
Gradient Estimation with Stochastic Softmax Tricks

Max B. Paulus∗
ETH Zürich

max.paulus@inf.ethz.ch

Dami Choi∗
University of Toronto

choidami@cs.toronto.edu

Daniel Tarlow
Google Research, Brain Team

dtarlow@google.com

Andreas Krause
ETH Zürich

krausea@ethz.ch

Chris J. Maddison†
DeepMind

cmaddis@google.com

Abstract

The Gumbel-Max trick is the basis of many relaxed gradient estimators. These
estimators are easy to implement and low variance, but the goal of scaling them
comprehensively to large combinatorial distributions is still outstanding. Work-
ing within the perturbation model framework, we introduce stochastic softmax
tricks, which generalize the Gumbel-Softmax trick to combinatorial spaces. Our
framework is a unified perspective on existing relaxed estimators for perturbation
models, and it contains many novel relaxations. We design structured relaxations
for subset selection, spanning trees, arborescences, and others. When compared to
less structured baselines, we find that stochastic softmax tricks can be used to train
latent variable models that perform better and discover more latent structure.

1 Introduction

Gradient computation is the methodological backbone of deep learning, but computing gradients
is not always easy. Gradients with respect to parameters of the density of an integral are generally
intractable, and one must resort to gradient estimators [8, 61]. Typical examples of objectives over
densities are returns in reinforcement learning [76] or variational objectives for latent variable models
[e.g., 37, 68]. In this paper, we address gradient estimation for discrete distributions with an emphasis
on latent variable models. We introduce a relaxed gradient estimation framework for combinatorial
discrete distributions that generalizes the Gumbel-Softmax and related estimators [53, 35].

Relaxed gradient estimators incorporate bias in order to reduce variance. Most relaxed estimators are
based on the Gumbel-Max trick [52, 54], which reparameterizes distributions over one-hot binary
vectors. The Gumbel-Softmax estimator is the simplest; it continuously approximates the Gumbel-
Max trick to admit a reparameterization gradient [37, 68, 72]. This is used to optimize the “soft”
approximation of the loss as a surrogate for the “hard” discrete objective.

Adding structured latent variables to deep learning models is a promising direction for addressing a
number of challenges: improving interpretability (e.g., via latent variables for subset selection [17] or
parse trees [19]), incorporating problem-specific constraints (e.g., via enforcing alignments [58]), and
improving generalization (e.g., by modeling known algorithmic structure [30]). Unfortunately, the
vanilla Gumbel-Softmax cannot scale to distributions over large state spaces, and the development of
structured relaxations has been piecemeal.

We introduce stochastic softmax tricks (SSTs), which are a unified framework for designing structured
relaxations of combinatorial distributions. They include relaxations for the above applications, as well
∗Equal Contribution. Correspondence to max.paulus@inf.ethz.ch, choidami@cs.toronto.edu.
†Work done partly at the Institute for Advanced Study, Princeton, NJ.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

X

Finite set

U

Random utility

X

Stoch. Argmax Trick

Xt

Stoch. Softmax Trick

Figure 1: Stochastic softmax tricks relax discrete distributions that can be reparameterized as random
linear programs. X is the solution of a random linear program defined by a finite set X and a random
utility U with parameters θ ∈ Rm. To design relaxed gradient estimators with respect to θ, Xt is the
solution of a random convex program that continuously approximates X from within the convex hull
of X . The Gumbel-Softmax [53, 35] is an example of a stochastic softmax trick.

as many novel ones. To use an SST, a modeler chooses from a class of models that we call stochastic
argmax tricks (SMT). These are instances of perturbation models [e.g., 64, 33, 78, 27], and they
induce a distribution over a finite set X by optimizing a linear objective (defined by random utility
U ∈ Rn) over X . An SST relaxes this SMT by combining a strongly convex regularizer with the
random linear objective. The regularizer makes the solution a continuous, a.e. differentiable function
of U and appropriate for estimating gradients with respect to U ’s parameters. The Gumbel-Softmax
is a special case. Fig. 1 provides a summary.

We test our relaxations in the Neural Relational Inference (NRI) [38] and L2X [17] frameworks. Both
NRI and L2X use variational losses over latent combinatorial distributions. When the latent structure
in the model matches the true latent structure, we find that our relaxations encourage the unsupervised
discovery of this combinatorial structure. This leads to models that are more interpretable and achieve
stronger performance than less structured baselines. All proofs are in the Appendix.

2 Problem Statement

Let Y be a non-empty, finite set of combinatorial objects, e.g. the spanning trees of a graph. To
represent Y , define the embeddings X ⊆ Rn of Y to be the image {rep(y) | y ∈ Y} of some
embedding function rep : Y → Rn.3 For example, if Y is the set of spanning trees of a graph with
edges E, then we could enumerate y1, . . . , y|Y| in Y and let rep(y) be the one-hot binary vector of
length |Y|, with rep(y)i = 1 iff y = yi. This requires a very large ambient dimension n = |Y|.
Alternatively, in this case we could use a more efficient, structured representation: rep(y) could be a
binary indicator vector of length |E| � |Y|, with rep(y)e = 1 iff edge e is in the tree y. See Fig. 2
for visualizations and additional examples of structured binary representations. We assume that X is
convex independent.4

Given a probability mass function pθ : X → (0, 1] that is differentiable in θ ∈ Rm, a loss function
L : Rn → R, and X ∼ pθ, our ultimate goal is gradient-based optimization of E[L(X)]. Thus, we
are concerned in this paper with the problem of estimating the derivatives of the expected loss,

d

dθ
E[L(X)] =

d

dθ

(∑
x∈X
L(x)pθ(x)

)
. (1)

3 Background on Gradient Estimation

Relaxed gradient estimators assume that L is differentiable and use a change of variables to remove
the dependence of pθ on θ, known as the reparameterization trick [37, 68]. The Gumbel-Softmax trick
(GST) [53, 35] is a simple relaxed gradient estimator for one-hot embeddings, which is based on the
Gumbel-Max trick (GMT) [52, 54]. Let X be the one-hot embeddings of Y and pθ(x) ∝ exp(xT θ).

3This is equivalent to the notion of sufficient statistics [83]. We draw a distinction only to avoid confusion,
because the distributions pθ that we ultimately consider are not necessarily from the exponential family.

4Convex independence is the analog of linear independence for convex combinations.

2

One-hot vector

k-hot vector Permutation matrix Spanning tree adj. matrix Arborescence adj. matrix

Figure 2: Structured discrete objects can be represented by binary arrays. In these graphical represen-
tations, color indicates 1 and no color indicates 0. For example, “Spanning tree” is the adjacency
matrix of an undirected spanning tree over 6 nodes; “Arborescence” is the adjacency matrix of a
directed spanning tree rooted at node 3.

