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1 Dataset Statistics

For fair comparison with previous work, we perform the node classification task on four benchmark
datasets, including Cora, Citeseer, Pubmed [1], and CoauthorCS [2]. They have been widely adopted
to study the over-smoothing issue in GNNs [3, 4, 5, 6, 7]. The detailed statistics are listed in
Table 1. To further illustrate that the normalization techniques could enable deeper GNNs to achieve
better performance, we apply them to a more complex scenario with missing features. For these
four benchmark datasets, we create the corresponding scenarios by removing node features in both
validation and testing sets.

Cora Citeseer Pubmed CoauthorCS

#Nodes 2708 3327 19717 18333
#Edges 5429 4732 44338 81894

#Features 1433 3703 500 6805
#Classes 7 6 3 15

#Training Nodes 140 120 60 600
#Validation Nodes 500 500 500 2250

#Testing Nodes 1000 1000 1000 15483

Table 1: Dataset statistics on Cora, Citeseer, Pubmed, and CoauthorCS.

2 Running Environment

All the GNN models and normalization approaches are implemented in PyTorch, and tested on a
machine with 24 Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GB processors, GeForce GTX-1080 Ti
12 GB GPU, and 128GB memory size. We implement the group normalization in a parallel way.
Thus the practical time cost of our DGN is comparable to that of traditional batch normalization.

3 GNN Models

We test over three general GNN models to illustrate the over-smoothing issue, including graph
convolutional networks (GCN) [8], graph attention networks (GAT) [9] and simple graph convolution
(SGC) networks [10]. We list their neighbor aggregation functions in Table 2.

Considering the message passing strategy as shown by Eq. (1) in the main manuscript, we explain
the key properties of GCN, GAT and SGC as follows. GCN merges the information from node itself
and its neighbors weighted by vertices’ degrees, where a(k)vv′ = 1./

√
(|N (v)|+ 1) · (|N (v′)|+ 1).
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Model Neighbor aggregation function

GCN h(k)v = ReLU(
∑
v′∈N (v)∪{v}

1√
(|N (v)|+1)·(|N (v′)|+1)

W (k)h
(k−1)
v′ )

GAT h(k)
v = ReLU(

∑
v′∈N (v)∪{v} a

(k)
vv′W

(k)h
(k−1)
v′ )

SGC h(k)
v =

∑
v′∈N (v)∪{v}

1√
(|N (v)|+1)·(|N (v′)|+1)

h
(k−1)
v′

Table 2: Neighbor aggregation function at a graph convolutional layer for GCN, GAT and SGC.

Functions AGG and COM are realized by a summation pooling. The activation function of ReLU is
then applied to non-linearly transform the latent embedding. Based on GCN, GAT uses an additional
attention layer to learn link weight a(k)vv′ . GAT aggregates neighbors with the trainable link weights,
and achieves significant improvements in a variety of applications. SGC is simplified from GCN by
removing all trainable parameters W (k) and nonlinear activations between successive layers. It has
been empirically shown that these simplifications do not negatively impact classification accuracy,
and even relive the problems of over-fitting and vanishing gradients in deeper models.

4 Normalization Baselines

Batch normalization is first applied between the successive convolutional layers in CNNs [11]. It is
extended to graph neural networks to improve node representation learning and generalization [12].
Taking embedding matrix H(k) as input after each layer, batch normalization scales the node rep-
resentations using running mean and variance, and generates a new embedding matrix for the next
graph convolutional layer. Formally, we have:

H̃(k) = γ(
H(k) − µ

σ
) + β ∈ Rn×d

(k)

.

µ and σ denote the vectors of running mean and standard deviation, respectively; γ and β denote
the trainable scale and shift vectors, respectively. Recently, pair normalization has been proposed to
tackle the over-smoothing issue in GNNs, targeting at maintaining the average node pair distance
over a graph [5]. Pair normalization is a simplifying realization of batch normalization by removing
the trainable γ and β. In this work, we augment each graph convolutional layer via appending a
normalization module, in order to validate the effectiveness of normalization technique in relieving
over-smoothing and enabling deeper GNNs.

