
A Experiment Details for Classification

A.1 Dataset Details

All datasets except ImageNet were resized to resolution 32×32 to facilitate fast experimentation. Ima-
geNet was resized to resolution 64×64. CIFAR-10/100 are image classification datasets containing a
training set of 50K and a testing set of 10K 32×32 color images across the 10/100 classes. CINIC-10
has 270K 32×32 images across 10 classes equally split into three parts for training, validation, and
testing. Tiny-ImageNet has a training set of 100K and a testing set of 10K 64×64 images across
the 200 classes. PACS contains domain shifts (Art painting, Cartoon, Photo and Sketch), and we
train on all domains to test our model’s ability to fit on all domains. PACS is split as 9K/1K/10K for
training/validation/testing. MNIST-M also contains domain shifts due to the random background.
MNIST-M is split as 55K/5K/10K for training/validation/testing.

A.2 Implementation Details

We find adaptive learning rate optimizers like Adam [18] are more effective than SGD at optimizing
the dictionary, as these optimizers can compute individual adaptive learning rates for different
parameters. In all the experiments, we adopt AdamW [25], a variant of Adam [18] with correct
weight decay mechanism and better generalization capability.

Our models are trained by AdamW with weight decay rate 7.5e-5, an initial learning rate of 1e-3 and
batch size 128. For CIFAR-10 and CIFAR-100, we train for 400 epochs with learning rate reduced to
1e-4 at epoch 300. For CINIC-10 and Tiny-ImageNet, models are trained for 350 epochs with the
learning rate reduced to 1e-4 at epoch 250. We train vanilla baselines by AdamW in the same way as
our models.

We initialize kj and vj with Gaussian distribution N (0, 0.01), and apply a softmax over vj to make
it a probability distribution over multiple classes. Cosine similarity is adopted as the similarity metric
in (5). We set T in (5) to 0.2. For CIFAR-10 and CINIC-10, the number of dictionary entries S is set
to 5000, and for CIFAR-100 and Tiny-Imagenet S is set to 10000 in the main results. For the results
in Table 1, we set the number of inner loop steps to 1 and set α to be a learnable scalar. Ablation
studies of the number of inner loop finetuning steps and different forms of α (scalar or diagonal) are
given in Appendix A.5.

When optimizing the dictionary at the early stage, some entries might always receive larger gradients
than others due to the random initialization, which causes the model exploiting only part of the
dictionary entries. To boost the diversity of used entries, we randomly dropout 50% of the entries
during training. This also helps to prevent overfitting and improve training speed.

For models (Densenet40-BC, ResNet) with iFiLM, we learn a learnable fix-sized dictionary Ml =
{klj , γlj , βlj}

Sl
j=1 with every batch normalization layer, where Sl is set to 10 for all Ml.

We ran MAXL using code provided in [24] and performed extensive hyperparameter tuning to report
the best results. We run MAXL with SGD of a learning rate of 0.1 with momentum 0.9 and weight
decay 5× 104, and hierarchies to set to 5 as recommended in MAXL. We also try a larger learning
rate of 0.01. We dropped the learning rate by half for every 50 epochs with a total of 200 epochs.

(a) ResNet-29 (b) ResNet-56 (c) DenseNet40-BC

Figure 7: Validation accuracies of vanilla models with (shown in orange) and without (shown in
blue) extra parameters on CIFAR-100 across three backbone architectures.

12



A.3 vanilla Models with Extra Parameters

Compared to vanilla models, our best model (MN+iFiLM) with the same backbone architectures
contain S × (d+ C) extra trainable parameters in the dictionary M and 3× Sl × Cl extra trainable
parameters in M l, where S is the number of dictionary entries in M , d is the dimension of the
feature vector, C is the number of classes, Sl is the number of dictionary entries in M l and Cl is the
number of feature map channels. Since we set a small Sl = 10, extra parameters in M l is negligible
compared to the remaining model parameters. Therefore we only consider the extra parameters in M
in this section.

To investigate whether vanilla models can also benefit from more parameters as our model, we add an
extra fully connected layer with the same number of extra parameters to vanilla models. According
to Fig. 7, vanilla models with extra parameters have inferior validation accuracy than vanilla models
without extra parameters across three backbone architectures on CIFAR-100. The same observation
holds for other datasets. Therefore, vanilla models can not benefit from more parameters as our
model, and the performance boost in our paper originates from finetuning using neighbors, rather
than a naive increase in parameters.

We show in Table 1 that our method consistently improves performance regardless of the choice of
backbones, indicating our method can further improve over an even bigger model.

