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1 Proofs from section: Model and problem formulation1

1.12

Lemma 1 Assuming a second order Taylor approximation, the quantization sensitivity Γ(X, ε)3

satisfies the following equation:4

Γ(X, ε) =

∣∣∣∣∣∂2MSE(X,∆ = ∆̃)

∂2∆
· ε

2

2

∣∣∣∣∣ . (1)

Proof: Let ∆′ be a quantization step with similar size to ∆̃ so that |∆′ − ∆̃| = ε. Using a second5

order Taylor expansion, we approximate MSE(X,∆′) around ∆̃ as follows:6

MSE(X,∆′) = MSE(X, ∆̃) +
∂MSE(X,∆ = ∆̃)

∂∆
(∆′ − ∆̃)

+
1

2
· ∂

2MSE(X,∆ = ∆̃)

∂2∆
(∆′ − ∆̃)2 +O(∆′ − ∆̃)3 .

(2)

Since ∆̃ is the optimal quantization step for MSE(X,∆), we have that ∂mse(X,∆=∆̃)
∂∆ = 0. In addition,7

by ignoring order terms higher than two, we can re-write Equation (2) as follows:8

MSE(X,∆′)−MSE(X, ∆̃) =
1

2
· ∂

2MSE(X,∆ = ∆̃)

∂2∆
(∆′−∆̃)2 =

∂2MSE(X,∆ = ∆̃)

∂2∆
· ε

2

2
. (3)

Equation (3) holds also with absolute values:9

Γ(X, ε) =
∣∣∣MSE(X,∆′)−MSE(X, ∆̃)

∣∣∣ =

∣∣∣∣∣∂2MSE(X,∆ = ∆̃)

∂2∆
· ε

2

2

∣∣∣∣∣ . (4)
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Lemma 2 Let XU be a continuous random variable that is uniformly distributed in the interval12

[−a, a]. Assume that Q∆(XU ) is a uniform M -bit quantizer with a quantization step ∆. Then, the13

expected MSE is given as follows:14

MSE(XU ,∆) =
(a− 2M−1∆)3

3a
+

2M ·∆3

24a
.

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.



Proof: Given a finite quantization step size ∆ and a finite range of quantization levels 2M , the15

quanitzer truncates input values larger than 2M−1∆ and smaller than −2M−1∆. Hence, denoting by16

τ this threshold (i.e., τ , 2M−1∆), the quantizer can be modeled as follows:17

Q∆(x) =


τ x > τ

∆ ·
⌊ x

∆

⌉
|x| ≤ τ

− τ x < −τ .

(5)

Therefore, by the law of total expectation, we know that18

E
[
(x−Q∆(x))

2
]

=

E
[
(x− τ)

2 | x > τ
]
· P [x > τ ] +

E
[(
x−∆ ·

⌊
x
∆

⌉)2 | |x| ≤ τ] · P [|x| ≤ τ ] +

E
[
(x+ τ)

2 | x < −τ
]
· P [x < −τ ] .

(6)

We now turn to evaluate the contribution of each term in Equation (6). We begin with the case of19

x > τ , for which the probability density is uniform in the range [τ, a] and zero for x > a. Hence, the20

conditional expectation is given as follows:21

E
[
(x− τ)

2 | x > τ
]

=

∫ a

τ

(x− τ)2

a− τ
· dx =

1

3
· (a− τ)2 . (7)

In addition, since x is uniformly distributed in the range [−a, a], a random sampling from the interval22

[τ, a] happens with a probability23

P [x > τ ] =
a− τ

2a
. (8)

Therefore, the first term in Equation (6) is stated as follows:24

E
[
(x− τ)

2 | x > τ
]
· P [x > τ ] =

(a− τ)3

6a
. (9)

Since x is symmetrical around zero, the first and last terms in Equation (6) are equal and their sum25

can be evaluated by multiplying Equation (9) by two.26

We are left with the middle part of Equation (6) that considers the case of |x| < τ . Note that the27

qunatizer rounds input values to the nearest discrete value that is a multiple of the quantization step28

∆. Hence, the quantization error, e = x−∆ ·
⌊
x
∆

⌉
, is uniformly distributed and bounded in the range29

[−∆
2 ,

∆
2 ]. Hence, we get that30

E
[(
x−∆ ·

⌊ x
∆

⌉)2

| |x| ≤ τ
]

=

∫ ∆
2

−∆
2

1

∆
· e2de =

∆2

12
. (10)

Finally, we are left to estimate P [|x| ≤ τ ], which is exactly the probability of sampling a uniform31

random variable from a range of 2τ out of a total range of 2a:32

P [|x| ≤ τ ] =
2τ

2a
=
τ

a
. (11)

By summing all terms of Equation (6) and substituting τ = 2M−1∆, we achieve the following33

expression for the expected MSE:34

E
[
(x−Q∆(x))

2
]

=
(a− τ)3

3a
+
τ

a

∆2

12
=

(a− 2M−1∆)3

3a
+

2M∆3

24a
. (12)
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Lemma 3 Let XU be a continuous random variable that is uniformly distributed in the interval37

[−a, a]. Given an M -bit quantizer Q∆(X), the expected MSE E
[
(X −Q∆(X))

2
]

is minimized by38

selecting the following quantization step size:39

∆̃ =
2a

2M ± 1
≈ 2a

2M
. (13)

Proof: We calculate the roots of the first order derivative of Equation (12) with respect to ∆ as40

follows:41

∂MSE(XU ,∆)

∂∆
=

1

a

(
2M−3∆2 − 2M−1

(
a− 2M−1∆

)2)
= 0 . (14)

Solving Equation (14) yields the following solution:42

∆̃ =
2a

2M ± 1
≈ 2a

2M
. (15)