The GMT is the following identity: for X ∼ pθ and Gi + θi ∼ Gumbel(θi) indep.,

X
d
= argmaxx∈X (G+ θ)Tx. (2)

Ideally, one would have a reparameterization estimator, E[dL(X)/dθ] = dE[L(X)]/dθ,5 using the
right-hand expression in (2). Unfortunately, this fails. The problem is not the lack of differentiability,
as normally reported. In fact, the argmax is differentiable almost everywhere. Instead it is the jump
discontinuities in the argmax that invalidate this particular exchange of expectation and differentiation
[48, 8, Chap. 7.2]. The GST estimator [53, 35] overcomes this by using the tempered softmax,
softmaxt(u)i = exp(ui/t)/

∑n
j=1 exp(uj/t) for u ∈ Rn, t > 0, to continuously approximate X ,

Xt = softmaxt(G+ θ). (3)

The relaxed estimator is dL(Xt)/dθ. While this is a biased estimator of (1), it is an unbiased estimator
of dE[L(Xt)]/dθ and Xt → X a.s. as t→ 0. Thus, dL(Xt)/dθ is used for optimizing E[L(Xt)] as
a surrogate for E[L(X)], on which the final model is evaluated.

The score function estimator [28, 84], L(X) ∂ log pθ(X)/∂θ, is the classical alternative. It is a simple,
unbiased estimator, but without highly engineered control variates, it suffers from high variance [60].
Building on the score function estimator are a variety of estimators that require multiple evaluations
of L to reduce variance [32, 81, 29, 87, 45, 9]. The advantages of relaxed estimators are the following:
they only require a single evaluation of L, they are easy to implement using modern software packages
[1, 65, 16], and, as reparameterization gradients, they tend to have low variance [26].

4 Stochastic Argmax Tricks

Simulating a GST requires enumerating |Y| random variables, so it cannot scale. We overcome
this by identifying generalizations of the GMT that can be relaxed and that scale to large Ys by
exploiting structured embeddings X . We call these stochastic argmax tricks (SMTs), because they
are perturbation models [78, 27], which can be relaxed into stochastic softmax tricks (Section 5).
Definition 1. Given a non-empty, convex independent, finite set X ⊆ Rn and a random utility U
whose distribution is parameterized by θ ∈ Rm, a stochastic argmax trick forX is the linear program,

X = argmaxx∈X UTx. (4)

The GMT is recovered with one-hot X and U ∼ Gumbel(θ). We assume that (4) is a.s. unique,
which is guaranteed if U a.s. never lands in any particular lower dimensional subspace (Prop. 3, App.
A). Because efficient linear solvers are known for many structured X , SMTs are capable of scaling to
very large Y [74, 41, 40]. For example, if X are the edge indicator vectors of spanning trees Y , then
(4) is the maximum spanning tree problem, which is solved by Kruskal’s algorithm [46].

The role of the SMT in our framework is to reparameterize pθ in (1). Ideally, given pθ, there would
be an efficient (e.g., O(n)) method for simulating some U such that the marginal of X in (4) is pθ.
The GMT shows that this is possible for one-hot X , but the situation is not so simple for structured

5For a function f(x1, x2), ∂f(z1, z2)/∂x1 is the partial derivative (e.g., a gradient vector) of f in the first
variable evaluated at z1, z2. df(z1, z2)/dx1 is the total derivative of f in x1 evaluated at z1, z2. For example, if
x = f(θ), then dg(x, θ)/dθ = (∂g(x, θ)/∂x)(df(θ)/dθ) + ∂g(x, θ)/∂θ.

3

X . Characterizing the marginal of X in general is difficult [78, 34], but U that are efficient to
sample from typically induce conditional independencies in pθ [27]. Therefore, we are not able
to reparameterize an arbitrary pθ on structured X . Instead, for structured X we assume that pθ is
reparameterized by (4), and treat U as a modeling choice. Thus, we caution against the standard
approach of taking U ∼ Gumbel(θ) or U ∼ N (θ, σ2I) without further analysis. Practically, in
experiments we show that the difference in noise distribution can have a large impact on quantitative
results. Theoretically, we show in App. B that an SMT over directed spanning trees with negative
exponential utilities has a more interpretable structure than the same SMT with Gumbel utilities.

5 Stochastic Softmax Tricks

If we assume that X ∼ pθ is reparameterized as an SMT, then a stochastic softmax trick (SST) is
a random convex program with a solution that relaxes X . An SST has a valid reparameterization
gradient estimator. Thus, we propose using SSTs as surrogates for estimating gradients of (1), a
generalization of the Gumbel-Softmax approach. Because we want gradients with respect to θ, we
assume that U is also reparameterizable.

Given an SMT, an SST incorporates a strongly convex regularizer to the linear objective, and expands
the state space to the convex hull of the embeddings X = {x1, . . . , xm} ⊆ Rn,

P := conv(X) :=
{∑m

i=1
λixi

∣∣∣λi ≥ 0,
∑m

i=1
λi = 1

}
. (5)

Expanding the state space to a convex polytope makes it path-connected, and the strongly convex
regularizer ensures that the solutions are continuous over the polytope.
Definition 2. Given a stochastic argmax trick (X , U) where P := conv(X) and a proper, closed,
strongly convex function f : Rn → {R,∞} whose domain contains the relative interior of P , a
stochastic softmax trick for X at temperature t > 0 is the convex program,

Xt = argmax
x∈P

UTx− tf(x) (6)

For one-hot X , the Gumbel-Softmax is a special case of an SST where P is the probability simplex,
U ∼ Gumbel(θ), and f(x) =

∑
i xi log(xi). Objectives like (6) have a long history in convex

analysis [e.g., 69, Chap. 12] and machine learning [e.g., 83, Chap. 3]. In general, the difficulty of
computing the SST will depend on the interaction between f and X .

Xt is suitable as an approximation of X . At positive temperatures t, Xt is a function of U that ranges
over the faces and relative interior of P . The degree of approximation is controlled by the temperature
parameter, and as t→ 0+, Xt is driven to X a.s.
Proposition 1. If X in Def. 1 is a.s. unique, then for Xt in Def. 2, limt→0+ Xt = X a.s. If
additionally L : P → R is bounded and continuous, then limt→0+ E[L(Xt)] = E[L(X)].

It is common to consider temperature parameters that interpolate between marginal inference and a
deterministic, most probable state. While superficially similar, our relaxation framework is different;
as t→ 0+, an SST approaches a sample from the SMT model as opposed to a deterministic state.

