
Appendix of “Domain Adaptation as a Problem of
Inference on Graphical Models”

A1. Examples to Illustrate the Difference between Causal Graph and Our
Augmented DAG
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(a) The underlying data generating process
of Example 1. Y generates (causes) X , and
S denotes the selection variable (a data point
is included if and only if S = 1).
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(b) The augmented DAG representation for
Example 1 to explain how the data distribu-
tion changes across domains.
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(c) The generating process of Example 2. L is
a confounder; the mechanism of X changes
across domains, as indicated by ηX .
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(d) The augmented DAG representation for
Example 2 to explain how the data distribu-
tion changes across domains.

Figure 1: Two examples to illustrate the difference between the underlying causal graph and the
augmented DAG used to represent the property of distribution changes across domains. (a) and (c)
are the causal graphs of the two examples, and (b) and (d) the corresponding augmented DAGs.

Here we give two simple examples to illustrate the possible difference between the underlying causal
structure and the graph we use for domain adaption. In Example 1, let Y be disease and X the
corresponding symptoms. It is natural to have Y as a cause of X . Suppose we have data collected in
difference clinics, each of which corresponds to a domain. Further assume that subjects are assigned
to different clinics in a probabilistic way according to how severe the symptoms are. Figure 1(a) gives
the causal structure together with the sampling process to generate the data in each domain. S is a
selection variable, and a data point is selected if and only S takes value 1. P (S = 1|X) depends on
ηS , which may take different values across domains, reflecting different sampling mechanisms (e.g.,
subjects go to different clinics according to their symptoms). In this case, according to data in different
domains, P (X) changes. But P (Y |X) will stay the same because according to the process given in
(a), Y and S are conditionally independent given X and, as a consequence, P (Y |X,S) = P (Y |X).
The graphical model for describing the distribution change across domains is given in 1(b)–they are
apparently inconsistent, and the direction between Y and X is reversed; however, for the purpose of
DA, the graph in (b) suffices and, furthermore, as shown later, it can be directly learned from data
from multiple domains. Example 2 follows the causal structure given in Figure 1(c), where X and
Y are not directly causally related but have a hidden direct common cause (confounder) L and the
generating process of X also depends on ηX , whose value may vary across domains. We care only
about how the distribution changes–since in this example P (Y ) remains the same across domains,
we can factorize the joint distribution as P (Y,X) = P (Y )P (X|Y ), in which only P (X|Y ) changes
across domains, and the corresponding augmented DAG is shown in (d).
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Figure 2: An illustration of the benefit of Bayesian treatment of the changeability of distribution
modules ( represented by the θ variables).

A2. Illustration of Benefits from a Bayesian Treatment

Here is an example showing the benefits of a Bayesian treatment. For clarity purposes, we use
simple parametric models and a single feature X for the conditional distributions: Y ∼ N (0, θY ),
X = Y + E, where E ∼ N (0, θX), i.e., X|Y ∼ N (Y, θ2). So θY controls the distribution of Y ,
and θX controls the conditional distribution of X given Y . The marginal distribution of X is then
X ∼ N (0, θY + θX), which is what we can observe in the target domain. Clearly, from P (X) in
the target domain, P (Y ) or P (X|Y ) is not identifiable because P (X) gives only θY + θX . Now
suppose we have prior distributions for θY and θX : θY ∼ Γ(3, 1) and θX ∼ Γ(1.5, 1), where the two
arguments are the shape and scale parameters of the gamma distribution, respectively. Figure 2(a)
shows their prior distributions, and (b) gives the corresponding posterior distribution of θY given the
variance of X , whose empirical version is observed in the target domain. One can see that although
θY as well as θX is not theoretically identifiable, P (θY |Var(X)) is informative as to the value that
θY may take. Especially when Var(X) is relatively small, the posterior distribution is narrow. The
information we have about θY and X then allows non-trivial prediction of the target-domain joint
distribution and the Y values from the values of X .

A3. The Procedure of Learning the Augmented DAG

Denote by S the set of Y and all Xi. The adapted DAG learning method has the following three
steps.

Step 1 (Finding changing distribution factors and estimating undirected graph) Let C be the
domain index. Apply the first stage of the PC algorithm to S ∪ {C} (the domain index C is added
to the variable set to capture the changeability of the conditional distributions); it starts with an
undirected, fully connected graph, removes the edge between two variables that are conditionally
independent given some other variables, and finally determines the skeleton. It is interesting to
note that if variable Si ∈ S is adjacent to C, then Si is conditionally dependent on C given any
subset of the remaining variables, and hence, there exists two different values of C, c1 and c2, such
that P (Si |PA(Si), C = c1) 6= P (Si |PA(Si), C = c2), meaning that P (Si |PA(Si)) must change
across domains. Also add variable θSi in the graph, which points to Si.

