 shows that, with augmentation pairs of different
types, the contrastive loss always descents slower than it does with pairs of the same type, when the
optimization procedure remains the same. This result indicates that composing augmentation pairs of
different types does correspond to a “harder" contrastive prediction task. We will explore in Sec. 4.3
how to quantify a “harder" task in some cases and whether it always helps.

4.2 The Types, the Extent, and the Patterns of Effective Graph Augmentations

We then note that the (most) beneficial combinations of augmentation types can be dataset-specific,
which matches our intuition as graph-structured data are of highly heterogeneous nature (see Sec. 1).
We summarize our observations and derive insights below. And we further analyze the impact of the
extent and/or the pattern of given types of graph augmentations.

Obs. 3. Edge perturbation benefits social networks but hurts some biochemical molecules.
Edge perturbation as one of the paired augmentations improves the performances for social-network
data COLLAB and ROT-B as well as biomolecule data PROTEINS, but hurts the other biomolecule
data NCI1. We hypothesize that, compared to the case of social networks, the “semantemes” of some
biomolecule data are more sensitive to individual edges. Specifically, a single-edge change in NCI1
corresponds to a removal or addition of a covalent bond, which can drastically change the identity
and even the validity of a compound, let alone its property for the down-stream semantemes. In
contrast the semantemes of social networks are more tolerant to individual edge perturbation [60, 61].
Therefore, for chemical compounds, edge perturbation demonstrates a prior that is conceptually
incompatible with the domain knowledge and empirically unhelpful for down-stream performance.

We further examine whether the extent or strength of edge perturbation can affect the conclusion
above. We evaluate the downstream performances on representative examples NCI1 and COLLAB.
And we use the combination of the original graph (“identical”) and edge perturbation of various ratios
in our GraphCL framework. Fig. 4A shows that edge perturbation worsens the NCI1 performances
regardless of augmentation strength, confirming that our earlier conclusion was insensitive to the
extent of edge perturbation. Fig. 4B suggests that edge perturbation could improve the COLLAB
performances more with increasing augmentation strength.

Obs. 4. Applying attribute masking achieves better performance in denser graphs. For the
social network datasets, composing the identical graph and attribute masking achieves 5.12% improve-
ment for COLLAB (with higher average degree) while only 0.17% for RDT-B. Similar observations
are made for the denser PROTEINS versus NCI1. To assess the impact of augmentation strength
on this observation, we perform similar experiments on RDT-B and COLLAB, by composing the
identical graph and its attributes masked to various extents. Fig. 4C and D show that, masking less
for the very sparse RDT-B does not help, although masking more for the very dense COLLAB does.
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Figure 4: Performance versus augmentation strength. Left two figures implemented edge perturbation with
different ratios. The right two figures apply attribute masking with different masking ratios.

We further hypothesize that masking patterns also matter, and masking more hub nodes with high
degrees benefit denser graphs, because GNNs cannot reconstruct the missing information of isolated
nodes, according to the message passing mechanism [62]. To test the hypothesis, we perform an
experiment to mask nodes with more connections with higher probability on denser graphs PROTEINS
and COLLAB. Specifically, we adopt a masking distribution degαn rather than the uniform distribution,
where degn is the degree of vertex vn and α is the control factor. A positive α indicates more masking
for high-degree nodes. Fig. 5C and D showing that, for very dense COLLAB, there is an apparent
upward tendency on performance if masking nodes with more connections.

Obs. 5. Node dropping and subgraph are generally beneficial across datasets. Node dropping
and subgraph, especially the latter, seem to be generally beneficial in our studied datasets. For node
dropping, the prior that missing certain vertices (e.g. some hydrogen atoms in chemical compounds
or edge users for social networks) does not alter the semantic information is emphasized, intuitively
fitting for our cognition. For subgraph, previous works [20, 21] show that enforcing local (the
subgraphs we extract) and global information consistency is helpful for representation learning,
which explains the observation. Even for chemical compounds in NCI1, subgraphs can represent
structural and functional “motifs” important for the down-stream semantemes.

We similarly examined the impact of node dropping patterns by adopting the non-uniform distribution
as mentioned in changing attribute-masking patterns. Fig. 5B shows that, for the dense social-network
COLLAB graphs, more GraphCL improvements were observed while dropping hub nodes more in
the range considered. Fig. 5A shows that, for the not-so-dense PROTEINS graphs, changing the
node-dropping distribution away from uniform does not necessarily help.
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Figure 5: Performance versus augmentation patterns. Node dropping and attribute masking are performed with
various control factors (negative to positive: dropping/masking more low-degree vertices to high-degree ones).