Xt also admits a reparameterization trick. The SST reparameterization gradient estimator given by,

dL(Xt)

dθ
=
∂L(Xt)

∂Xt

∂Xt

∂U

dU

dθ
. (7)

If L is differentiable on P , then this is an unbiased estimator6 of the gradient dE[L(Xt)]/dθ, because
Xt is continuous and a.e. differentiable:
Proposition 2. Xt in Def. 2 exists, is unique, and is a.e. differentiable and continuous in U .

In general, the Jacobian ∂Xt/∂U will need to be derived separately given a choice of f and X .
However, as pointed out by [21], because the Jacobian of Xt symmetric [70, Cor. 2.9], local finite
difference approximations can be used to approximate dL(Xt)/dU (App. D). These finite difference
approximations only require two additional calls to a solver for (6) and do not require additional
evaluations of L. We found them to be helpful in a few experiments (c.f., Section 8).

6Technically, one needs an additional local Lipschitz condition for L(Xt) in θ [8, Prop. 2.3, Chap. 7].

4

Random edge util.
<latexit sha1_base64="cJbQd7OF8/RsIFnkrRsls+43GVg=">AAAB6HicbZDLSsNAFIZP6q3WW73s3ASLIAglEUR3FlzYZQumLbShTKYn7djJJMxMhFr6BG5cKOLWBxB8FXcufROnl4VWfxj4+P9zmHNOkHCmtON8WpmFxaXllexqbm19Y3Mrv71TU3EqKXo05rFsBEQhZwI9zTTHRiKRRAHHetC/HOf1W5SKxeJaDxL0I9IVLGSUaGNVvXa+4BSdiey/4M6gcPF+9bZ391WutPMfrU5M0wiFppwo1XSdRPtDIjWjHEe5VqowIbRPutg0KEiEyh9OBh3Zh8bp2GEszRPanrg/O4YkUmoQBaYyIrqn5rOx+V/WTHV47g+ZSFKNgk4/ClNu69geb213mESq+cAAoZKZWW3aI5JQbW6TM0dw51f+C7WTontadKpuoXQMU2VhHw7gCFw4gxKUoQIeUEC4h0d4sm6sB+vZepmWZqxZzy78kvX6DYXGkF8=</latexit>

U
<latexit sha1_base64="cJbQd7OF8/RsIFnkrRsls+43GVg=">AAAB6HicbZDLSsNAFIZP6q3WW73s3ASLIAglEUR3FlzYZQumLbShTKYn7djJJMxMhFr6BG5cKOLWBxB8FXcufROnl4VWfxj4+P9zmHNOkHCmtON8WpmFxaXllexqbm19Y3Mrv71TU3EqKXo05rFsBEQhZwI9zTTHRiKRRAHHetC/HOf1W5SKxeJaDxL0I9IVLGSUaGNVvXa+4BSdiey/4M6gcPF+9bZ391WutPMfrU5M0wiFppwo1XSdRPtDIjWjHEe5VqowIbRPutg0KEiEyh9OBh3Zh8bp2GEszRPanrg/O4YkUmoQBaYyIrqn5rOx+V/WTHV47g+ZSFKNgk4/ClNu69geb213mESq+cAAoZKZWW3aI5JQbW6TM0dw51f+C7WTontadKpuoXQMU2VhHw7gCFw4gxKUoQIeUEC4h0d4sm6sB+vZepmWZqxZzy78kvX6DYXGkF8=</latexit>

USoft spanning tree
<latexit sha1_base64="kPL3NH9FaDt8PZSK8bediV678fQ=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlhEQSgzguiyIILLivYC7VAyaaYNzWSG5IxQxj6CGxeKuPU1fANX7nwb08tCW38IfPz/OeScEyRSGHTdb2dhcWl5ZTW3ll/f2NzaLuzs1kycasarLJaxbgTUcCkUr6JAyRuJ5jQKJK8H/ctRXr/n2ohY3eEg4X5Eu0qEglG01m2jje1C0S25Y5F58KZQLMNHePRw9VlpF75anZilEVfIJDWm6bkJ+hnVKJjkw3wrNTyhrE+7vGlR0YgbPxuPOiSH1umQMNb2KSRj93dHRiNjBlFgKyOKPTObjcz/smaK4YWfCZWkyBWbfBSmkmBMRnuTjtCcoRxYoEwLOythPaopQ3udvD2CN7vyPNROS95Zyb3xiuUTmCgH+3AAx+DBOZThGipQBQZdeIRneHGk8+S8Om+T0gVn2rMHf+S8/wBgjZDE</latexit>

Xt

<latexit sha1_base64="kPL3NH9FaDt8PZSK8bediV678fQ=">AAAB6nicbZDLSgMxFIbPeK31VnXpJlhEQSgzguiyIILLivYC7VAyaaYNzWSG5IxQxj6CGxeKuPU1fANX7nwb08tCW38IfPz/OeScEyRSGHTdb2dhcWl5ZTW3ll/f2NzaLuzs1kycasarLJaxbgTUcCkUr6JAyRuJ5jQKJK8H/ctRXr/n2ohY3eEg4X5Eu0qEglG01m2jje1C0S25Y5F58KZQLMNHePRw9VlpF75anZilEVfIJDWm6bkJ+hnVKJjkw3wrNTyhrE+7vGlR0YgbPxuPOiSH1umQMNb2KSRj93dHRiNjBlFgKyOKPTObjcz/smaK4YWfCZWkyBWbfBSmkmBMRnuTjtCcoRxYoEwLOythPaopQ3udvD2CN7vyPNROS95Zyb3xiuUTmCgH+3AAx+DBOZThGipQBQZdeIRneHGk8+S8Om+T0gVn2rMHf+S8/wBgjZDE</latexit>

Xt Spanning tree
<latexit sha1_base64="MB6x/o+S34VWOBqhaQJO4m+qnG0=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgCEKYEURvBjyYYwJmgWQIPZ2apE3PQnePEIc8gRcPinj1AQRfxZtH38TOctDoDw0f/19FV5UXC660bX9amYXFpeWV7GpubX1jcyu/vVNXUSIZ1lgkItn0qELBQ6xprgU2Y4k08AQ2vMHlOG/colQ8Cq/1MEY3oL2Q+5xRbaxqs5Mv2EV7IvIXnBkULt6v3vbuvsqVTv6j3Y1YEmComaBKtRw71m5KpeZM4CjXThTGlA1oD1sGQxqgctPJoCNyaJwu8SNpXqjJxP3ZkdJAqWHgmcqA6r6az8bmf1kr0f65m/IwTjSGbPqRnwiiIzLemnS5RKbF0ABlkptZCetTSZk2t8mZIzjzK/+F+knROS3aVadQOoapsrAPB3AEDpxBCcpQgRowQLiHR3iybqwH69l6mZZmrFnPLvyS9foNilKQYg==</latexit>

