
A Pseudo-code of proposed methods

In this section, we provide the pseudo-codes of methods proposed in the main paper. First, Algo-
rithm A shows the pseudo-code of ODI for white-box attacks in Section 3.1. The line 4-6 in the
algorithm describes the iterative update by ODI.

Algorithm A Initialization by ODS (ODI) for white-box attacks
1: Input: A targeted image xorg, a target classifier f , perturbation set B(xorg), number of ODI

steps NODI, step size ηODI, number of restarts NR
2: Output: Starting points {xstarti } for adversarial attacks
3: for i = 1 to NR do
4: Sample x0 from B(xorg), and sample wd ∼ U(−1, 1)C
5: for k = 0 to NODI − 1 do
6: xk+1 ← ProjB(xorg) (xk + ηODI sign(vODS(xk, f ,wd)))

7: xstarti ← xNODI

We also describe the algorithm of Boundary-ODS, used in Section 5.2 of the main paper. Algorithm B
shows pseudo-code of Boundary-ODS. The original Boundary Attack [17] first sampled a random
noise vector q from a Gaussian distribution N (0, I) and then orthogonalized the vector to keep the
distance from the original image (line 7 in Algorithm B). After that, the attack refined the vector q to
reduce the distance from the original image such that the following equation holds:

d(x,xadv)− d(x,xadv + q) = ε · d(x,xadv) (A)

where d(a, b) is the distance between a and b. We replace the random Gaussian sampling to ODS
as in the line 5 and 6 of Algorithm B. Sampled vectors by ODS yield large changes for outputs on
the target model and increase the probability that the updated image is adversarial (i.e. the image
satisfies the line 9 of Algorithm B), so ODS makes the attack efficient.

Algorithm B Boundary Attack [17] with sampling update direction by ODS
1: Input: A targeted image x, a label y, a target classifier f , a set of surrogate models G
2: Output: attack result xadv
3: Set the starting point xadv = x which is adversary
4: while k < number of steps do
5: Choose a surrogate model g from G, sample wd ∼ U(−1, 1)C
6: Set q = vODS(xadv,g,wd)
7: Project q onto a sphere around the original image x
8: Update q with a small movement toward the original image x such that Equation (A) holds
9: if xadv + q is adversarial then

10: Set xadv = xadv + q

B Details of experiment settings

B.1 Hyperparameters and settings for attacks in Section 4.1

We describe hyperparameters and settings for PGD and C&W attacks in Section 4.1.

Multiple loss functions L(·) can be used for PGD attacks, including the cross-entropy loss, and the
margin loss defined as maxi 6=y fi(x) − fy(x). We use the margin loss for PGD attacks to make
considered attacking methods stronger.

PGD attacks have three hyperparameters: pertubation size ε, step size η and number of steps N .
We chose ε = 0.3, 8/255, 4/255, η = 0.02, 2/255, 0.5/255 and N = 40, 20, 50 for MadryLab
(MNIST), MadryLab (CIFAR-10), ResNet152 Denoise (ImageNet), respectively. We use the whole
test set except for ImageNet, where the first 1000 test images are used.

For C&W attacks, we define naïve random initialization to make sure the starting points are within
an `2 ε-radius ball: we first sample Gaussian noise w ∼ N (0, I) and then add the clipped noise

14



ε ·w/‖w‖2 to an original image. We set the perturbation radius of initialization ε by reference to
attack bounds in other studies: ε = 2.0, 1.0, 5.0 for MadryLab (MNIST), MadryLab (CIFAR-10),
ResNet152 Denoise (ImageNet), respectively. we also set hyperparameters of C&W attacks as
follows: max iterations are 1000 (MNIST) and 100 (CIFAR-10 and ImageNet), search step is 10,
learning rate is 0.1, and initial constant is 0.01. The attack is performed for the first 1000 images
(MNIST and CIFAR-10) and the first 500 images (ImageNet).

B.2 Hyperparameter tuning for tuned ODI-PGD in Section 4.2

We describe hyperparameter tuning for our tuned ODI-PGD in Section 4.2. We summarize the setting
in Table A.

Table A: Hyperparameter setting for tuned ODI-PGD in Section 4.2.

