
A Further line plots

Figure 10: DenseNet40 loss functions on lines in negative gradient direction (blue) combined with our
parabolic approximation (orange) and the position of the minimum (red). The unit of the horizontal
axis is the change of θ.

Figure 11: Loss line plots for MobileNetV2. For explanations see Figure 8. During training the
parabolic approximation fits less accurately on the right hand side and during the first 150 steps it
does not fit at all, however, the minimum of the parabola is still a good estimator for a low loss value
on the line.

Figure 12: Loss line plots for EfficientNet. For explanations see Figure 8. The parabolic approxima-
tion fits only on the left hand side and during the first 150 steps it does not fit at all, however, the
minimum of the parabola is still a good estimator for a low loss value on the line.

13

B PAL with all additions:

Algorithm 2 provides the full description of PAL including the additions described in Section 4.3.
After analyzing the best hyperparameter combinations of PAL over all experiments, we suggest
to use values from the following parameter intervals: µ = [0.1, 1], α = [1.0, 1.6], β = [0, 0.4],
smax = 3. Where α, β and smax usually have a low sensitivity. Thus, the basic implementation
of PAL (Algorithm 1) performs already well and is always found in the upper quartile considering
the performance of all analyzed hyperparameter configurations in our experiments. PyTorch and
Tensorflow 1.5 implementations are provided at https://github.com/cogsys-tuebingen/PAL.

Algorithm 2 PAL, our proposed line search algorithm for DNNs. See Section 4 for details.

Input: Hyperparameters: µ: measuring step size,
α: update step adaptation, β: direction adap-
tation factor, smax: maximum step size.

Input: L(x; θ): loss function
Input: x: list of input vectors
Input: θ0: initial parameter vector

1: t← 0
2: dt ← ~0
3: while θt not converged do
4: l0 ← L(xt; θt)
5: dt ← −∇θtL(xt; θt) + βdt−1
6: lµ ← L(xt; θt + µ dt

||dt||)

7: b← ∇θtL(xt; θt) dt
||dt||

8: a← lµ−l0−bµ
µ2

9: if a > 0 and b < 0 then
10: supd ← −α b

2a
11: else if a ≤ 0 and b < 0 then
12: supd ← µ
13: else
14: supd ← 0
15: end if
16: if supd > smax then
17: supd ← smax
18: end if
19: θt+1 ← θt + supd

dt
||dt||

20: t← t+ 1
21: end while
22: return θt

C Further Theoretical Considerations

We have to note, that the following derivation is based upon strong assumptions and if they are
valid at all than they are likely more valid locally than globally. We assume that each slice of the loss
function is a one-dimensional parabolic function:
Assumption 2. Let n ∈ N be the number of parameters and let l,d ∈ Rn be vectors. Then for all
l,d there exists a, b, c ∈ R with a > 0, such that L(xt; l+ ds) = as2 + bs+ c for all s ∈ R.

This strong assumption is a simplified adaptation to our empirical results that lines in negative
gradient direction behave locally almost parabolic (see Section 3). For the following derivations we
assume a basic PAL without the additions introduced in Section 4.3. Proofs are provided in Appendix
C.1. At first we show that L(xt, θ) is a n-dimensional parabolic function:
Lemma 1. Let f : Rn → R be a k-times continuously differentiable function. Furthermore, assume
there exists a, b, c ∈ R with a > 0, such that f(l + ds) = as2 + bs + c for all s ∈ R. Then there
exist z ∈ R, r ∈ Rn and a positive definite Matrix Q ∈ Rn×n such that f(x) = c+ rTx+ xTQx
for all x ∈ Rn.

Now we show that PAL converges on L(xt, θ):
Proposition 1. PAL converges on f(x) : Rn → R, f(x) = c + rTx + xTQx with Q ∈ Rn×n
hermitian and positive definite.

We have to note, that in this scenario PAL is identical to the method of steepest decent for which
the convergence including convergence rates on quadratics is already proven in [36] page 235.
Nevertheless we have attached our own proof.

For a noisy scenario where each batch defines a quadratic, PAL has no convergence guarantee. Given
two shifted one-dimensional parabolas, ax2 + bx + c and a(x + d)2 + b(x + d) + c, which are

14

https://github.com/cogsys-tuebingen/PAL

presented to PAL alternately, PAL will always perform an update step to the minimum position of one
of these but never to the minimum position of the average of both. By slightly changing the training
procedure and assuming that each L(xi, θ) has the same Q this can be fixed:

Proposition 2. If L(θ) : Rn → R θ 7→ L(θ) = 1
m

∑m
i=1 ci+rTi θ+θ

TQiθ and ci+rTi θ+θ
TQiθ =

L(θ;xi) with m being number the of batches and xi defining one batch. (Each batch defines a
parabola. The empirical loss L(θ) is the mean of these parabolas). And for all i, j ∈ N it holds that
Qi = Qj and that Qi is positive definite. Then arg min

θ
L(θ) = 1

m

∑m
i=1 arg min

θ
L(θ) holds.