X
<latexit sha1_base64="MB6x/o+S34VWOBqhaQJO4m+qnG0=">AAAB6HicbZDJSgNBEIZr4hbjFpebl8YgCEKYEURvBjyYYwJmgWQIPZ2apE3PQnePEIc8gRcPinj1AQRfxZtH38TOctDoDw0f/19FV5UXC660bX9amYXFpeWV7GpubX1jcyu/vVNXUSIZ1lgkItn0qELBQ6xprgU2Y4k08AQ2vMHlOG/colQ8Cq/1MEY3oL2Q+5xRbaxqs5Mv2EV7IvIXnBkULt6v3vbuvsqVTv6j3Y1YEmComaBKtRw71m5KpeZM4CjXThTGlA1oD1sGQxqgctPJoCNyaJwu8SNpXqjJxP3ZkdJAqWHgmcqA6r6az8bmf1kr0f65m/IwTjSGbPqRnwiiIzLemnS5RKbF0ABlkptZCetTSZk2t8mZIzjzK/+F+knROS3aVadQOoapsrAPB3AEDpxBCcpQgRowQLiHR3iybqwH69l6mZZmrFnPLvyS9foNilKQYg==</latexit>

X

Kruskal’s
algorithm

Kirchhoff’s
marginals

<latexit sha1_base64="vE/VKNNiKW0ZBI9lzRqkly4b6eQ=">AAAB8HicbVDLSgMxFL3js9ZX1aWbYBEKQpkRRZcFNy4r2Ie0Y8mkmTY0kxmSO0IZ+hVuXCji1s9x59+YtrPQ1gOBwzn3kntOkEhh0HW/nZXVtfWNzcJWcXtnd2+/dHDYNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2J1j+OE+xEdKBEKRtFKD0i6GBP38axXKrtVdwayTLyclCFHvVf66vZjlkZcIZPUmI7nJuhnVKNgkk+K3dTwhLIRHfCOpYpG3PjZ7OAJObVKn4Sxtk8hmam/NzIaGTOOAjsZURyaRW8q/ud1Ugyv/UyoJEWu2PyjMJXEhpymJ32hOUM5toQyLeythA2ppgxtR0VbgrcYeZk0z6veZdW9uyjXKnkdBTiGE6iAB1dQg1uoQwMYRPAMr/DmaOfFeXc+5qMrTr5zBH/gfP4AafKPag==</latexit>

t ! 0+

Figure 3: An example realization of a spanning tree SST for an undirected graph. Middle: Random
undirected edge utilities. Left: The random soft spanning treeXt, represented as a weighted adjacency
matrix, can be computed via Kirchhoff’s Matrix-Tree theorem. Right: The random spanning tree X ,
represented as an adjacency matrix, can be computed with Kruskal’s algorithm.

There are many, well-studied f for which (6) is efficiently solvable. If f(x) = ‖x‖2/2, then Xt is the
Euclidean projection of U/t onto P . Efficient projection algorithms exist for some convex sets [see
85, 23, 50, 13, and references therein], and more generic algorithms exist that only call linear solvers
as subroutines [63]. In some of the settings we consider, generic negative-entropy-based relaxations
are also applicable. We refer to relaxations with f(x) =

∑n
i=1 xi log(xi) as categorical entropy

relaxations [e.g., 13, 14]. We refer to relaxations with f(x) =
∑n
i=1 xi log(xi)+(1−xi) log(1−xi)

as binary entropy relaxations [e.g., 7].

Marginal inference in exponential families is a rich source of SST relaxations. Consider an exponential
family over the finite set X with natural parameters u/t ∈ Rn such that the probability of x ∈ X is
proportional to exp(uTx/t). The marginals µt : Rn → conv(X) of this family are solutions of a
convex program in exactly the form (6) [83], i.e., there exists A∗ : conv(X)→ {R,∞} such that,

µt(u) :=
∑

x∈X

x exp(uTx/t)∑
y∈X exp(uT y/t)

= argmax
x∈P

uTx− tA∗(x). (8)

The definition of A∗, which generates µt in (8), can be found in [83, Thm. 3.4]. A∗ is a kind of
negative entropy and in our case it satisfies the assumptions in Def. 2. Computing µt amounts to
marginal inference in the exponential family, and efficient algorithms are known in many cases [see
83, 40], including those we consider. We call Xt = µt(U) the exponential family entropy relaxation.

Taken together, Prop. 1 and 2 suggest our proposed use for SSTs: optimize E[L(Xt)] at a positive
temperature, where unbiased gradient estimation is available, but evaluate E[L(X)]. We find that this
works well in practice if the temperature used during optimization is treated as a hyperparameter and
selected over a validation set. It is worth emphasizing that the choice of relaxation is unrelated to the
distribution pθ of X in the corresponding SMT. f is not only a modeling choice; it is a computational
choice that will affect the cost of computing (6) and the quality of the gradient estimator.

6 Examples of Stochastic Softmax Tricks

The Gumbel-Softmax [53, 35] introduced neither the Gumbel-Max trick nor the softmax. The novelty
of this work is neither the pertubation model framework nor the relaxation framework in isolation,
but their combined use for gradient estimation. Here we layout some example SSTs, organized by the
set Y with a choice of embeddings X . Bold italics indicates previously described relaxations, most of
which are bespoke and not describable in our framework. Italics indicates our novel SSTs used in our
experiments; some of these are also novel perturbation models. A complete discussion is in App. B.

Subset selection. X is the set of binary vectors indicating membership in the subsets of a finite set
S. Indep. S uses U ∼ Logistic(θ) and a binary entropy relaxation. X and Xt are computed with a
dimension-wise step function or sigmoid, resp.

k-Subset selection. X is the set of binary vectors with a k-hot binary vectors indicating membership
in a k-subset of a finite set S. All of the following SMTs use U ∼ Gumbel(θ). Our SSTs use the
following relaxations: euclidean [6] and categorical [56], binary [7], and exponential family [77]
entropies. X is computed by sorting U and setting the top k elements to 1 [13]. R Top k refers to our
SST with relaxation R. L2X [17] and SoftSub [86] are bespoke relaxations.