Step 2 (Determining edge direction with additional constraints) We then find v-structures in
the graph and do orientation propagation, as in the PC algorithm [1], but we benefit from additional
constraints implied by the augmented DAG structure. In this procedure, we first make use of the
constraint that if variable Si is adjacent to C, then there exists a θ variable, θSi , pointing to Si;
given this direction, one may further determine the directions of other edges [2]. In particular,
suppose Sj is adjacent to Si but not to C. Then if it is conditionally independent from C given a
variable set that does not include Si, orient the edge between them as Sj → Si; if it is conditionally
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independent from C given a variable set that includes Si, orient it as Sj ← Si. Second, if Si and Sj
are adjacent and are both adjacent to C, use the direction between them which gives independent
changes in their conditional distributions, P (Si |PA(Si)) and P (Sj |PA(Sj)) [3]. If the changes are
dependent in both directions, merge Si and Sj as (part of) a “supernode” in the graph, and merge
their corresponding θ variables.

Step 3 (Instantiating a DAG) Step 2 produces a partially directed acyclic graph (PDAG), repre-
senting an Markov equivalence class [4]. All augmented DAGs in this equivalence class have the
same (conditional) independence relations, so finally, we instantiate from the equivalence class a
DAG over Y and the variables in its Markov Blanket (MB). (It was shown in Section 2 that inferring
the posterior of Y involves only the conditional distributions of Y and its children, not necessarily
the conditional distribution of every feature.)

Two remarks are worth making on this procedure. First, to avoid strong assumptions on the forms
of the conditional distributions, we make use of a nonparametric test of conditional independence,
namely, kernel-based conditional independence test [5], when learning the augmented DAG. Second,
given that the final inference for Y in the target domain depends only on the conditional distributions
of Y and its children, one may extend some form of local graph structure discovery procedure (see,
e.g., [6, 7]), to directly find the local graph structure involving Y and variables in its MB. This will
be particularly beneficial on the computational load if we deal with high-dimensional features.

A4. Stochastic Variational Inference for Latent-Variable Conditional GAN

For better illustration of the inference procedure, we consider the situation where we do not use the
graphical relations between Xi and Y . In this case, the data in all domains can be modeled by a
specific LV-CGAN (X,Y ) = g(E,θ) with no condition variables. Once we have knowledge about
the graphical model, either from domain prior or by learning, we can breakdown the generator into a
series of LV-CGANs according to the graph. The details will be given in the next section. For now,
we consider the learning and inference in a general generative model.

The log-likelihood terms in Eq. (5) can be considered as empirical estimation of the Kullback–Leibler
(KL) divergence between the data distribution and model distribution. Specifically, the KL divergence
between joint distribution ofX and Y in the ith source domain and the model distribution pg(X,Y |θ)
implied by the GAN generator g (with θ as an input) can be calculated by

KL(P (i)(X,Y )||pg(X,Y |θ))

=

∫
P (i)(x, y) logP (i)(x, y)dxdy −

∫
P (i)(x, y) log pg(x, y|θ)dxdy

= ci −
∫
P (i)(x, y) log pg(x, y|θ)dxdy, (A1)

where the term ci is considered as a constant because it does not contain any model parameters in g.
The empirical estimation of KL(P (i)(X,Y )||pg(X,Y |θ)) is

K̂L(P (i)(X,Y )||pg(X,Y |θ)) = ĉi −
1

mi

mi∑
k=1

log pg(x
(i)
k , y

(i)
k |θ), (A2)

where ĉi is an empirical estimation of ci. Similarly, we have the KL divergence between the marginal
distribution of X in the target domain and the marginal distribution of X induced by the GAN
generator g:

K̂L(P τ (X)||pg(X|θ)) = ĉτ −
1

m

m∑
k=1

log pg(x
τ
k|θ). (A3)

For simplicity of notations, we assume all the source domains are of the same sample size, i.e.,
m1 = m2 = . . . = ms = m. If the sample sizes of the domains are different, we can apply biased
batch sampling, which samples the same number of data points from each domain in a mini-batch.
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By multiplying both sides of Eq (5) by 1
m and adding the constants −ĉi and −ĉτ , we have

1

m
log p(D)−

s∑
i=1

ĉi − ĉτ ≥−
1

m

s∑
i=1

KL(q(θ|Di)|p(θ))− Eq(θ|Di)
[
K̂L(P (i)(X,Y )||pg(X,Y |θ))