5 Hyperparameter Tuning in DGN

The balancing factor, λ, is crucial to determine the trade-off between input feature preservation and
group normalization in DGN. It needs to be tuned carefully as GNN models increase the number
of layers. To be specific, we consider the candidate set {5 · 10−4, 1 · 10−3, 2 · 10−3, 3 · 10−3, 5 ·
10−3, 1 · 10−2, 2 · 10−2, 3 · 10−2, 5 · 10−2}. For each specific model, we use a few epochs to choose
the optimal λ on the validation set, and then evaluate it on the testing set. We observe that the value of
λ tends to be larger in the model accompanied with more graph convolutional layers. That is because
the over-smoothing issue gets worse with the increase in layer number. The group normalization is
much more required to separate the node representations of different classes.

6 Instance Information Gain

In this work, we adopt kernel-density estimators (KDE), one of the common non-parametric ap-
proaches, to estimate the mutual information between input feature and representation vector [13, 14].
A key assumption in KDE is that the input feature (or output representation vector) of neural networks
is distributed as a mixture of Gaussians. Since a neural network is a deterministic function of the
input feature after training, the mutual information would be infinite without such assumption. In
the following, we first formally define the Gaussian assumption, input probability distribution and
representation probability distribution, and then present how to obtain the instance information gain
based on the mutual information metric.
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Gaussian assumption. In the graph signal processing, it is common to assume that the collected
input feature contains both true signal and noise. In other word, we have the input feature as follows:
xv = x̄v + εx. x̄v denotes the true value, and εx ∼ N (0, σ2I) denotes the added Gaussian noise
with variance σ2. Therefore, input feature xv is a Gaussian variable centered on its true value.

Input probability distribution. We treat the empirical distribution of input samples as true distri-
bution. Given a dataset accompanied with n samples, we have a series of input features {x1, · · · , xn}
for all the samples. Each node feature is sampled with probability 1/|V| following the empirical
uniform distribution. Let |V| denotes the number of samples, and let X denote the random variable
of input features. Based on the above Gaussian assumption, probability PX (xv) of input feature xv
is obtained by the product of 1/|V| with Gaussian probability centered on true value x̄v .

Representation probability distribution. Let H denote the random variable of node represen-
tations. To obtain probability PH(hv) of continuous vector hv, a general approach is to bin and
transform H into a new discrete variable. However, with the increasing dimensions of hv, it is
non-trivial to statistically count the frequencies of all possible discrete values. Considering the task
of node classification, the index of largest element along vector hv ∈ RC×1 is regarded as the label
of a node. We propose a new binning approach that labels the whole vector hv with the largest index
zv . In this way, we only have C classes of discrete values to facilitate the frequency counting. To be
specific, let Pc denote the number of representation vectors whose indexes zv = c. The probability
of a discrete variable with class c is given by: pc = PH(zv = c) = Pc∑C

l=1 Pl
.

Mutual information calculation. Based on KDE approach, a lower bound of mutual information
between input feature and representation vector can be calculated as:

GIns = I(X ;H) =
∑
xv∈X ,hv∈H PXH(xv, hv) log PXH(xv,hv)

PX (xv)PH(hv)

= H(X )−H(X|H)

≥ − 1
|V|

∑
i log 1

|V|
∑
j exp(− 1

2
||xi−xj ||22

4σ2 )

−
∑C
c=1 pc[−

1
Pc

∑
i,zi=c

log 1
Pc

∑
j,zj=c

exp(− 1
2
||xi−xj ||22

4σ2 )].

The sum over i, zi = c represents a summation over all the input features whose representation
vectors are labeled with zi = c. PXH(xv, hv) denotes the joint probability of xv and hv. The
effectiveness of GIns in measuring mutual information between input feature and node representation
has been demonstrated in the experimental results. As illustrated in Figures 1-4, GIns decreases with
the increasing number of graph convolutional layers. This practical observation is in line with the
human expert knowledge about neighbor aggregation strategy in GNNs. The neighbor aggregation
function as shown in Table 2 is in fact a low-passing smoothing operation, which mixes the input
feature of a node with those of its neighbors gradually. At the extreme cases where K = 30 or 120,
we find that GIns approaches to zero in GNN models without normalization. The loss of informative
input feature leads to the dropping of node classification accuracy. However, our DGN keeps the
input information during graph convolutions and normalization to some extent, resulting in the largest
GIns compared with the other normalization approaches.