5

Correlated k-subset selection. X is the set of (2n − 1)-dimensional binary vectors with a k-hot
cardinality constraint on the first n dimensions and a constraint that the n− 1 dimensions indicate
correlations between adjacent dimensions in the first n, i.e. the vertices of the correlation polytope of a
chain [83, Ex. 3.8] with an added cardinality constraint [59]. Corr. Top k uses U1:n ∼ Gumbel(θ1:n),
Un+1:2n−1 = θn+1:2n−1, and the exponential family entropy relaxation. X and Xt can be computed
with dynamic programs [79], see App. B.

Perfect Bipartite Matchings. X is the set of n× n permutation matrices representing the perfect
matchings of the complete bipartite graph Kn,n. The Gumbel-Sinkhorn [58] uses U ∼ Gumbel(θ)
and a Shannon entropy relaxation. X can be computed with the Hungarian method [47] and Xt with
the Sinkhorn algorithm [75]. Stochastic NeuralSort [31] uses correlated Gumbel-based utilities that
induce a Plackett-Luce model and a bespoke relaxation.

Undirected spanning trees. Given a graph (V,E), X is the set of binary indicator vectors of the edge
sets T ⊆ E of undirected spanning trees. Spanning Tree uses U ∼ Gumbel(θ) and the exponential
family entropy relaxation. X can be computed with Kruskal’s algorithm [46], Xt with Kirchhoff’s
matrix-tree theorem [42, Sec. 3.3], and both are represented as adjacency matrices, Fig. 3.

Rooted directed spanning trees. Given a graph (V,E), X is the set of binary indicator vectors of
the edge sets T ⊆ E of r-rooted, directed spanning trees. Arborescence uses U ∼ Gumbel(θ) or
−U ∼ Exp(θ) or U ∼ N (θ, I) and an exponential family entropy relaxation. X can be computed
with the Chu-Liu-Edmonds algorithm [18, 24], Xt with a directed version of Kirchhoff’s matrix-tree
theorem [42, Sec. 3.3], and both are represented as adjacency matrices. Perturb & Parse [19] further
restricts X to be projective trees, uses U ∼ Gumbel(θ), and uses a bespoke relaxation.

7 Related Work

Here we review perturbation models (PMs) and methods for relaxation more generally. SMTs are a
subclass of PMs, which draw samples by optimizing a random objective. Perhaps the earliest example
comes from Thurstonian ranking models [80], where a distribution over rankings is formed by sorting
a vector of noisy scores. Perturb & MAP models [64, 33] were designed to approximate the Gibbs
distribution over a combinatorial output space using low-order, additive Gumbel noise. Randomized
Optimum models [78, 27] are the most general class, which include non-additive noise distributions
and non-linear objectives. Recent work [51] uses PMs to construct finite difference approximations
of the expected loss’ gradient. It requires optimizing a non-linear objective over X , and making this
applicable to our settings would require significant innovation.

Using SSTs for gradient estimation requires differentiating through a convex program. This idea is
not ours and is enjoying renewed interest in [3, 4, 5]. In addition, specialized solutions have been
proposed for quadratic programs [6, 55, 15] and linear programs with entropic regularizers over
various domains [56, 7, 2, 58, 15]. In graphical modeling, several works have explored differentiating
through marginal inference [21, 71, 67, 22, 77, 20] and our exponential family entropy relaxation
builds on this work. The most superficially similar work is [11], which uses noisy utilities to smooth
the solutions of linear programs. In [11], the noise is a tool for approximately relaxing a deterministic
linear program. Our framework uses relaxations to approximate stochastic linear programs.

8 Experiments

Our goal in these experiments was to evaluate the use of SSTs for learning distributions over structured
latent spaces in deep structured models. We chose frameworks (NRI [38], L2X [17], and a latent
parse tree task) in which relaxed gradient estimators are the methods of choice, and investigated the
effects of X , f , and U on the task objective and on the unsupervised structure discovery. For NRI, we
also implemented the standard single-loss-evaluation score function estimators (REINFORCE [84]
and NVIL [60]), and the best SST outperformed these baselines both in terms of average performance
and variance, see App. C. All SST models were trained with the “soft” SST and evaluated with the
“hard” SMT. We optimized hyperparameters (including fixed training temperature t) using random
search over multiple independent runs. We selected models on a validation set according to the best
objective value obtained during training. All reported values are measured on a test set. Error bars
are bootstrap standard errors over the model selection process. We refer to SSTs defined in Section 6
with italics. Details are in App. D.

6

Table 1 & Figure 4: Spanning Tree performs best on structure recovery, despite being trained on the
ELBO. Test ELBO and structure recovery metrics are shown from models selected on valid. ELBO.
Below: Test set example where Spanning Tree recovers the ground truth latent graph perfectly.

T = 10 T = 20

Edge Distribution ELBO Edge Prec. Edge Rec. ELBO Edge Prec. Edge Rec.

Indep. Directed Edges [38] −1370± 20 48± 2 93± 1 −1340± 160 97± 3 99± 1
E.F. Ent. Top |V | − 1 −2100± 20 41± 1 41± 1 −1700± 320 98± 6 98± 6
Spanning Tree −1080± 110 91± 3 91± 3 −1280± 10 99± 1 99± 1

Ground Truth Indep. Directed Edges E.F. Ent. Top |V | − 1 Spanning Tree

8.1 Neural Relational Inference (NRI) for Graph Layout

With NRI we investigated the use of SSTs for latent structure recovery and final performance. NRI is
a graph neural network (GNN) model that samples a latent interaction graph G = (V,E) and runs
messages over the adjacency matrix to produce a distribution over an interacting particle system.
NRI is trained as a variational autoencoder to maximize a lower bound (ELBO) on the marginal
log-likelihood of the time series. We experimented with three SSTs for the encoder distribution:
Indep. Binary over directed edges, which is the baseline NRI encoder [38], E.F. Ent. Top |V | − 1 over
undirected edges, and Spanning Tree over undirected edges. We computed the KL with respect to the
random utility U for all SSTs; see App. D for details. Our dataset consisted of latent prior spanning
trees over 10 vertices sampled from the Gumbel(0) prior. Given a tree, we embed the vertices in
R2 by applying T ∈ {10, 20} iterations of a force-directed algorithm [25]. The model saw particle
locations at each iteration, not the underlying spanning tree.

We found that Spanning Tree performed best, improving on both ELBO and the recovery of latent
structure over the baseline [38]. For structure recovery, we measured edge precision and recall against
the ground truth adjacency matrix. It recovered the edge structure well even when given only a short
series (T = 10, Fig. 4). Less structured baselines were only competitive on longer time series.