]
− 1

m
KL(q(θ|Dτ )|p(θ))− Eq(θ|Dτ )

[
K̂L(P τ (X)||pg(X|θ))

]
. (A4)

Since pg(X,Y |θ) and pg(X|θ) are implied by a GAN generator g, we cannot compute the K̂L terms
in Eq. (A4). Instead, we replace the KL divergence with Maximum Mean Discrepancy (MMD)
or Jensen-Shannon Divergence (JSD) that can compare the distributions of real data and the fake
data generated from g. Specifically, given data (x

(i)
k , y

(i)
k )Bk=1 from the ith source domain, and data

(x̂
(i)
k , ŷ

(i)
k )Bk=1 from g(·,θ) (where B is the batch size), we have the following objective:

max
g,q
− 1

m

s∑
i=1

KL(q(θ|Di)|p(θ))− Eq(θ|Di)
[
D̂iv(P (i)(X,Y )||pg(X,Y |θ))

]
− 1

m
KL(q(θ|Dτ )|p(θ))− Eq(θ|Dτ )

[
D̂iv(P τ (X)||pg(X|θ))

]
., (A5)

where Div can be MMD, JSD or any other divergence measures that can measure the distance
between the real and fake samples. The empirical MMD between real and fake data is defined as

M̂MD(P (i)(X,Y )||pg(X,Y |θ)) =
1

B2

B∑
k=1

B∑
k′=1

k(x
(i)
k ,x

(i)

k′ )l(y
(i)
k , y

(i)

k′ )−

2

B2

B∑
k=1

B∑
k′=1

k(x
(i)
k , x̂

(i)

k′ )l(y
(i)
k , ŷ

(i)

k′ ) +
1

B2

B∑
k=1

B∑
k′=1

k(x̂
(i)
k , x̂

(i)

k′ )l(ŷ
(i)
k , ŷ

(i)

k′ ),

where k and l are kernel functions for x and y, respectively. The target-domain empirical MMD is
of the same form except that l function needs to be removed because only marginal distributions of
X are compared. According to the GAN formulation [8, 9], Jensen-Shannon Divergence (JSD) can
be implemented by introducing a discriminator D:

ĴSD(P (i)(X,Y )||pg(X,Y |θ)) = max
D

1

B

B∑
k=1

[logD(xk, yk)] +
1

B

B∑
k=1

[log(1−D(x̂k, ŷk))].

The target-domain JSD can be obtained by omitting yk and ŷk in the formulation.

Finally, we can make use of Eq. A5 to learn the posterior distribution q and generator g in an
end-to-end manner. For the expectation Eq(θ|Di)[·], we use the reparameterization trick [10] and

sample θ(i)j from the model θ = µ(i) + ε ∗ σ(i), where ε is a standard normal variable, such that the
variational parameters in the posterior distribution of θ can be simultaneously learned with g. If
assuming the prior p(θ) = N (0, I), the KL divergence terms KL(q(θ|D(i))|p(θ)) have the following
closed form solution:

KL(q(θ|D(i))|p(θ)) =
1

2

d∑
j=1

(−1− log((σ
(i)
j )2) + (µ

(i)
j )2 + (σ

(i)
j )2), (A6)

where d is the dimensionality of θ. KL(q(θ|Dτ )|p(θ)) can be calculated in the same way.

A5. Factorized Inference and Learning According to the Augmented DAG

In the previous section, we have shown the approximate inference and learning procedure when
not taking into consideration of graph structure. In this section, we will show how the inference
and learning procedure can be simplified given an augmented DAG. According to Eq. 4, we only
need to consider the set V = CH(Y ) ∪ {Y } for prediction of Y in the target domain. According
to an augmented DAG, we have the following factorization P (V|θ) =

∏
Vj∈V P (Vj |PA(Vj), θVj ).
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According to the factorization, we can calculate the posterior of θ in the ith source domain as

P (θ|Di) =

∏
k

∏
Vj∈V P (v

(i)
jk |PA(v

(i)
jk ), θVj )P (θVj )∫ ∏

k

∏
Vj∈V P (v

(i)
jk |PA(v

(i)
jk ), θVj )P (θVj )dθVj

=

∏
Vj∈V

∏
k P (v

(i)
jk |PA(v

(i)
jk ), θVj )P (θVj )∏

Vj∈V

∏
k

∫
P (v

(i)
jk |PA(v

(i)
jk ), θVj )P (θVj )dθVj

=
∏
Vj∈V

P (θVj |Di). (A7)