This implies that under Assumption 2 and a fixed Q the position of the minimum of the empirical loss
is given by the average of the positions of the minima of the batch losses. The minimum position of
the empirical loss is found by PAL, by slightly adapting PAL to search on one batch until it finds the
position of the minimum and then averaging the minima of each batch. As a result, PAL converges in
this noisy scenario. However, we have to emphasize at this point that our assumptions about l and
Q are likely not valid for general deep learning scenarios. But, if it is locally valid, this direction
might be a further explanation, in addition to those of [17, 22], why stochastic weight averaging [27]
performs well.

C.1 Proofs

Lemma 1. Let f : Rn → R a k-times continuously differentiable function. Furthermore, assume
there exists a, b, c ∈ R with a > 0, such that f(l + ds) = as2 + bs + c for all s ∈ R. Then there
exist z ∈ R, r ∈ Rn and a positive definite Matrix Q ∈ Rn×n such that f(x) = c+ rTx+ xTQx
for all x ∈ Rn.

Proof.

g(x) = u+ vTx+ xTWx for some u ∈ R,v ∈ Rn and W ∈ Rn×n

⇔ ∀l,d ∈ Rn ∧ ||d|| = 1 :

n∑
j=1

n∑
k=1

n∑
l=1

∂3g(l)

∂xj , ∂xk, ∂xl
djdkdl = 0

(5)

⇒ holds since we have a polynomial of degree 2 and its third derivative is always a 0 tensor.
⇐ holds since the reminder of the quadratic Taylor expansion is always 0.

In our case the right part is 0 since:

n∑
j=1

n∑
k=1

n∑
l=1

∂3f(l)

∂xj , ∂xk, ∂xl
djdkdl =

∂

∂s3
f(l+ ds) = 0 (6)

In words: f(x) is a parabolic function if and only if for each location l the third directional derivative
of f(l) in each direction d is 0. Which is the case, since the third derivative of each intersection is 0.
W is positive definite since:

∀d, l ∈ Rn ∧ ||d|| = 1 : dTWd =
1

2
dTH(l)d =

1

2

∂

∂s2
f(l+ ds) = a > 0 (7)

where H is the Hessian. �

15

Proposition 1. PAL converges on f(x) : Rn → R, f(x) = c + rTx + xTQx with Q ∈ Rn×n
hermitian and positive definite.

Proof.
For this prove we consider a basic PAL without the features introduced in Section 4.3. Note, that
during the proof we will see, that a > 0 and b < 0. Thus, only the update step for this case has to be
considered (see Section 4.2.

f(x) is convex since Q is positive definite. Thus it has one minimum.
Without loss of generality we set c = 0, r = 0,xn 6= 0

f(x) = xTQx and ∇xf(x) = f ′(x) = 2Qx (8)

The values of f(x) along a line through x in the direction of −f ′(x) are given by:

f(−f ′(x)ŝ+ x) (9)

Now we expand the line function:

f(−f ′(x)ŝ+ x) = f(−2Qxŝ+ x)

= (−2Qxŝ+ x)TQ(−2Qxŝ+ x)

= 4xTQ3x︸ ︷︷ ︸
=:a

ŝ2 +−4xTQ2x︸ ︷︷ ︸
=:b

ŝ+ xTQx︸ ︷︷ ︸
=:c

(10)

Here we see that f(ŝ) is indeed a parabolic function with a > 0, b < 0 and c > 0 since Q3, Q2 and
Q are positive definite.
The location of the minimum smin of f(ŝ) is given by:

ŝmin = arg min
ŝ

f(−f ′(x)ŝ+ x) = − b

2a
(11)

PAL determines ŝmin exactly with ŝmin =
supd
||f ′(x)|| (see equation 1 and 2). ||f ′(x)|| > 0 since

otherwise we are already in the minimum.

The value at the minimum is given by:

f(ŝmin) = a(
−b
2a

)2 + b(
−b
2a

) + c = − b
2

4a
+ c = − (−xTQ2x)2

xTQ3x︸ ︷︷ ︸
=:g(x)

+xTQx = −g(x) + f(x) (12)

Since Q2 and Q3 are positive definite and x 6= 0:

g(x) > 0 (13)

Now we consider the sequence f(xn), with xn defined by PAL (see Equation 1):

xn+1 = − f ′(xn)

||f ′(xn)||
ŝupd + xn = −f ′(xn)ŝmin + xn (14)

It is easily seen by induction that:

0 < f(xn+1) < f(xn) =

n−1∑
i=0

−g(xi) + f(x0) < f(x0). (15)

g(xn) converges to 0. Since ∀n : g(xn) > 0 and
n−1∑
i=0

−g(xi) is bounded.