ODI PGD

model total step
NODI

step size
ηODI

optimizer total step
N

step size (learning rate)
ηk

MNIST 50 0.05 Adam 950
0.1 (k < 475)
0.01 (475 ≤ k < 712)
0.001 (712 ≤ k)

CIFAR-10 10 8/255 sign
function 140

8/255 (k < 46)
0.8/255 (46 ≤ k < 92)
0.08/255 (92 ≤ k)

For ODI, we increase the number of ODI step NODI to obtain more diversified inputs than ODI
with NODI = 2. In addition, we make step size ηODI smaller than ε on MNIST, because ε-ball with
ε = 0.3 is large and ηODI = 0.3 is not suitable for seeking the diversity within the large ε-ball. In
summary, we set (NODI, ηODI) = (50, 0.05), (10, 8/255) for the MNIST model and the CIFAR-10
model, respectively.

We tune hyperparameters of PGD based on Gowal et al. [16]. While several studies used the sign
function to update images for the PGD attack, some studies [44, 16] reported that updates by Adam
optimizer [45] brought better results than the sign function. Following the previous studies [44, 16],
we consider the sign function as an optimizer and the choice of an optimizer as a hyperparameter. We
use Adam for the PGD attack on the MNIST model and the sign function on the CIFAR-10 model.

We adopt scheduled step size instead of fixed one. Because we empirically found that starting from
large step size brings better results, we set the initial step size η0 as η0 = ε on CIFAR-10. We update
step size at k = 0.5N, 0.75N on MNIST and k = N/3, 2N/3 for on CIFAR-10. When we use
Adam, step size is considered as learning rate. Finally, we set PGD step N as NODI +N = 1000 on
MNIST and 150 on CIFAR-10.

B.3 Setting for training on ImageNet in Section 5.3

We describe the setting of training of surrogate models on ImageNet in the experiment of Section 5.3.
We use the implementation of training provided in PyTorch with default hyperparameters. Namely,
training epochs are 90 and learning rates are changed depending on epoch: 0.1 until 30 epochs, 0.01
until 60 epochs, 0.001 until 90 epochs. Batch size is 256 and weight decay 0.0001.

C Additional results and experiments for ODI with white-box attacks

C.1 Diversity offered by ODI

We empirically demonstrate that ODI can find a more diverse set of starting points than random
uniform initialization, as pictorially shown in the left figures of Figure 1 of the main paper.

As an example of target models, we train a robust classification model using adversarial training [2]
on CIFAR-10. We adopted popular hyperparameters for adversarial training under the `∞ PGD attack

15



on CIFAR-10: perturbation size ε = 8/255, step size η = 2/255, and number of steps N = 10.
Training epochs are 100 and learning rates are changed depending on epoch: 0.1 until 75 epochs,
0.01 until 90 epochs, and 0.001 until 100 epochs. Batch size is 128 and weight decay 0.0002.

On the target model, we quantitatively evaluate the diversity of starting points by each initialization
in terms of pairwise distances of output values f(x). Each initialization is bounded within `∞ ε-ball
with ε = 8/255. We pick 100 images on CIFAR-10 and run each initialization 10 times to calculate
the mean pairwise distances among outputs for different starting points. As a result, the mean
pairwise distance obtained from ODI is 6.41, which is about 15 times larger than that from uniform
initialization (0.38). This corroborates our intuition that starting points obtained by ODI are more
diverse than uniform initialization. We note that PGD does not generate diverse samples. When we
use PGD with 2 steps as an initialization, the mean pairwise distance is only 0.43.

We also visualize the diversity offered by ODI. First, we focus on loss histogram of starting points
by ODI and naïve uniform initialization. We pick an image from the CIFAR-10 test dataset and run
each initialization 100 times. Then, we calculate loss values for starting points to visualize their
diversity in the output space. The left panel of Figure A is the histogram of loss values for each
initialization. We can easily observe that images from naïve initialization concentrate in terms of
loss values (around −1.0), whereas images from ODI-2 (ODI with 2 steps) are much more diverse in
terms of the loss values. We also observe that images from PGD-2 also take similar loss values. By
starting attacks from these initial inputs, we obtain the histogram of loss values in the center panel
of Figure A. We can observe that ODI-PGD generates more diverse results than PGD with naïve
initialization (PGD-20).

In addition, we apply t-SNE [46] to the output logits for starting points by each initialization. We
visualize the embedding produced by t-SNE in the right panel of Figure A. As expected, starting
points produced by ODI are more diversified than those by naïve initialization.