Note that our method is particularly helpful for low-capacity models, which usually handle simpler
tasks like MNIST/SVHN classification and regression. In the regression experiment in Section 4.3,
we show that naively increasing the model capacity can’t effectively further improve performance on
these simple tasks due to over-fitting, but our method can as it takes advantage of non-parametric
neighbor information.

A.4 Ablation Study of S and T

We investigate the impact of hyperparameters, S and T on CIFAR-100 using ResNet-29. As shown
in Fig. 8, the testing accuracy increases with the increase of the number of dictionary entries S (with
T set to 0.2), which indicates a better finetuning of φ with the help of more learnable neighbors. The
temperature T controls the “peakiness" of the similarity distribution in (5). It is set to a fixed value
rather than learned in all experiments. If we enable T to be learnable, it always grows to a small
value, which makes the model only pay attention to a small number of entries and leads to over-fitting.
On the other hand, if T is too large, the model will pay uniform attention to all entries in M , which
leads to under-fitting. According to Fig. 8, the optimal range of 1

T is [3,7] (with S set to 10000).

A.5 Ablation Study of the Number of Inner Loop Steps and the Form of α

As shown in Table 3, we found that implementing the inner loop learning rate α as a learnable scalar
usually gives better performance. The majority of our results are better when setting the number
inner-loop finetuning steps to 1. As we learn α rather than set it to a fixed value, our model can
achieve good performance in only one step of finetuning.

We also investigate how Meta-Neighborhoods performs without finetuning at test time. With
DenseNet40, our pre-tuned and post-tuned models achieve 90%/95% on cifar10 and 69%/76%
on cifar100, indicating it is beneficial to finetune the model. This is also substantiated by Fig. 4. This

Figure 8: Ablation studies of S and T on CIFAR-100.

13



Table 3: The classification accuracies of our model and the baselines. “ft" in our methods denotes
how many finetuning steps are used in the inner loop. “S" in our methods denotes using a scalar inner
loop learning rate, while “D" denotes using a diagonal matrix inner loop learning rate.

vanilla MAXL Meta-Neighborhoods (ours)
Datasets dot-sgd dot-adamw cos-sgd cos-adamw ft:1+S ft:1+D ft:3+S ft:3+D
Backbone: 4-layer ConvNet
MNIST 99.39% 99.47% 99.42% 99.44% 99.60% 99.62% 99.45% 99.50% 99.55%
SVHN 93.01% 93.12% 92.93% 93.02% 94.06% 94.46% 93.95% 94.05% 94.05%
Backbone: DenseNet40-BC
CIFAR-10 94.56% 94.46% 94.52% 94.53% 94.83% 95.04% 94.79% 95.08% 95.12%
CIFAR-100 73.85% 73.68% 74.08% 73.92% 75.64% 76.32% 77.20% 76.04% 76.42%
CINIC-10 85.13% 85.02% 85.10% 84.92% 85.42% 85.73% 85.76% 85.51% 85.21%
Tiny-Imagenet(32×32) 49.32% 49.21% 49.40% 49.28% 50.94% 53.27% 53.16% 52.88% 52.61%
Backbone: ResNet-29
CIFAR-10 94.91% 94.96% 95.02% 95.06% 95.31% 95.56% 95.28% 95.36% 95.26%
CIFAR-100 76.65% 76.72% 76.70% 76.51% 77.94% 78.84% 78.20% 78.04% 78.40%
CINIC-10 85.86% 85.91% 85.96% 86.03% 86.34% 86.86% 86.41% 86.38% 86.51%
Tiny-Imagenet(32×32) 54.79% 54.67% 54.97% 54.82% 56.29% 57.36% 56.93% 57.64% 57.27%
Backbone: ResNet-56
CIFAR-10 95.64% 95.83% 95.71% 95.73% 96.06% 96.36% 96.32% 96.28% 96.04%
CIFAR-100 79.54% 79.68% 79.78% 79.64% 80.36% 80.58% 80.66% 80.20% 80.14%
CINIC-10 88.03% 88.15% 87.90% 88.21% 88.30% 88.61% 88.47% 88.42% 88.38%
Tiny-Imagenet(32×32) 57.79% 57.95% 57.89% 57.92% 58.94% 60.05% 59.20% 59.85% 59.88%

bad result without finetuning at the testing stage is unsurprising because the model is used differently
at the training stage and the testing stage.

A.6 Ablation Study of vanilla Models

To ensure that the modifications (using cos-similarity output layer and AdamW optimizer) that we
made to the commonly-used vanilla model trained by SGD with dot-product output layer do not
deteriorate the performance, we also report the accuracies of vanilla models with either dot-product
or cos-similarity output layer and trained either by AdamW or SGD in Table 3. All these four vanilla
baselines have similar performance that is worse compared to our method.