Now we have to show that xn converges to 0.
We have:

g(xn) =
(xTnQ

2xn)
2

xTnQ
3xn

=
〈xn,Q2xn〉2

〈xn,Q3xn〉
(16)

16

Now we use the theorem of Courant-Fischer:

〈x, x〉min{λ1, . . . , λn} ≤ 〈x,Ax〉 ≤ 〈x, x〉max{λ1, . . . , λn}
for any symmetric A ∈ Rn×n with λ1, . . . , λn

(17)

And get:

g(xn) ≥
λ2Q2 min〈xn,xn〉2

λQ3 max〈xn,xn〉
= C
||xn||4

||xn||2
= C||xn||2 (18)

with

C =
λ2Q2 min

λQ3 max
> 0 since all λ of the positive definite Q are positive (19)

Thus, we have:
g(xn) ≥ C||xn||2 ≥ 0 (20)

Since g(xn) converges to 0, C||xn||2 converges to 0.
This means, xn converges to 0, which is the location of the minimum. �

Proposition 2. If L(θ) : Rn → R θ 7→ L(θ) = 1
m

∑m
i=1 ci+rTi θ+θ

TQiθ and ci+rTi θ+θ
TQiθ =

L(θ;xi) with m being number the of batches and xi defining one batch. (Each batch defines a
parabola. The empirical loss L(θ) is the mean of these parabolas). And for all i, j ∈ N it holds that
Qi = Qj and that Qi is positive definite. Then arg min

θ
L(θ) = 1

m

∑m
i=1 arg min

θ
L(θ) holds.

Proof.
Since L(θ) is a sum of convex functions, it is also convex and has one minimum.
At first we determine the derivative of L(θ) with respect to θ:

∂

∂θ
L(θ) = 1

m

m∑
i=1

(ri + 2Qiθ) = 2Qθ +
1

m

m∑
i=1

ri (21)

Then we determine the minima:

arg min
θ

L(θ)⇔ ∂

∂θ
L(θ)=0⇔ θ = −1

2
(

m∑
i=1

Qi)
−1

m∑
i=1

ri = −
1

2m
Q−1

m∑
i=1

ri (22)

arg min
t

L(t : xi) = −
1

2
Q−1ri (23)

Thus, we get:

arg min
θ

L(θ) = − 1

2m
Q−1

m∑
i=1

ri =
1

m

m∑
i=1

−1

2
Q−1ri =

1

m

m∑
i=1

arg min
t

L(t : xi) (24)

�

17

D Further experimental results

D.1 Performance Comparison on ImageNet, CIFAR-10, CIFAR-100 and Tolstoi

Figure 13: Comparison on CIFAR-10 of PAL against SLS, SGD, ADAM, RMSProp, ALIG, SGDHD
and COCOB on train. loss (row 1), val. acc. (row 2), test. acc. (row 3) and SLS, SGD, ALIG,
SGDHD and PAL on learning rates (row 4). Results are averaged over 3 runs. Box plots result from
comprehensive hyperparameter grid searches in plausible intervals. Learning rates are averaged
over epochs. PAL surpasses SLS, ALIG, SGDHD and competes against all other optimizers except
against SGD. The learning rate schedule comparison shows that PAL performs competitive although
elaborating significantly different schedules.

18

Figure 14: Comparison on CIFAR-100 of PAL against SLS, SGD, ADAM, RMSProp, ALIG, SGDHD
and COCOB on train. loss (row 1), val. acc. (row 2), test. acc. (row 3) and SLS, SGD, ALIG,
SGDHD and PAL on learning rates (row 4)). Results are averaged over 3 runs. Box plots result
from comprehensive hyperparameter grid searches in plausible intervals. Learning rates are averaged
over epochs. PAL surpasses SLS, ALIG, SGDHD and competes against all other optimizers except
against SGD. The learning rate schedule comparison shows that PAL performs competitive although
elaborating significantly different schedules.

19

Figure 15: Comparison of PAL to SGD, SLS, ADAM, RMSProp on training loss, validation accuracy
and learning rates on Imagenet, and a simple RNN, trained on the Tolstoi War and Peace dataset.
Learning rates are averaged over epochs. For Imagenet the best hyperparameter configuration from
the CIFAR-100 evaluation were used to test hyperparameter transferability.