Figure A: (Left): Histogram of loss values evaluated at starting points by ODI, naïve uniform
initialization and PGD. PGD-2 means 2-step PGD with naïve initialization. The loss function is the
margin loss. (Right) Histogram of loss values after attacks with 20 total steps. ODI-PGD-18 means
18-step PGD with 2-step ODI. (Right): Embedding for starting points sampled on each initialization
produced by t-SNE.

C.2 Analysis of the sensitivity to hyperparameters of ODI

For ODI, we mainly set the number of ODI steps NODI = 2 and step size ηODI = ε. To validate the
setting, we confirm that ODI-PGD is not sensitive to these hyperparameters. We attack adversarially
trained models on CIFAR-10 introduced in Section C.1, and adopt the same attack setup for ODI-PGD
on CIFAR-10 as Section 4.1. We test NODI = 2, 4, 8, 16 and ηODI = ε, ε/2, ε/4, ε/8, but exclude
patterns with NODI · ηODI < 2ε to make NODI · ηODI larger than or equal to the diameter of the ε-ball.
We calculate the mean accuracy for five repetitions of the attack, each with 20 restarts.

Table B shows the mean accuracy under ODI-PGD for different hyperparameters. The maximum
difference in the mean accuracy among different hyperparameters of ODI is only 0.05%. Although
large NODI and ηODI will be useful to find more diversified starting points, the performance of ODI is
not very sensitive to hyperparameters. Thus, we restrict NODI to a small value to give fair comparison
in terms of computation time as much as possible. Table B also shows that the difference between the
maximum and minimum accuracy is about 0.1% for all hyperparameter pairs. This result supports
the stability of ODI.

16



Table B: The sensitivity to the number of ODI steps NODI and step size ηODI. We repeat each
experiment 5 times to calculate statistics.

NODI ηODI mean max min

2 ε 44.46% 44.50% 44.45%
4 ε/2 44.47% 44.50% 44.42%
4 ε 44.42% 44.48% 44.40%
8 ε/4 44.47% 44.52% 44.44%
8 ε/2 44.42% 44.48% 44.36%
8 ε 44.46% 44.49% 44.42%

16 ε/8 44.46% 44.50% 44.43%
16 ε/4 44.46% 44.50% 44.40%
16 ε/2 44.45% 44.48% 44.43%
16 ε 44.44% 44.47% 44.41%

C.3 Accuracy curve for adversarial attacks with ODI

In Section 4, we experimentally represented that the diversity offered by ODI improved white-box
`∞ and `2 attacks. we describe the accuracy curve with the number of restarts for attacks with ODI
and naïve initialization.

Figure B shows how the attack performance improves as the number of restarts increases in the
experiment of Section 4.1. Attacks with ODI outperforms those with naïve initialization with the
increase of restarts in all settings. These curves further corroborate that restarts facilitate the running
of attack algorithms, and ODI restarts are more effective than naïve ones. We note that the first restart
of ODI is sometimes worse than naïve initialization. It is because diversity can cause local optima, i.e.
random directions of ODI are not always useful. With the increase of restarts, at least one direction is
useful and the accuracy drops.

PG
D

C
&

W

MNIST CIFAR-10 ImageNet

Figure B: The attack performance against number of restarts for attacks with ODI. (Top): the model
accuracy for PGD, (Bottom): the average of minimum `2 perturbations for C&W.

Next, we describe the accuracy curve for the comparison between state-of-the-are attacks and ODI-
PGD in Section 4.2. To emphasize the stability of the improvement, we evaluate the confidence
intervals of our results against MadryLab’s MNIST and CIFAR-10 models. We run tuned ODI-PGD
attack with 3000 restarts on MNIST and 100 restarts on CIFAR-10. Then, we sample 1000 runs on
MNIST and 20 runs on CIFAR-10 from the results to evaluate the model accuracy, and re-sample
100 times to calculate statistics. Figure C shows the accuracy curve under tuned ODI-PGD. We
observe that confidence intervals become tighter as the number of restarts grows, and tuned ODI-PGD
consistently outperforms the state-of-the-art attack after 1000 restarts on MNIST and 20 restarts on
CIFAR-10.

17



MadryLab (MNIST) MadryLab (CIFAR-10)

Figure C: Model accuracy under tuned ODI-PGD and the current state-of-the-art attacks [16]. The
solid lines represent values from Table 2 and the error bars show 95% confidence intervals.