However, the target domain θ posterior cannot be factorized in this way because the marginalization
w.r.t. yτk , as shown in Eq. 4. Therefore, we can simplify the inference and learning procedure (A5) by
making use of the factorization in the source domain as

max
g,q
− 1

m

s∑
i=1

|V|∑
j=1

KL(q(θVj |Di)|p(θVj ))− Eq(θVj |Di)
[
D̂iv(P (i)(Vj ,PA(Vj))||pgj (Vj ,PA(Vj)|θVj ))

]
− 1

m
KL(q(θ|Dτ )|p(θ))− Eq(θ|Dτ )

[
D̂iv(P τ (X)||pg(X|θ))

]
, (A8)

where pgj (Vj ,PA(Vj)|θVj )) is the distribution specified by the LV-CGAN Vj = gj(Ej ,PA(Vj), θVj )
and pg(X|θ) is the marginal distribution of X specified by a composition of all the LV-CGANs gj
according to the augmented DAG.

After obtaining the approximate posterior distribution q(θ|Dτ ) and the LV-CGAN generator, we can
perform prediction in the target domain by approximating Eq. 4 as

P (yτk |xτ ) =

∫
P (yτk |xτk,θ)q(θ|Dτ )dθ

≈ 1

L

L∑
l=1

P (yτk |xτk, θl), (A9)

where θl ∼ q(θ|Dτ ) and P (yτk |xτk, θl) is estimated by training a softmax classifier on the data
generated from the LV-CGAN generator with θl as inputs.

A6. Learned Graph on WiFi Dataset

Figure 3 shows the learned augmented DAG on the WiFi localization dataset (t1 & t2). The graphs
learned on t2 & t3 and t1 & t3 are almost identical to the graph shown in Figure 3.

A7. Implementation Details in Digit Adaptation Experiments

To generate high-quality images, we build our model based on BigGAN [11]. We choose a simple
architecture and the generator and discriminator used are shown in Table 1.

For convenience, we use the following abbreviation: C = Feature channel, K = Kernel size, S = Stride
size, SNLinear = A linear layer with spectral normalization (SN), and SNResBlk = A residual block
with SN. The dimensionality of input noise E is 128.

Because the original CGAN formulation [9] that feeds the concatenation of the label and image into
a discriminator D usually cannot generate high-quality images, we utilize the recent Twin Auxiliary
Classifier GAN (TAC-GAN) framework [12] to match conditional distributions of generated and real
data in the source domains. Specifically, the formulation contains the following modules after the
shared feature extraction residual blocks: 1) the discriminator SNLinear (D) to distinguish real and
generated images, 2) the primary auxiliary classifier (AC) to predict class labels of real images in
source domains, 3) the twin auxiliary classifier (TAC) to predict labels of all generated images from
CGAN generator, 4) the primary domain classifier (DC) to predict domain labels of all data, and 5)
the twin domain classifier (TDC) to predict domain labels of all generated images from the CGAN
generator.
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Figure 3: The augmented DAG learned on the WiFi t1 and t2 datasets. Pink nodes denote the changing
modules and green ones denote the constant modules whose conditional distribution does not change across
domains.

Table 1: Network architecture for digits adaptation.
Generator

Index Layer C K S
1 SNLinear 256*4
2 Upsample SNResblk 256 3 1
3 Upsample SNResblk 256 3 1
4 Upsample SNResblk 256 3 1
5 Relu+SNConv+Tanh 3 3 1

Discriminator
1 Downsample SNResblk 256 3 1
2 Downsample SNResblk 256 3 1
3 Downsample SNResblk 256 3 1
4 AveragePooling 256
51 SNLinear (D) 1
52 SNLinear (AC) 10
53 SNLinear (TAC) 10
54 SNLinear (DC) 4
55 SNLinear (TDC) 4

A8. The generated images in Digit Adaptation Experiments

Figure 4 and Figure 5 show the generated images in the S+M+D/T and M+T+D/S tasks, respectively.
The last image is the generated image from LV-CGAN conditioned on the labels. Though the target
domain is unlabeled, our method successfully transfers information from the labeled source domains
and reconstruct the conditional distributions P (X|Y ) in the target domain.
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MNISTSVHN SynthDigitsMNIST-M

Figure 4: The generated images in each domain in the S+M+D/T task. Each row of an image
corresponds to a fixed Y value, ranging from 0 to 9. MNIST is the unlabeled target domain while the
rest are source domains.

MNIST SVHNSynthDigitsMNIST-M

Figure 5: The generated images in each domain in the M+T+D/S task. Each row of an image
corresponds to a fixed Y value, ranging from 0 to 9. SVHN is the unlabeled target domain while the
rest are source domains.
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