20

D.2 Wall-clock time comparison

Table 1: Required seconds per epoch of PAL, SLS, ALIG, SGDHD, COCOB and SGD on CIFAR-10.
RMSP and ADAM reach a similar speed as SGD. The comparison was performed on a Nvidia
Geforce GTX 1080 TI. PAL and SLS perform slower, since they have to measure additional losses,
whereas the additional operations of ALIG, SGDHD, COCOB tend to be cheap.

network seconds /
epoch PAL SLS SGD ALIG SGDHD COCOB

ResNet32 20.9 21.7 10.7 11.0 11.1 16.4
MobilenetV2 53.2 52.4 34.1 34.01 34.2 36.6
EfficientNet 55.5 52.2 30.7 31.2 32.2 37.5
DenseNet40 88.8 87.5 59.7 61.3 64.6 61.4

D.3 SLS ResNet34 test case re-implementation

In the shown experiments and in contrast to the evaluation of SLS in [58], we used Tensorflow default
Xavier weight initialization [19] versus PyTorch default Lecun initialization [33]. In addition, we used
L2 regularisation versus no regularization. Furthermore, default implementations of networks for
both frameworks have small differences. All in all those differences usually influence the optimizer
performance only marginally as given by the fact that all other investigated optimizers perform well.
However, in this case of SLS we see significant differences.
To prove that our implementation of SLS is correct, we re-implemented [58]’s ResNet34 test case on
CIFAR-10 in Tensorflow and achieved similar results as [58]. SLS shows well performance and is
not significantly overfitting as it does in in Section 5.2.

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

epoch

va
lid

at
io

n
ac

cu
ra

cy

validation accuracy CIFAR-10

SLS

0 20 40 60 80 100 120 140 160

10−3

10−2

10−1

100

101

epoch

tr
ai

ni
ng

lo
ss

training loss CIFAR-10

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

epoch

va
lid

at
io

n
ac

cu
ra

cy

validation accuracy CIFAR-100

0 20 40 60 80 100 120 140 160
10−3

10−2

10−1

100

101

epoch

tr
ai

ni
ng

lo
ss

training loss CIFAR-100

Figure 16: On the re-implemented ResNet34 test case of [58] SLS shows well performance and is not
significantly overfitting as it does in in Section 5.2

21

D.4 Parabolic property in adapted directions:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

·105
0

20

40

60

80

100

120

training step

an
gl

e
be

tw
ee

n
lin

e
di

re
ct

io
n

an
d

gr
ad

ie
nt

at
es

t.
m

in
im

um
in
◦

parabolic property in adapted directions

VGG-Net on CIFAR-10
EfficientNet on CIFAR-10

MobileNetV2 on CIFAR-10
ResNet32 on CIFAR-10
DenseNet on CIFAR-10

Figure 17: Angles between the line direction and the gradient at the estimated minimum measured
on the same batch plotted over a whole training process on several networks on CIFAR-10. This
figure clarifies, that parabolic property is also valid if a direction adaptation factor of 0.4 is applied.
Measuring step sizes and update step adaptations factors (see Sections 4.1,4.3) were set to fit the
cross sections decently.

D.5 Influence of dynamic step sizes and the direction adaptation

This section analyses, whether PAL’s performance originates from dynamically chosen step sizes or
from the the non-linear conjugate gradient like update step adaptation. We consider EfficientNets
trained on CIFAR-10, since for those the update step adaptation factor β is needed to achieve optimal
results. We consider the following 6 scenarios: 1,2) PAL without update step adaptation (β = 0) and
with and without dynamic step sizes (Figure 18 left). 3,4) PAL with a update step adaptation of 0.2
and with and without dynamic step sizes (Figure 18 middle). 5,6) PAL with a update step adaptation
of 0.4 with and without fixed step sizes (Figure 18 right). The case with fixed step sizes result in in
normalized SGD (NSGD) with a momentum factor β. As fixed update step size we use the measuring
step size µ.

The results show that dynamic step sizes increase the performance always if direction adaptation is
not applied and if it is applied in 6 out of 8 cases. Direction adaptation can increase or decrease the
performance in both, the dynamic and the fixed step size cases. The best performance is achieved
with a direction adaptation factor of 0.2 and a measuring step size of 10−1.5, which shows that both
factors influence the best results in this scenario.

10−1.5 10−1 10−0.5 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

measuring step size µ

Te
st

A
cc

ur
ac

y

direction adaptation factor β = 0.0

PAL
PAL with fixed step size

10−1.5 10−1 10−0.5 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

measuring step size µ

direction adaptation factor β = 0.2

10−1.5 10−1 10−0.5 100
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

measuring step size µ

direction adaptation factor β = 0.4

Figure 18: Analysis of the influences of dynamic step sizes and the direction adaptation factor β.