8.2 Unsupervised Parsing on ListOps

We investigated the effect of X ’s structure and of the utility distribution in a latent parse tree task. We
used a simplified variant of the ListOps dataset [62], which contains sequences of prefix arithmetic
expressions, e.g., max[3 min[8 2]], that evaluate to an integer in [0, 9]. The arithmetic syntax
induces a directed spanning tree rooted at its first token with directed edges from operators to operands.
We modified the data by removing the summod operator, capping the maximum depth of the ground
truth dependency parse, and capping the maximum length of a sequence. This simplifies the task
considerably, but it makes the problem accessible to GNN models of fixed depth. Our models used a
bi-LSTM encoder to produce a distribution over edges (directed or undirected) between all pairs of
tokens, which induced a latent (di)graph. Predictions were made from the final embedding of the
first token after passing messages in a GNN architecture over the latent graph. For undirected graphs,
messages were passed in both directions. We experimented with the following SSTs for the edge
distribution: Indep. Undirected Edges, Spanning Tree, Indep. Directed Edges, and Arborescence
(with three separate utility distributions). Arborescence was rooted at the first token. For baselines
we used an unstructured LSTM and the GNN over the ground truth parse. All models were trained
with cross-entropy to predict the integer evaluation of the sequence.

The best performing models were structured models whose structure better matched the true latent
structure (Table 2). For each model, we measured the accuracy of its prediction (task accuracy).
We measured both precision and recall with respect to the ground truth parse’s adjacency matrix. 7

Both tree-structured SSTs outperformed their independent edge counterparts on all metrics. Overall,

7We exclude edges to and from the closing symbol “]”. Its edge assignments cannot be learnt from the task
objective, because the correct evaluation of an operation does not depend on the closing symbol.

7

Table 2: Matching ground truth structure (non-tree→ tree) improves performance on ListOps. The
utility distribution impacts performance. Test task accuracy and structure recovery metrics are shown
from models selected on valid. task accuracy. Note that because we exclude edges to and from the
closing symbol “]”, recall is not equal to twice of precision for Spanning Tree and precision is not
equal to recall for Arborescence.

Model Edge Distribution Task Acc. Edge Precision Edge Recall

LSTM — 92.1± 0.2 — —

GNN on
latent graph

Indep. Undirected Edges 89.4± 0.6 20.1± 2.1 45.4± 6.5
Spanning Tree 91.2± 1.8 33.1± 2.9 47.9± 5.2

GNN on
latent digraph

Indep. Directed Edges 90.1± 0.5 13.0± 2.0 56.4± 6.7
Arborescence

- Neg. Exp. 71.5± 1.4 23.2± 10.2 20.0± 6.0
- Gaussian 95.0± 2.2 65.3± 3.7 60.8± 7.3
- Gumbel 95.0± 3.0 75.5± 7.0 71.9± 12.4

Ground Truth Edges 98.1± 0.1 100 100

Arborescence achieved the best performance in terms of task accuracy and structure recovery. We
found that the utility distribution significantly affected performance (Table 2). For example, while
negative exponential utilities induce an interpretable distribution over arborescences, App. B, we
found that the multiplicative parameterization of exponentials made it difficult to train competitive
models. Despite the LSTM baseline performing well on task accuracy, Arborescence additionally
learns to recover much of the latent parse tree.

8.3 Learning To Explain (L2X) Aspect Ratings

With L2X we investigated the effect of the choice of relaxation. We used the BeerAdvocate dataset
[57], which contains reviews comprised of free-text feedback and ratings for multiple aspects
(appearance, aroma, palate, and taste; Fig. 5). Each sentence in the test set is annotated with the
aspects that it describes, allowing us to define structure recovery metrics. We considered the L2X
task of learning a distribution over k-subsets of words that best explain a given aspect rating.8 Our
model used word embeddings from [49] and convolutional neural networks with one (simple) and
three (complex) layers to produce a distribution over k-hot binary latent masks. Given the latent
masks, our model used a convolutional net to make predictions from masked embeddings. We used k
in {5, 10, 15} and the following SSTs for the subset distribution: {Euclid., Cat. Ent., Bin. Ent., E.F.
Ent.} Top k and Corr. Top k. For baselines, we used bespoke relaxations designed for this task: L2X
[17] and SoftSub [86]. We trained separate models for each aspect using mean squared error (MSE).

We found that SSTs improve over bespoke relaxations (Table 3 for aspect aroma, others in App.
C). For unsupervised discovery, we used the sentence-level annotations for each aspect to define
ground truth subsets against which precision of the k-subsets was measured. SSTs tended to select
subsets with higher precision across different architectures and cardinalities and achieve modest
improvements in MSE. We did not find significant differences arising from the choice of regularizer
f . Overall, the most structured SST, Corr. Top k, achieved the lowest MSE, highest precision and
improved interpretability: The correlations in the model allowed it to select contiguous words, while
subsets from less structured distributions were scattered (Fig. 5).

9 Conclusion

We introduced stochastic softmax tricks, which are random convex programs that capture a large
class of relaxed distributions over structured, combinatorial spaces. We designed stochastic softmax
tricks for subset selection and a variety of spanning tree distributions. We tested their use in deep
latent variable models, and found that they can be used to improve performance and to encourage the
unsupervised discovery of true latent structure. There are future directions in this line of work. The

8While originally proposed for model interpretability, we used the original aspect ratings. This allowed us to
use the sentence-level annotations for each aspect to facilitate comparisons between subset distributions.

8

Table 3 & Figure 5: For k-subset selection on aroma aspect, SSTs tend to outperform baseline
relaxations. Test set MSE (×10−2) and subset precision (%) is shown for models selected on valid.
MSE. Bottom: Corr. Top k (red) selects contiguous words while Top k (blue) picks scattered words.

k = 5 k = 10 k = 15

Model Relaxation MSE Subs. Prec. MSE Subs. Prec. MSE Subs. Prec.