4.3 Unlike “Harder” Ones, Overly Simple Contrastive Tasks Do Not Help.

As discussed in Obs. 2, “harder” contrastive learning might benefit more, where the “harder” task
is achieved by composing augmentations of different types. In this section we further explore
quantifiable difficulty in relationship to parameterized augmentation strengths/patterns and assess the
impact of the difficulty on performance improvement.

Intuitively, larger dropping/masking ratios or control factor α leads to harder contrastive tasks, which
did result in better COLLAB performances (Fig. 4 and 5) in the range considered. Very small ratios
or negative α, corresponding to overly simple tasks, We also design subgraph variants of increasing
difficulty levels and reach similar conclusions. More details are in Appendix D.
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Summary. In total, we decide the augmentation pools for Section 5 as: node dropping and subgraph
for biochemical molecules; all for dense social networks; and all except attribute masking for sparse
social networks. Strengths or patterns are default even though varying them could help more.

5 Comparison with the State-of-the-art Methods

In this section, we compare our proposed (self-supervised) pre-training framework, GraphCL, with
state-of-the-art methods (SOTAs) in the settings of semi-supervised, unsupervised [21] and transfer
learning [9] on graph classification (for node classification experiments please refer to Appendix G).
Dataset statistics and training details for the specific settings are in Appendix E.

Semi-supervised learning. We first evaluate our proposed framework in the semi-supervised learn-
ing setting on graph classification [63, 3] on the benchmark TUDataset [64]. Since pre-training &
finetuning in semi-supervised learning for the graph-level task is unexplored before, we take two
conventional network embedding methods as pre-training tasks for comparison: adjacency informa-
tion reconstruction (we refer to GAE [22] for implementation) and local & global representation
consistency enforcement (refer to Infomax [21] for implementation). Besides, the performance of
training from scratch and that with augmentation (without contrasting) is also reported. We adopt
graph convolutional network (GCN) with the default setting in [63] as the GNN-based encoder which
achieves comparable SOTA performance in the fully-supervised setting. Table 3 shows that GraphCL
outperforms traditional pre-training schemes.

Table 3: Semi-supervised learning with pre-training & finetuning. Red numbers indicate the best performance
and the number that overlap with the standard deviation of the best performance (comparable ones). 1% or 10%
is label rate; baseline and Aug. represents training from scratch without and with augmentations, respectively.

Dataset NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K GITHUB MNIST CIFAR10

1% baseline 60.72±0.45 - - 57.46±0.25 - - 54.25±0.22 60.39±1.95 27.36±0.75
1% Aug. 60.49±0.46 - - 58.40±0.97 - - 56.36±0.42 67.43±0.36 27.39±0.44
1% GAE 61.63±0.84 - - 63.20±0.67 - - 59.44±0.44 57.58±2.07 21.09±0.53

1% Infomax 62.72±0.65 - - 61.70±0.77 - - 58.99±0.50 63.24±0.78 27.86±0.43
1% GraphCL 62.55±0.86 - - 64.57±1.15 - - 58.56±0.59 83.41±0.33 30.01±0.84
10% baseline 73.72±0.24 70.40±1.54 73.56±0.41 73.71±0.27 86.63±0.27 51.33±0.44 60.87±0.17 79.71±0.65 35.78±0.81

10% Aug. 73.59±0.32 70.29±0.64 74.30±0.81 74.19±0.13 87.74±0.39 52.01±0.20 60.91±0.32 83.99±2.19 34.24±2.62
10% GAE 74.36±0.24 70.51±0.17 74.54±0.68 75.09±0.19 87.69±0.40 53.58±0.13 63.89±0.52 86.67±0.93 36.35±1.04

10% Infomax 74.86±0.26 72.27±0.40 75.78±0.34 73.76±0.29 88.66±0.95 53.61±0.31 65.21±0.88 83.34±0.24 41.07±0.48
10% GraphCL 74.63±0.25 74.17±0.34 76.17±1.37 74.23±0.21 89.11±0.19 52.55±0.45 65.81±0.79 93.11±0.17 43.87±0.77

Unsupervised representation learning. Furthermore, GraphCL is evaluated in the unsupervised
representation learning following [65, 21], where unsupervised methods generate graph embeddings
that are fed into a down-stream SVM classifier [21]. Aside from SOTA graph kernel methods that
graphlet kernel (GL), Weisfeiler-Lehman sub-tree kernel (WL) and deep graph kernel (DGK), we
also compare with four unsupervised graph-level representation learning methods as node2vec [66],
sub2vec [67], graph2vec [65] and InfoGraph [21]. We adopt graph isomorphism network (GIN) with
the default setting in [21] as the GNN-based encoder which is SOTA in representation learning. Table
4 shows GraphCL outperforms in most cases except on datasets with small graph size (e.g. MUTAG
and IMDB-B consists of graphs with average node number less than 20).