�43

1.4 Hyper parameters to reproduce the results in Section 5- Experiments44

In the following section we describe the hyper parameters used in the experiments section. A fully45

reproducible code accompanies the paper.46

1.4.1 Hyper parameters for Section 5.1- Robustness towards variations in quantization step47

size48

In Table 1 we describe the hyper-parameters used in Fig. 4a and Fig. 4b in section 5.1 in the49

paper. We apply KURE on a pre-trained model from torch-vision repository and fine-tune it with50

the following hyper-parameters. When training phase ends we quantize the model using PTQ (Post51

Training Quantization) quantization method. All the other hyper-parameters like momentum and52

w-decay stay the same as in the pre-trained model.53

Table 1: Hyper parameters for the experiments in section 5.1 - Robustness towards variations in
quantization step size using PTQ methods

arch kurtosis
target (KT )

KURE
coefficient (λ )

initial
lr lr schedule batch

size epochs fp32 ac-
curacy

ResNet-50 1.8 1.0 1e-3
decays by a
factor of 10

every 30 epochs
128 50 76.4

In Table 2 we describe the hyper-parameters used in Fig. 4c and Fig. 4d in section 5.1 in the paper.54

We combine KURE with QAT method during the training phase with the following hyper-parameters.55

1.4.2 Hyper parameters for Section 5.2- Robustness towards variations in quantization56

bit-width57

In Table 3 we describe the hyper-parameters used in Table 1 in section 5.2.1 in the paper. We58

apply KURE on a pre-trained model from torch-vision repository and fine-tune it with the following59

hyper-parameters.60

In Table 4 we describe the hyper-parameters used in Fig. 5 in section 5.2.1 in the paper. We combine61

KURE with QAT method during the training phase with the following hyper-parameters.62
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Table 2: Hyper parameters for experiments in section 5.1 - Robustness towards variations in quantiza-
tion step size using QAT methods

arch QAT
method

quantization
settings
(W/A)

kurtosis
target
(KT )

KURE co-
efficient

(λ )

initial
lr

lr
schedule

batch
size epochs acc

ResNet-
18 DoReFa 4 / 4 1.8 1.0 1e-4

decays by
a factor of
10 every

30 epochs

256 80 68.3

MobileNet-
V2 DoReFa 4 / 8 1.8 1.0 5e-5

lr decay
rate of

0.98 per
epoch

128 10 66.9

Table 3: Hyper parameters for experiments in section 5.2 - Robustness towards variations in quantiza-
tion bit-width using PTQ methods

architecture kurtosis
target (KT )

KURE
coefficient (λ )

initial
lr lr schedule batch

size epochs fp32 ac-
curacy

ResNet-18 256 83 70.3
ResNet-50 1.8 1.0 0.001

decays by a
factor of 10

every 30 epochs
128 49 76.4

MobileNet-V2 256 83 71.3

Table 4: Hyper parameters for experiments in section 5.2 - Robustness towards variations in quantiza-
tion bit-width using QAT methods

arch QAT
method

quantization
settings
(W/A)

kurtosis
target
(KT )

KURE co-
efficient

(λ )

initial
lr

lr
schedule

batch
size epochs acc

ResNet-
18 LSQ 6 / 6 128 60 70.1

ResNet-
18 LSQ 4 / 4 128 60 69.3

ResNet-
50 LSQ 6 / 8

1.8 1.0 1e-3

decays by
a factor of
10 every

20 epochs
64 50 76.5

1.5 Robustness towards variations in quantization bit-width- additional results63

In Fig. 5 in the paper we demonstrated robustness to variations in quantization bit-width of QAT64

models. we used LSQ method as our QAT model. In Fig. 1 we demonstrate the improved robustness65

with different QAT methods (DoReFa and LSQ) and ImageNet models.66
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Figure 1: Bit-width robustness comparison of QAT model with and without KURE on different
ImageNet architectures. The ? is the original point to which the QAT model was trained.
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1.6 Robustness towards variations in quantization step size- additional results67

In section 5.1 in the paper, we explained the incentive to generate robust models for changes in the68

quantization step size. We mentioned that in many cases, accelerators support only a step size equal69

to a power of 2. In such cases, a model trained to operate at a step size different from a power of70

2 value will suffer from a significant accuracy drop. Table 5 shows the accuracy results when the71

quantization step size is equal to a power of 2 compared to the optimal step size (∆̃) , for ImageNet72

models trained with and without KURE.73

Table 5: KURE impact on model accuracy when rounding quantization step size to nearest power-of-2.
(ResNet-18 and ResNet-50 with ImageNet data-set)

W/A configuration
4 / FP 3 / FP

Model Method ∆ = ∆̃ ∆ = 2N ∆ = ∆̃ ∆ = 2N

No regularization 71.8 63.6 62.9 53.2ResNet-50 KURE regularization 75.6 74.2 73.6 71.6

No regularization 62.6 61.4 52.4 37.5ResNet-18 KURE regularization 68.3 66.2 62.6 55.8

1.7 Statistical significance of results on ResNet-18/ImageNet trained with DoReFa and74

KURE75

Table 6: Mean and standard deviation over multiple runs of ResNet-18 trained with DoReFa and
KURE

architecture QAT
method

quantization
settings
(W/A)

Runs Accuracy, %
(mean ± std)

ResNet-18 DoReFa 4 / 4 3 (68.4± 0.09)
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Figure 2: The network has been trained for quantization step size ∆̃. Still, the quantizer uses a slightly
different step size ∆. Small changes in optimal step size ∆̃ cause severe accuracy degradation in the
quantized model. KURE significantly enhances the model robustness by promoting solutions that are
more robust to uncertainties in the quantizer design (ResNet-18 on ImageNet).
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