Simple

L2X [17] 3.6± 0.1 28.3± 1.7 3.0± 0.1 25.5± 1.2 2.6± 0.1 25.5± 0.4
SoftSub [86] 3.6± 0.1 27.2± 0.7 3.0± 0.1 26.1± 1.1 2.6± 0.1 25.1± 1.0

Euclid. Top k 3.5± 0.1 25.8± 0.8 2.8± 0.1 32.9± 1.2 2.5± 0.1 29.0± 0.3
Cat. Ent. Top k 3.5± 0.1 26.4± 2.0 2.9± 0.1 32.1± 0.4 2.6± 0.1 28.7± 0.5
Bin. Ent. Top k 3.5± 0.1 29.2± 2.0 2.7± 0.1 33.6± 0.6 2.6± 0.1 28.8± 0.4
E.F. Ent. Top k 3.5± 0.1 28.8± 1.7 2.7± 0.1 32.8± 0.5 2.5± 0.1 29.2± 0.8

Corr. Top k 2.9± 0.1 63.1± 5.3 2.5± 0.1 53.1± 0.9 2.4± 0.1 45.5± 2.7

Complex

L2X [17] 2.7± 0.1 50.5± 1.0 2.6± 0.1 44.1± 1.7 2.4± 0.1 44.4± 0.9
SoftSub [86] 2.7± 0.1 57.1± 3.6 2.3± 0.1 50.2± 3.3 2.3± 0.1 43.0± 1.1

Euclid. Top k 2.7± 0.1 61.3± 1.2 2.4± 0.1 52.8± 1.1 2.3± 0.1 44.1± 1.2
Cat. Ent. Top k 2.7± 0.1 61.9± 1.2 2.3± 0.1 52.8± 1.0 2.3± 0.1 44.5± 1.0
Bin. Ent. Top k 2.6± 0.1 62.1± 0.7 2.3± 0.1 50.7± 0.9 2.3± 0.1 44.8± 0.8
E.F. Ent. Top k 2.6± 0.1 59.5± 0.9 2.3± 0.1 54.6± 0.6 2.2± 0.1 44.9± 0.9

Corr. Top k 2.5± 0.1 67.9± 0.6 2.3± 0.1 60.2± 1.3 2.1± 0.1 57.7± 3.8

Pours a slight tangerine orange and straw yellow. The head is nice and bubbly but fades very quickly with a
little lacing. Smells like Wheat and European hops , a little yeast in there too. There is some fruit in there too,
but you have to take a good whiff to get it. The taste is of wheat, a bit of malt, and a little fruit flavour in there
too. Almost feels like drinking Champagne , medium mouthful otherwise. Easy to drink, but not something I’d
be trying every night.

Appearance: 3.5 Aroma: 4.0 Palate: 4.5 Taste: 4.0 Overall: 4.0

relaxation framework can be generalized by modifying the constraint set or the utility distribution at
positive temperatures. Some combinatorial objects might benefit from a more careful design of the
utility distribution, while others, e.g., matchings, are still waiting to have their tricks designed.

Broader Impact

This work introduces methods and theory that have the potential for improving the interpretability
of latent variable models. While unfavorable consequences cannot be excluded, increased inter-
pretability is generally considered a desirable property of machine learning models. Given that this is
foundational, methodologically-driven research, we refrain from speculating further.

Acknowledgements

We thank Daniel Johnson and Francisco Ruiz for their time and insightful feedback. We also thank
Tamir Hazan, Yoon Kim, Andriy Mnih, and Rich Zemel for their valuable comments. MBP gratefully
acknowledges support from the Max Planck ETH Center for Learning Systems. CJM is grateful
for the support of the James D. Wolfensohn Fund at the Institute of Advanced Studies in Princeton,
NJ. Resources used in preparing this research were provided, in part, by the Sustainable Chemical
Processes through Catalysis (Suchcat) National Center of Competence in Research (NCCR), the
Province of Ontario, the Government of Canada through CIFAR, and companies sponsoring the
Vector Institute.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray,

9

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv e-prints, page
arXiv:1603.04467, March 2016.

[2] Ryan Prescott Adams and Richard S Zemel. Ranking via sinkhorn propagation. arXiv preprint
arXiv:1106.1925, 2011.

[3] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex
optimization layers. In Advances in Neural Information Processing Systems, 2019.

[4] Akshay Agrawal, Shane Barratt, Stephen Boyd, Enzo Busseti, and Walaa M Moursi. Differenti-
ating through a conic program. arXiv preprint arXiv:1904.09043, 2019.

[5] Brandon Amos. Differentiable optimization-based modeling for machine learning. PhD thesis,
PhD thesis. Carnegie Mellon University, 2019.

[6] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 136–145. JMLR. org, 2017.

[7] Brandon Amos, Vladlen Koltun, and J. Zico Kolter. The Limited Multi-Label Projection Layer.
arXiv e-prints, page arXiv:1906.08707, June 2019.

[8] Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and analysis, volume 57.
Springer Science & Business Media, 2007.

[9] Michalis Titsias RC AUEB and Miguel Lázaro-Gredilla. Local expectation gradients for
black box variational inference. In Advances in neural information processing systems, pages
2638–2646, 2015.

[10] Amir Beck. First-Order Methods in Optimization. SIAM, 2017.

[11] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and
Francis Bach. Learning with Differentiable Perturbed Optimizers. arXiv e-prints, page
arXiv:2002.08676, February 2020.

[12] Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena
Scientific Belmont, MA, 1997.

[13] Mathieu Blondel. Structured prediction with projection oracles. In Advances in Neural
Information Processing Systems, pages 12145–12156, 2019.

[14] Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with fenchel-young losses.
Journal of Machine Learning Research, 21(35):1–69, 2020.

[15] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable
sorting and ranking. arXiv preprint arXiv:2002.08871, 2020.

[16] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy
programs, 2018.

[17] Jianbo Chen, Le Song, Martin Wainwright, and Michael Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. In International Conference on
Machine Learning, 2018.

[18] Y.J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Scientia Sinica,
14:1396–1400, 1965.

[19] Caio Corro and Ivan Titov. Differentiable perturb-and-parse: Semi-supervised parsing with a
structured variational autoencoder. In International Conference on Learning Representations,
2019.

10

[20] Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. In Advances
in Neural Information Processing Systems, pages 1013–1023, 2017.

[21] Justin Domke. Implicit differentiation by perturbation. In J. D. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Process-
ing Systems 23, pages 523–531. Curran Associates, Inc., 2010.

[22] Justin Domke. Learning graphical model parameters with approximate marginal inference.
IEEE transactions on pattern analysis and machine intelligence, 35(10):2454–2467, 2013.

[23] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections
onto the l 1-ball for learning in high dimensions. In Proceedings of the 25th international
conference on Machine learning, pages 272–279, 2008.

[24] Jack Edmonds. Optimum branchings”. Journal of Research of the National Bureau of Standards:
Mathematics and mathematical physics. B, 71:233, 1967.

[25] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed placement.
Software: Practice and experience, 21(11):1129–1164, 1991.

[26] Yarin Gal. Uncertainty in deep learning. University of Cambridge, 1:3, 2016.

[27] Andreea Gane, Tamir Hazan, and Tommi Jaakkola. Learning with maximum a-posteriori
perturbation models. In Artificial Intelligence and Statistics, pages 247–256, 2014.

[28] Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications
of the ACM, 33(10):75–84, 1990.

[29] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. In International
Conference on Learning Representations, 2018.

[30] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[31] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In International Conference on Learning Representations,
2019.