C.4 Tighter estimation of robustness for various models

One important application of powerful adversarial attacks is to evaluate and compare different defense
methods. In many previous works on defending against adversarial examples, PGD attack with naïve
uniform initialization (called naïve-PGD) is a prevailing benchmark and its attack success rate is
commonly regarded as a tight estimation on (worst-case) model robustness. In this section, we
conduct a case study on six recently published defense methods [47, 48, 49, 50, 51, 52] to show that
ODI-PGD outperforms naïve-PGD in terms of upper bounding the worst model accuracy under all
possible attacks.

Setup We use pre-trained models from four of those studies, and train the other two models [51, 52]
using the settings and architectures described in their original papers. We run attacks with ε = 8/255
on all test images. Other attack settings are the same as the experiment for CIFAR-10 in Section 4.1.
Apart from comparing ODI-PGD and naïve-PGD, we also evaluate PGD attack without restarts
(denoted as PGD1) as it is adopted in several existing studies [47, 48, 49, 52].

Table C: Accuracy of models after performing ODI-PGD and naïve-PGD attacks against recently
proposed defense models.

model (1) PGD1 (2) naïve-PGD (3) ODI-PGD (1)−(2) (2)−(3)

UAT [47] 62.63% 61.93% 57.43% 0.70% 4.50%
RST [48] 61.17% 60.77% 59.93% 0.40% 0.84%

Feature-scatter [49] 59.69% 56.49% 39.52% 3.20% 16.97%
Metric learning [50] 50.57% 49.91% 47.64% 0.56% 2.27%

Free [51] 47.19% 46.39% 44.20% 0.80% 2.19%
YOPO [52] 47.70% 47.07% 45.09% 0.63% 1.98%

Results As shown in Table C, ODI-PGD uniformly outperforms naïve-PGD against all six recently-
proposed defense methods, lowering the estimated model accuracy by 1–17%. In other words,
ODI-PGD provides uniformly tighter upper bounds on the worst case model accuracy than naïve-
PGD. Additionally, The accuracy ranking of the defence methods for ODI-PGD is different from
naïve-PGD and PGD1. These results indicate that ODI-PGD might be a better benchmark for
comparing and evaluating different defense methods, rather than naïve-PGD and PGD1.

D Additional results and experiments for ODS with black-box attacks

D.1 Diversified samples by ODS

We empirically show that ODS can yield diversified changes in the output space of the target model,
as shown in the right figures of Figure 1 of the main paper. Specifically, we evaluate the mean

18



pairwise distance among outputs for different perturbations by ODS and compare it with the distance
among outputs for random Gaussian sampling.

We use pre-trained Resnet50 [28] and VGG19 [29] model as the target and surrogate models,
respectively. We pick 100 images on ImageNet validation set and sample perturbations 10 times
by each sampling method. For comparison, we normalize the perturbation to the same size in the
input space. Then, the obtained pairwise distance on the target model by ODS is 0.79, which is 10
times larger than the pairwise distance by random Gaussian sampling (0.07). This indicates that the
diversity by ODS is transferable.

D.2 Success rate curve in Section 5.1 and Section 5.2

In Section 5.1, we demonstrated that SimBA-ODS outperformed state-of-the-art attacks in terms of
the query-efficiency. As an additional result, we give the success rate curve of score-based attacks
with respect to the number of queries in the experiments. Figure D shows how the success rate
changes with the number of queries for SimBA-ODS and SimBA-DCT for the experiment of Table 3.
SimBA-ODS especially brings query-efficiency at small query levels. In Figure E, we also describe
the success rate curve for the experiment of Table 5. ODS-RGF outperforms other methods in the `2
norm.

untargeted targeted

Figure D: Relationship between success rate and number of queries for score-based SimBA-ODS and
SimBA-DCT.

untargeted (`2) targeted (`2) untargeted (`∞) targeted (`∞)

Figure E: Relationship between success rate and number of queries for SimBA-ODS, ODS-RGF, and
Square Attack. Each attack is evaluated with norm bound ε = 5(`2), 0.05(`∞).

In Section 5.2, we demonstrated that Boundary-ODS outperformed state-of-the-art attacks in terms
of median `2 perturbation. Here, we depict the relationship between the success rate and perturbation
size (i.e. the frequency distribution of the perturbations) to show the consistency of the improvement.
Figure F describes the cumulative frequency distribution of `2 perturbations for each attack at 10000
queries. Boundary-ODS consistently decreases `2 perturbations compared to other attacks in both
untargeted and targeted settings.