22

D.6 Sensitivity analysis:

All in all PAL tends to have a low hyperparameter sensitivity as shown in Figure 19. Since µ is the
most sensitive hyperparameter we analyzed its sensitivity over several further models trained on
CIFAR-10 (see Figure 20).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

direction adaptation factor β

ac
cu

ra
cy

train. acc
val. acc
test. acc

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

update step adaptation α

ac
cu

ra
cy

10−1 100 101 102
0

0.2

0.4

0.6

0.8

1

maximal step size smax

ac
cu

ra
cy

10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

measuring step size µ

ac
cu

ra
cy

Figure 19: Sensitivity analysis for PAL on a ResNet32 trained on CIFAR-10. The baseline parameters
are: µ = 0.1, β = 0.2, α = 1.0, smax = 10. It shows that β should be chosen ≤ 0.6. α has a low
sensitivity, but with a value of 1.4 it reaches best performance. smax has a low sensitivity and all
investigated values perform similarly. µ should be chosen between 10−2 and 10−0.5.

10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

measuring step size µ

va
l.

ac
cu

ra
cy

ResNet
DenseNet
MobileNet

EfficientNet

Figure 20: Sensitivity of the measuring step size µ of PAL for several models on CIFAR-10. PAL
shows low sensitivity.

D.7 Comparison to Probabilistic Line-Search (PLS):

We used a empirically improved and only existing implementation of PLS [38] for Tensorflow
1 [2]. However, the sum of squared gradients has to be derived manually for each layer, which is
a considerable amount of work for modern architectures. Consequently, we limit our comparison
to a ResNet-32 trained on CIFAR-10. Figure 21 shows that PAL and PLS perform similarly in this
scenario.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105
0

0.5

1

1.5

training step

st
ep

si
ze

PLS
PAL

0 50 100 150 200 250 300
0.7

0.8

0.9

epoch

va
l.

ac
cu

ra
cy

PLS
PAL

Figure 21: Comparison of PAL to Probabilistic Line Search [38]

23

D.8 Further experimental design details

D.8.1 Training Procedure

On CIFAR-10 and CIFAR-100 we trained 150k steps. On Imagenet each network was trained for
500k steps. We performed a piecewise constant learning rate decay by dividing the learning rate by
10 at 50% and 75% of the steps.
The training set to evaluation set split was 45k to 15k for CIFAR-10 and CIFAR-100. At the time
of writing, the default Tensorflow classes do not support the reuse of the same randomly sampled
numbers for multiple inferences, therefore, we implemented and used our own Dropout [55] layer.
To get a fair comparison of the optimizers capabilities, we compare on the training loss, the validation
accuracy and the test accuracy metrics. For all metrics we provide the median and the quartiles to
analyze the hyperparameter sensitivity. For each hyperparameter combination we averaged our results
over 3 runs using the seeds 1, 2 and 3 for reproducibility. All in all, we trained over 4500 networks
with Tensorflow 1.15 [1] on Nvidia Geforce GTX 1080 TI graphic cards.

D.8.2 Data Augmentation

On CIFAR-10 we performed the following augmentations [23]:
4 pixel padding and cropping, horizontal image flipping with probability 0.5.
On Imagenet we applied an initial random crop to 224x224 pixels. In addition, we applied lighting as
described in [32]. For CIFAR-10, CIFAR-100 all images were normalized by channel-wise mean and
variance. For the Tolstoi War and Peace dataset we omitted augmentation.

D.8.3 Hyperparameter grid search

For our evaluation we used all combinations out of the following common used hyperparameters.
The batch size is always 128 except for DenseNets trained with ALIG, SGDHD and COCOB for
which we encountered memory overflows and hat to reduce the batch size to 100. Weight decay is
always 10−4.
On Imagenet, such a large grid search was not possible. In this case we compared with the best
hyperparameter combinations found on Cifar-100.

ADAM:
hyperparameter symbol values
learning rate λ {1, 0.1, 0.01, 0.001, 0.0001}
first momentum β1 {0.9, 0.95}
second momentum β2 {0.999}
epsilon ε {1e− 8}

We did not vary the first or second momentum much, since [30] states that the values chosen are
already good defaults.

SGD:
hyperparameter symbol values
learning rate λ {0.1, 0.01, 0.001, 0.0001}
momentum α {0.85, 0.9, 0.95}

RMSProp:
hyperparameter symbol values
learning rate λ {0.1, 0.01, 0.001, 0.0001}
discounting factor f {0.9, 0.95}
epsilon ε {1e− 8}

PAL:

24

hyperparameter symbol values
measuring step size µ {100, 10−0.5, 10−0.1, 10−0.15}
direction adaptation factor β {0, 0.4}
update step adaptation α {1, 1

0.8}
maximum step size smax {100.5(≈ 3.16)}

In our implementation we worked with a inverse update step adaptation γ = 1
α .