Table 4: Comparing classification accuracy on top of graph representations learned from graph kernels, SOTA
representation learning methods, and GIN pre-trained with GraphCL. The compared numbers are from the
corresponding papers under the same experiment setting.

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

GL - - - 81.66±2.11 - 77.34±0.18 41.01±0.17 65.87±0.98
WL 80.01±0.50 72.92±0.56 - 80.72±3.00 - 68.82±0.41 46.06±0.21 72.30±3.44

DGK 80.31±0.46 73.30±0.82 - 87.44±2.72 - 78.04±0.39 41.27±0.18 66.96±0.56
node2vec 54.89±1.61 57.49±3.57 - 72.63±10.20 - - - -
sub2vec 52.84±1.47 53.03±5.55 - 61.05±15.80 - 71.48±0.41 36.68±0.42 55.26±1.54

graph2vec 73.22±1.81 73.30±2.05 - 83.15±9.25 - 75.78±1.03 47.86±0.26 71.10±0.54
InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.65±1.13 82.50±1.42 53.46±1.03 73.03±0.87
GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44

Transfer learning. Lastly, experiments are performed on transfer learning on molecular property
prediction in chemistry and protein function prediction in biology following [9], which pre-trains
and finetunes the model in different datasets to evaluate the transferability of the pre-training scheme.
We adopt GIN with the default setting in [9] as the GNN-based encoder which is SOTA in transfer
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learning. Experiments are performed for 10 times with mean and standard deviation of ROC-AUC
scores (%) reported as [9]. Although there is no universally beneficial pre-training scheme especially
for the out-of-distribution scenario in transfer learning (Sec. 1), Table 5 shows that GraphCL still
achieves SOTA performance on 5 of 9 datasets compared to the previous best schemes.

Table 5: Transfer learning comparison with different manually designed pre-training schemes, where the
compared numbers are from [9].

Dataset BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE PPI

No Pre-Train 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 64.8±1.0
Infomax 68.8±0.8 75.3±0.5 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 64.1±1.5

EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9 65.7±1.3
AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 65.2±1.6
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 64.4±1.3

GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44 67.88±0.85

Adversarial robustness. In addition to generalizability, we claim that GNNs also gain robustness
using GraphCL. The experiments are performed on synthetic data to classify the component number
in graphs, facing the RandSampling, GradArgmax and RL-S2V attacks following the default setting
in [60]. Structure2vec [68] is adopted as the GNN-based encoder as in [60]. Table 6 shows that
GraphCL boosts GNN robustness compared with training from scratch, under three evasion attacks.

Table 6: Adversarial performance under three adversarial attacks for GNN with different depth (following the
protocol in [60]). Red numbers indicate the best performance.

Two-Layer Three-Layer Four-Layer
Methods No Pre-Train GraphCL No Pre-Train GraphCL No Pre-Train GraphCL

Unattack 93.20 94.73 98.20 98.33 98.87 99.00
RandSampling 78.73 80.68 92.27 92.60 95.13 97.40
GradArgmax 69.47 69.26 64.60 89.33 95.80 97.00

RL-S2V 42.93 42.20 41.93 61.66 70.20 84.86

6 Conclusion

In this paper, we perform explicit study to explore contrastive learning for GNN pre-training, facing
the unique challenges in graph-structured data. Firstly, several graph data augmentations are proposed
with the discussion of each of which on introducing certain human prior of data distribution. Along
with new augmentations, we propose a novel graph contrastive learning framework (GraphCL)
for GNN pre-training to facilitate invariant representation learning along with rigorous theoretical
analysis. We systematically assess and analyze the influence of data augmentations in our proposed
framework, revealing the rationale and guiding the choice of augmentations. Experiment results verify
the state-of-the-art performance of our proposed framework in both generalizability and robustness.

Broader Impact

Empowering deep learning for reasoning and predicting over graph-structured data is of broad
interests and wide applications, such as recommendation systems, neural architecture search, and
drug discovery. The proposed graph contrastive learning framework with augmentations contributes
a general framework that can potentially benefit the effectiveness and efficiency of graph neural
networks through model pre-training. The numerical results and analyses would also inspire the
design of proper augmentations toward positive knowledge transfer on downstream tasks.
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