A.7 Inference Speed

Due to the neighbor searching process and finetuning process, our method is slower at the testing
time compared to the vanilla testing process which only requires a single feed-forward propagation.
However, our method is only approximately 2 times slower than the vanilla models due to the
following reasons: (1) our searching space is small (only 5000 neighboring points) (2) the attention
calculation and the finetuning step are parallelized efficiently across multiple GPU threads (3) for the
classification task, we only finetune the parameters of the classification layer rather than the whole
model (4) we only finetune for a small number of steps (1 or 3).

A.8 Visualizing Learned Neighbors by Retrieving Real Neighbors

We further investigate whether the learned neighbors are semantically meaningful by retrieving their
5-nearest neighbors from the test set.

Examples on CIFAR-10 and MNIST are respectively shown in Fig. 9 and 10. We found most entries
can retrieve consistent neighbors. It is shown that the retrieved 5-nearest neighbors for each learned
neighbor not only come from the same class, but also represent a specific sub-category concept.
For instance, both of the entries on the fifth row of Fig. 9 represent “ship", but the first represents
“steamship" while the second represents “speedboat".

A.9 Sub-category Discovery

To quantitatively measure the sub-category discovery performance, we train our model (S is set to
5000) and the vanilla cos-adamw model with the same Densenet40 backbone on CIFAR-100 only
using its coarse-grained annotations (20 classes), and evaluate the classification accuracy on the
fine-grained 100 categories using KNN classifiers, which is called induction accuracy as in [16]. For
the vanilla model, the KNN classifier uses the feature zi = µθ(xi), while for our model, the classifier

14



entry #1
“dog”

entry #3
“airplane”

entry #4
“airplane”

entry #2
“dog”

entry #5
“car”

entry #6
“car”

entry #8
“horse”

entry #7
“horse”

entry #9
“ship”

entry #10
“ship”

entry #11
“bird”

entry #12
“bird”

Figure 9: 5-nearest neighbors of 12 dictionary entries retrieved using kj in (3) from the CIFAR-10
test set. Entry indexes and entry classes inferred from vj are shown on the left of each group of
images. By comparing the two entries on the same row, we discover that different entries represent
different fine-grained sub-category concepts.

Figure 10: 5-nearest neighbors of 30 dictionary entries retrieved using kj in (3) from the MNIST
test set. By comparing the three entries on the same row, we discover that different entries represent
different fine-grained attributes such as stroke widths, character orientations and fonts.

uses the attention vector ~ω = [ω(zi, k1), ω(zi, k2), ..., ω(zi, kS)] over all entries inM . Our KNN and
vanilla’s KNN achieve similar accuracy on the coarse 20 classes (80.18% versus 80.30%). However,
on the fine-grained 100 classes, our KNN achieves 63.3% while the vanilla’s KNN only achieves
59.28%. This indicates our learned neighbors can preserve fine-grained details that are not explicitly
given in the supervision signal. Examples of nearest neighbors retrieved are shown in Fig. 6.

B Experiment Details for Regression

We use five publicly available datasets with various sizes from UCI Machine Learning Repository:
music (YearPredictionMSD), toms, cte (Relative location of CT slices on axial axis), super (Super-
conduct), and gom (Geographical Original of Music). All datasets are normalized dimension-wise to
have zero means and unit variances.

15



For regression tasks, we found learning neighbors in the input space yields better performance
compared to learning neighbors in the feature space. As a result, our model for regression only
consists of an output network fφ and a dictionary M . It is trained with the loss in (2). A learning rate
of 1e-3 and a batch size of 128 are used, and the best weight decay rate is chosen for each dataset.
The training stops if the validation loss does not reduce for 10 epochs. We initialize kj with Gaussian
distribution N (0, 0.01) and vj with uniform distribution in the same range of the regression labels.
Cosine similarity is adopted to implement the similarity metric in (5). We use 1000 dictionary entries
and set T to 0.1 based on the validation performance. Because there is no batch normalization layer
in fφ, iFiLM is not used in this regression experiment.

16


	Experiment Details for Classification
	Dataset Details
	Implementation Details
	vanilla Models with Extra Parameters
	Ablation Study of S and T
	Ablation Study of the Number of Inner Loop Steps and the Form of 
	Ablation Study of vanilla Models
	Inference Speed
	Visualizing Learned Neighbors by Retrieving Real Neighbors
	Sub-category Discovery

	Experiment Details for Regression