SLS:
hyperparameter symbol values
initial step size µ {0.1, 1}
step size decay β {0.9, 0.99}
step size reset γ {2.0, 2.5}
Armijo constant c {0.1, 0.01}
maximum step size µmax {10.0}

ALIG:
hyperparameter symbol values
maximal learning rate λ {10, 1.0, 0.1, 0.01}
momentum β {0.85, 0.9, 0.95}

COCOB:
hyperparameter symbol values
restriction factor α {25, 50, 75, 100, 125, 150, 175, 200}

SGDHD:
hyperparameter symbol values
learning rate λ {0.1, 0.01, 0.001}
hyper gradient learning rate β {0.1, 0.01, 0.001, 0.0001}

25

D.9 Detailed numerical results

Table 2: Performance comparison of PAL, RMSProp, ADAM, COCOB, SGDHD, ALIG and SGD. All
hyperparameter combinations given in Appendix D.8 were evaluated for each architecture. Results
are averaged over 3 runs starting from different random seeds, except for training on ImageNet,
for which results were not averaged. Note that tests on Imagenet were performed with the best
hyperparameters found on CIFAR-100 to test the transferability of hyperparameters. Medians an
Quartiles describe the distribution of results over reasonable hyper-parameter ranges.

dataset network optimizer training loss validation accuracy test accuracy
min median; p25; p75 max median; p25; p75 max median; p25; p75

CIFAR-10 EfficientNet COCOB 0.659 0.824; 0.739; 0.855 0.857 0.837; 0.832; 0.845 0.843 0.824; 0.818; 0.832
ALIG 0.279 0.89; 0.464; 1.911 0.906 0.805; 0.451; 0.895 0.893 0.757; 0.297; 0.878
SGDHD 2.002 6.239; 4.357; 7.803 0.834 0.657; 0.18; 0.74 0.828 0.647; 0.179; 0.731
SLS 2.837 5.596; 4.681; 6.292 0.653 0.357; 0.211; 0.443 0.643 0.357; 0.216; 0.442
RMSP 0.154 0.637; 0.333; 1.261 0.93 0.864; 0.658; 0.902 0.919 0.854; 0.648; 0.889
ADAM 0.155 0.818; 0.292; 2.275 0.926 0.841; 0.211; 0.907 0.919 0.83; 0.1; 0.896
SGD 0.165 2.287; 0.343; 4.221 0.93 0.872; 0.794; 0.915 0.921 0.862; 0.784; 0.906
PAL 0.137 0.244; 0.186; 0.388 0.927 0.912; 0.906; 0.921 0.916 0.902; 0.889; 0.908

CIFAR-10 MobileNetV2 COCOB 0.232 0.282; 0.257; 0.295 0.879 0.87; 0.866; 0.876 0.865 0.852; 0.848; 0.865
ALIG 0.183 0.938; 0.347; 1.926 0.914 0.695; 0.233; 0.888 0.897 0.528; 0.1; 0.851
SGDHD 0.698 2.234; 1.835; 4.366 0.886 0.75; 0.298; 0.807 0.877 0.737; 0.295; 0.791
SLS 1.387 2.462; 2.011; 2.584 0.667 0.443; 0.407; 0.504 0.595 0.4; 0.343; 0.437
RMSP 0.085 0.493; 0.337; 0.918 0.938 0.872; 0.675; 0.895 0.929 0.865; 0.664; 0.882
ADAM 0.095 0.477; 0.314; 1.861 0.939 0.874; 0.309; 0.896 0.93 0.864; 0.289; 0.886
SGD 0.149 0.878; 0.204; 1.552 0.947 0.907; 0.87; 0.933 0.94 0.899; 0.859; 0.925
PAL 0.15 0.377; 0.205; 0.531 0.92 0.905; 0.896; 0.91 0.905 0.886; 0.877; 0.896

CIFAR-10 DenseNet40 COCOB 0.228 0.234; 0.23; 0.24 0.907 0.903; 0.901; 0.904 0.894 0.889; 0.885; 0.892
ALIG 0.188 0.604; 0.227; 2.903 0.918 0.848; 0.438; 0.902 0.902 0.784; 0.336; 0.875
SGDHD 1.094 2.279; 1.349; 2.908 0.775 0.341; 0.099; 0.696 0.762 0.1; 0.1; 0.26
SLS 0.065 0.115; 0.104; 0.189 0.91 0.904; 0.897; 0.905 0.901 0.893; 0.89; 0.897
RMSP 0.147 0.398; 0.256; 0.915 0.927 0.879; 0.737; 0.915 0.92 0.867; 0.717; 0.909
ADAM 0.138 0.749; 0.274; 1.028 0.922 0.777; 0.611; 0.91 0.913 0.806; 0.605; 0.907
SGD 0.147 0.794; 0.396; 1.746 0.932 0.855; 0.537; 0.914 0.93 0.847; 0.528; 0.91
PAL 0.099 0.217; 0.165; 0.343 0.925 0.907; 0.894; 0.919 0.916 0.882; 0.861; 0.9