7 Performance Comparison on Attributed Graphs

In this section, we report the model performances in terms of test accuracy, instance information
gain and group distance ratio achieved on all the concerned datasets in Figures 1-4. We make the
following observations:

• Comparing with other normalization techniques, our DGN generally slows down the dropping
of test accuracy with the increase in layer number. Even for GNN models associated with a
small number of layers (i.e., G ≤ 5), DGN achieves the competitive performance compared with
none normalization. The adoption of DGN module does not damage the model performance, and
prevents model from suffering over-smoothing issue when GNN goes deeper.

• DGN achieves the larger or comparable instance information gains in all cases, especially for GAT
models. That is because DGN keeps embedding matrix H(k) and prevents over-normalization
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within each group. The preservation of H(k) saves input features to some extent after each layer
of graph convolutions and normalization. In an attributed graph, the improved preservation of
informative input features in the final representations will significantly facilitate the downstream
node classification. Furthermore, such preservation is especially crucial for GNN models with a
few layers, since the over-smoothing issue has not appeared.

• DGN normalizes each group of node representations independently to generally improve the
group distance ratio, especially for models GCN and GAT. A larger value of group distance ratio
means that the node representation distributions from all groups are disentangled to address the
over-smoothing issue. Although the ratios of DGN are smaller than those of pair normalization in
some cases upon SGC framework, we still achieve the largest test accuracy. That may be because
the intra-group distance in DGN is much smaller than that of pair normalization. A small value of
intra-group distance would facilitate the node classification within the same group. We will further
compare the intra-group distance in scenarios with missing features in the following experiments.
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Figure 1: The test accuracy, instance information gain, and group distance ratio in attributed Cora.
We compare differentiable group normalization with none, batch and pair normalizations.
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Figure 2: The test accuracy, instance information gain, and group distance ratio in attributed Citeseer.
We compare differentiable group normalization with none, batch and pair normalizations.
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Figure 3: The test accuracy, instance information gain, and group distance ratio in attributed Pubmed.
We compare differentiable group normalization with none, batch and pair normalizations.
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Figure 4: The test accuracy, instance information gain, and group distance ratio in attributed Coau-
thorCS. We compare differentiable group normalization with none, batch and pair normalizations.

8 Performance Comparison in Scenarios with Missing Features

In this section, we report the model performances in terms of test accuracy, group distance ratio and
intra-group distance achieved in scenarios with missing features in Figures 5-8. The intra-group
distance is calculated by node pair distance averaged within the same group. Its mathematical
expression is given by the denominator of Equation (3) in the main manuscript. We make the
following observations:

• DGN achieves the largest test accuracy by exploring the deeper neural architecture with a larger
number of graph convolutional layers. In the scenarios with missing features, GNN model relies
highly on the neighborhood structure to classify nodes. DGN enables the deeper GNN model
to exploit neighborhood structure with multiple hops away, and at the same time relieves the
over-smoothing issue.

• Comparing with other normalization techniques, DGN generally improves the group distance ratio
to relieve over-smoothing issue. Although in some cases the ratios are smaller than those of pair
normalization upon SGC framework, we still achieve the comparable or even better test accuracy.
That is because DGN has a smaller intra-group distance to facilitate node classification within the
same group, which is analyzed in the followings.

• DGN obtains an appropriate intra-group distance to optimize the node classification task. While the
over-smoothing issue results in an extremely-small distance in the model without normalization,
a larger one in pair normalization leads to the inaccurate node classification within each group.
That is because the pair normalization is designed to maintain the distance between each pair
of nodes, no matter whether they locate in the same class group or not. The divergence of node
representations in a group prevents a downstream classifier to assign them the same class label.
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Figure 5: The test accuracy, group distance ratio and intra-group distance in Cora with missing
features. We compare differentiable group normalization with none, batch and pair normalizations.
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Figure 6: The test accuracy, group distance ratio and intra-group distance in Citeseer with missing
features. We compare differentiable group normalization with none, batch and pair normalizations.
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Figure 7: The test accuracy, group distance ratio and intra-group distance in Pubmed with missing
features. We compare differentiable group normalization with none, batch and pair normalizations.
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Figure 8: The test accuracy, group distance ratio and intra-group distance in CoauthorCS with missing
features. We compare differentiable group normalization with none, batch and pair normalizations.
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