[32] Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropa-
gation for stochastic neural networks. In ICLR, 2016.

[33] Tamir Hazan and Tommi Jaakkola. On the partition function and random maximum a-posteriori
perturbations. In International Conference on Machine Learning, 2012.

[34] Tamir Hazan, Subhransu Maji, and Tommi Jaakkola. On Sampling from the Gibbs Distribu-
tion with Random Maximum A-Posteriori Perturbations. In Advances in Neural Information
Processing Systems, 2013.

[35] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
In International Conference on Learning Representations, 2016.

[36] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

[37] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

[38] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In International Conference on Machine Learning,
2018.

[39] Jon Kleinberg and Éva Tardos. Algorithm Design. Pearson Education, 2006.

11

[40] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques.
2009.

[41] Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy minimization.
IEEE transactions on pattern analysis and machine intelligence, 28(10):1568–1583, 2006.

[42] Terry Koo, Amir Globerson, Xavier Carreras, and Michael Collins. Structured prediction models
via the matrix-tree theorem. In Proceedings of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 141–150, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

[43] Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for
free! 2019.

[44] Wouter Kool, Herke van Hoof, and Max Welling. Ancestral gumbel-top-k sampling for sampling
without replacement. Journal of Machine Learning Research, 21(47):1–36, 2020.

[45] Wouter Kool, Herke van Hoof, and Max Welling. Estimating gradients for discrete random
variables by sampling without replacement. In International Conference on Learning Represen-
tations, 2020.

[46] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

[47] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83–97, 1955.

[48] Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. Reparameterization gradient for non-
differentiable models. In Advances in Neural Information Processing Systems, pages 5553–5563,
2018.

[49] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155, 2016.

[50] Jun Liu and Jieping Ye. Efficient euclidean projections in linear time. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 657–664, 2009.

[51] Guy Lorberbom, Andreea Gane, Tommi Jaakkola, and Tamir Hazan. Direct optimization
through argmax for discrete variational auto-encoder. In Advances in Neural Information
Processing Systems, pages 6200–6211, 2019.

[52] R Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. New York: Wiley, 1959.

[53] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2017.

[54] Chris J Maddison, Daniel Tarlow, and Tom Minka. A∗ Sampling. In Advances in Neural
Information Processing Systems, 2014.

[55] Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International Conference on Machine Learning, pages 1614–
1623, 2016.

[56] André FT Martins and Julia Kreutzer. Learning what’s easy: Fully differentiable neural easy-
first taggers. In Proceedings of the 2017 conference on empirical methods in natural language
processing, pages 349–362, 2017.

[57] Julian McAuley, Jure Leskovec, and Dan Jurafsky. Learning attitudes and attributes from
multi-aspect reviews. In 2012 IEEE 12th International Conference on Data Mining, pages
1020–1025. IEEE, 2012.

12

[58] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permuta-
tions with gumbel-sinkhorn networks. In International Conference on Learning Representations,
2018.

[59] Elad Mezuman, Daniel Tarlow, Amir Globerson, and Yair Weiss. Tighter linear program
relaxations for high order graphical models. In Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence, pages 421–430, 2013.

[60] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
International Conference on Machine Learning, 2014.

[61] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo Gradient
Estimation in Machine Learning. arXiv e-prints, page arXiv:1906.10652, June 2019.

[62] Nikita Nangia and Samuel R Bowman. Listops: A diagnostic dataset for latent tree learning.
arXiv preprint arXiv:1804.06028, 2018.

[63] Vlad Niculae, André FT Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differen-
tiable sparse structured inference. arXiv preprint arXiv:1802.04223, 2018.

[64] G. Papandreou and A. Yuille. Perturb-and-MAP Random Fields: Using Discrete Optimization
to Learn and Sample from Energy Models. In International Conference on Computer Vision,
2011.

[65] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

[66] Robin L Plackett. The analysis of permutations. Journal of the Royal Statistical Society: Series
C (Applied Statistics), 24(2):193–202, 1975.

[67] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages
689–690. IEEE, 2011.

[68] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International Conference on Machine
Learning, 2014.

[69] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[70] R Tyrrell Rockafellar. Second-order convex analysis. J. Nonlinear Convex Anal, 1(1-16):84,
1999.

[71] Stephane Ross, Daniel Munoz, Martial Hebert, and J. Andrew Bagnell. Learning message-
passing inference machines for structured prediction. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2011.

[72] Francisco JR Ruiz, Michalis K Titsias, and David M Blei. The generalized reparameterization
gradient. In Advances in Neural Information Processing Systems, 2016.

[73] Alexander M Rush. Torch-struct: Deep structured prediction library. arXiv preprint
arXiv:2002.00876, 2020.

[74] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003.

[75] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.

[76] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

13

[77] Kevin Swersky, Ilya Sutskever, Daniel Tarlow, Richard S Zemel, Russ R Salakhutdinov, and
Ryan P Adams. Cardinality restricted boltzmann machines. In Advances in neural information
processing systems, pages 3293–3301, 2012.

[78] Daniel Tarlow, Ryan Adams, and Richard Zemel. Randomized optimum models for structured
prediction. In Neil D. Lawrence and Mark Girolami, editors, Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of
Machine Learning Research, pages 1221–1229, La Palma, Canary Islands, 21–23 Apr 2012.
PMLR.

[79] Daniel Tarlow, Kevin Swersky, Richard S Zemel, Ryan P Adams, and Brendan J Frey. Fast
exact inference for recursive cardinality models. In 28th Conference on Uncertainty in Artificial
Intelligence, UAI 2012, pages 825–834, 2012.

[80] Louis L Thurstone. A law of comparative judgment. Psychological review, 34(4):273, 1927.

[81] George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein.
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models. In
Advances in Neural Information Processing Systems, pages 2627–2636, 2017.

[82] William T. Tutte. Graph Theory. Addison-Wesley, 1984.

[83] Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008.

[84] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[85] Philip Wolfe. Finding the nearest point in a polytope. Mathematical Programming, 11(1):128–
149, 1976.

[86] Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous
relaxations. In International Joint Conference on Artificial Intelligence, 2019.

[87] Mingzhang Yin and Mingyuan Zhou. ARM: Augment-REINFORCE-merge gradient for
stochastic binary networks. In International Conference on Learning Representations, 2019.

14

	Introduction
	Problem Statement
	Background on Gradient Estimation
	Stochastic Argmax Tricks
	Stochastic Softmax Tricks
	Examples of Stochastic Softmax Tricks
	Related Work
	Experiments
	Neural Relational Inference (NRI) for Graph Layout
	Unsupervised Parsing on ListOps
	Learning To Explain (L2X) Aspect Ratings

	Conclusion