CIFAR-10 ResNet32 COCOB 0.125 0.128; 0.127; 0.129 0.888 0.886; 0.885; 0.887 0.878 0.872; 0.871; 0.874
ALIG 0.122 0.658; 0.279; 1.485 0.892 0.815; 0.47; 0.881 0.866 0.71; 0.367; 0.852
SGDHD 0.35 0.464; 0.413; 0.701 0.864 0.835; 0.791; 0.843 0.837 0.796; 0.766; 0.827
SLS 0.005 0.006; 0.005; 0.827 0.871 0.856; 0.758; 0.869 0.846 0.824; 0.657; 0.839
RMSP 0.105 0.199; 0.129; 0.498 0.922 0.884; 0.804; 0.904 0.915 0.877; 0.792; 0.896
ADAM 0.105 0.332; 0.133; 1.004 0.917 0.875; 0.677; 0.881 0.914 0.868; 0.654; 0.873
SGD 0.098 0.131; 0.118; 0.322 0.939 0.899; 0.85; 0.924 0.933 0.893; 0.838; 0.92
PAL 0.05 0.105; 0.075; 0.195 0.921 0.893; 0.887; 0.906 0.903 0.88; 0.849; 0.888

CIFAR-100 DenseNet40 COCOB 0.739 0.761; 0.75; 0.772 0.642 0.633; 0.631; 0.637 0.646 0.632; 0.629; 0.637
ALIG 0.488 2.125; 0.988; 3.128 0.637 0.508; 0.391; 0.623 0.616 0.48; 0.264; 0.605
SGDHD 1.78 2.6; 2.179; 3.465 0.566 0.418; 0.274; 0.504 0.55 0.296; 0.159; 0.497
SLS 1.367 1.908; 1.446; 1.96 0.719 0.593; 0.572; 0.698 0.612 0.479; 0.422; 0.554
RMSP 0.348 1.238; 0.78; 1.972 0.716 0.583; 0.481; 0.634 0.712 0.588; 0.482; 0.631
ADAM 0.326 1.114; 0.859; 3.53 0.715 0.601; 0.165; 0.637 0.712 0.599; 0.226; 0.641
SGD 0.376 0.713; 0.431; 2.154 0.75 0.633; 0.489; 0.709 0.753 0.634; 0.498; 0.708
PAL 0.275 0.376; 0.312; 0.459 0.73 0.686; 0.66; 0.705 0.717 0.676; 0.642; 0.695

CIFAR-100 EfficientNet COCOB 0.802 0.817; 0.807; 0.822 0.594 0.583; 0.581; 0.59 0.596 0.582; 0.58; 0.588
ALIG 0.57 2.4; 0.995; 4.085 0.612 0.494; 0.169; 0.6 0.599 0.458; 0.115; 0.597
SGDHD 3.545 6.528; 5.519; 8.917 0.529 0.337; 0.178; 0.463 0.513 0.342; 0.179; 0.468
SLS 3.731 6.713; 6.348; 6.857 0.474 0.212; 0.208; 0.227 0.375 0.203; 0.149; 0.208
RMSP 0.422 1.823; 1.253; 2.968 0.675 0.517; 0.383; 0.588 0.678 0.521; 0.382; 0.59
ADAM 0.45 1.394; 1.312; 4.606 0.684 0.518; 0.025; 0.619 0.684 0.524; 0.01; 0.621
SGD 0.42 2.44; 0.633; 5.214 0.712 0.579; 0.473; 0.661 0.709 0.579; 0.476; 0.658
PAL 0.372 0.471; 0.409; 0.772 0.693 0.666; 0.638; 0.676 0.69 0.664; 0.63; 0.671

CIFAR-100 MobileNetV2 COCOB 0.486 0.513; 0.492; 0.536 0.644 0.63; 0.626; 0.637 0.644 0.63; 0.623; 0.638
ALIG 0.323 2.396; 0.817; 4.247 0.661 0.41; 0.034; 0.623 0.652 0.229; 0.01; 0.602
SGDHD 1.485 3.307; 2.425; 7.002 0.593 0.476; 0.39; 0.545 0.589 0.456; 0.385; 0.525
SLS 3.857 5.086; 5.031; 5.64 0.332 0.2; 0.099; 0.203 0.197 0.081; 0.052; 0.126
RMSP 0.198 1.518; 0.718; 3.368 0.728 0.593; 0.43; 0.635 0.727 0.593; 0.431; 0.634
ADAM 0.218 1.873; 0.776; 4.524 0.729 0.528; 0.025; 0.593 0.729 0.533; 0.02; 0.595
SGD 0.4 0.974; 0.473; 2.151 0.733 0.657; 0.57; 0.7 0.736 0.659; 0.573; 0.701
PAL 0.181 0.602; 0.314; 1.571 0.726 0.666; 0.574; 0.689 0.722 0.664; 0.509; 0.681

CIFAR-100 ResNet32 COCOB 0.498 0.569; 0.524; 0.673 0.609 0.608; 0.607; 0.608 0.605 0.602; 0.599; 0.604
ALIG 0.537 1.932; 0.995; 3.572 0.597 0.491; 0.19; 0.58 0.587 0.414; 0.144; 0.549
SGDHD 0.881 1.359; 1.06; 1.772 0.601 0.539; 0.472; 0.586 0.599 0.517; 0.431; 0.571
SLS 2.62 2.808; 2.78; 2.82 0.399 0.388; 0.384; 0.392 0.363 0.305; 0.274; 0.33
RMSP 0.519 1.019; 0.807; 2.083 0.661 0.599; 0.455; 0.651 0.656 0.603; 0.455; 0.65
ADAM 0.402 1.772; 0.768; 3.038 0.659 0.513; 0.262; 0.564 0.658 0.519; 0.255; 0.567
SGD 0.375 0.474; 0.4; 1.522 0.697 0.614; 0.494; 0.672 0.694 0.616; 0.502; 0.667
PAL 0.339 0.485; 0.369; 1.424 0.662 0.636; 0.546; 0.652 0.663 0.621; 0.512; 0.647

26

TOLSTOI RNN COCOB 1.506 1.56; 1.533; 1.593 0.589 0.58; 0.573; 0.584 0.582 0.572; 0.566; 0.577
ALIG 1.501 1.562; 1.528; 1.766 0.591 0.579; 0.523; 0.586 0.584 0.571; 0.513; 0.577
SGDHD 2.282 2.433; 2.379; 2.445 0.375 0.338; 0.336; 0.348 0.369 0.334; 0.332; 0.344
SLS 3.128 3.149; 3.136; 3.156 0.169 0.159; 0.158; 0.165 0.168 0.158; 0.157; 0.164
RMSP 1.475 1.509; 1.492; 1.556 0.599 0.591; 0.579; 0.595 0.592 0.583; 0.572; 0.587
ADAM 1.516 1.655; 1.596; 1.681 0.588 0.567; 0.55; 0.578 0.581 0.561; 0.543; 0.571
SGD 1.496 1.872; 1.56; 2.675 0.594 0.483; 0.278; 0.573 0.587 0.476; 0.275; 0.566
PAL 1.528 1.569; 1.547; 1.588 0.587 0.581; 0.577; 0.586 0.579 0.571; 0.556; 0.575

Imagenet ResNet50 RMSP 9.485 − 0.286 − 0.28 −
ADAM 1.863 − 0.562 − 0.559 −
SLS 3.808 − 0.286 − 0.069 −
SGD 1.123 − 0.656 − 0.65 −
PAL 0.773 − 0.608 − 0.608 −

Imagenet DenseNet121 RMSP 6.901 − 0.0 − 0.0 −
ADAM 6.901 − 0.001 − 0.0 −
SLS 7.768 − 0.001 − 0.001 −
SGD 3.308 − 0.458 − 0.452 −
PAL 1.228 − 0.617 − 0.611 −

E Binary Line Search

The optimal binary line search we compared PAL against. Since the line decreases in negative gradient
direction, at first a extrapolation phase performs as many steps forward as the loss does not increase.
Afterwards a binary search is performed. This approach is valid if the underlying line is convex. For
simple readability we chose Python 3.6 syntax.

1Input:max_num_of_search_steps
2def binary_line_search(last_loss , step , counter , is_extrapolate):
3if counter == max_num_of_search_steps:
4return last_loss
5counter += 1
6if is_extrapolate:
7current_loss = do_step_on_line(step)
8if current_loss < last_loss:
9return binary_line_search(current_loss , step ,counter ,

is_extrapolate)
10else:
11is_extrapolate = False
12do_step_on_line(-step ,get_loss=False)
13if not is_extrapolate:
14loss_right = do_step_on_line (0.5* step , True)
15if loss_right < last_loss:
16return binary_line_search(loss_right ,

0.5*step ,counter , is_extrapolate)
17loss_left = do_step_on_line (-1*step , True)
18if loss_left < last_loss:
19return binary_line_search(loss_left ,

0.5*step ,counter , is_extrapolate)
20do_step_on_line (0.5* step ,get_loss=False)
21if loss_right >= last_loss and loss_left >= last_loss:
22return binary_line_search(loss_left , 0.5*step ,

counter , is_extrapolate)
23else:
24# this state is not possible

27