D.3 Comparison of ODS with TREMBA

We run experiments to compare ODS with TREMBA, which is a state-of-the-art attack with surrogate
models, as we mentioned in Section 5.1.2. TREMBA leverages surrogate models to learn a low-
dimensional embedding so as to obtain initial adversarial examples using a transfer-based attack
and then update them using a score-based attack. Although TREMBA uses random sampling, ODS
does not work well with TREMBA because random sampling of TREMBA is performed in the
embedding space. In addition, it is difficult to directly compare attacks with ODS (e.g., ODS-RGF)

19



untargeted targeted

Figure F: Cumulative frequency distribution of `2 perturbations at 10000 queries for decision-based
attacks.

and TREMBA because we do not discuss the combination of ODS with transfer-based attacks in this
paper.

However, we can start attacks with ODS (e.g., ODS-RGF) from images generated by any transfer-
based attacks and compare the attack with TREMBA. We generate starting points by SI-NI-DIM [35]
(Scale-Invariant Nesterov Iterative FGSM integrated with diverse input method), which is a state-of-
the-art transfer-based attack, and run ODS-RGF from these starting points.

We adopt the same experiment setup as TREMBA [34]: we evaluate attacks against four target
models (VGG19, ResNet34, DenseNet121, MobileNetV2) for 1000 images on ImageNet and use
four surrogate models (VGG16, Resnet18, Squeezenet [53] and Googlenet [54] ). We set the same
hyperparameters as in the original paper [34] for TREMBA. For fair comparisons, we set the same
sample size (20) and use the same surrogate models as TREMBA for ODS-RGF. We also set step
size of ODS-RGF as 0.001. As for SI-NI-DIM, we set hyperparameters referring to the paper [35]:
maximum iterations as 20, decay factor as 1, and number of scale copies as 5. We describe results in
Table D. We can observe that ODS-RGF with SI-NI-DIM is comparable to TREMBA.

We note that ODS is more flexible than TREMBA in some aspects. First, TREMBA is specific in
the `∞-norm, whereas ODS can be combined with attacks at least in `∞ and `2-norms. In addition,
TREMBA needs to train a generator per target class in targeted settings, whereas ODS does not need
additional training.

Table D: Comparison of ODS-RGF with TREMBA against four target models. The first two rows
and bottom two rows describe results for untargeted (U) attacks and targeted (T) attacks, respectively.
Targeted class for targeted attacks is class 0.

VGG19 ResNet34 DenseNet121 MobilenetV2
attack success query success query success query success query

U TREMBA [34] 100.0% 34 100.0% 161 100.0% 157 100.0% 63
SI-NI-DIM [35] + ODS-RGF 100.0% 18 99.9% 47 99.9% 50 100.0% 29

T TREMBA [34] 98.6% 975 96.7% 1421 98.5% 1151 99.0% 1163
SI-NI-DIM [35] + ODS-RGF 99.4% 634 98.7% 1578 98.2% 1550 98.3% 2006

D.4 Performance of ODS against different target models

In this paper, we used pre-trained ResNet50 model as the target model for all experiments in Section 5.
Here we set pre-trained VGG19 model as the target model and run experiments to show that the
efficiency of ODS is independent with target models. As surrogate models, we replace VGG19 with
ResNet50, i.e. we use four pre-trained models (ResNet50, ResNet34, DenseNet121, MobileNetV2).

We run experiments for SimBA-ODS in Section 5.1 and Boundary-ODS in Section 5.2. All settings
except the target model and surrogate models are the same as the previous experiments. In Table E
and F, ODS significantly improves attacks against VGG19 model for both SimBA and Boundary
Attack. This indicates that the efficiency of ODS does not depend on target models.

20



Table E: Query counts and `2 perturbations for score-based Simple Black-box Attacks (SimBA)
against pre-trained VGG19 model on ImageNet.

untargeted targeted
num. of success average median `2 success average median `2

attack surrogates rate query distance rate query distance

SimBA-DCT [18] 0 100.0% 619 2.85 100.0% 4091 6.81
SimBA-ODS 4 100.0% 176 1.35 99.7% 1779 3.31

Table F: Median `2 perturbations for decision-based Boundary Attacks against pre-trained VGG19
model on ImageNet.

number of queries
num. of untargeted targeted

attack surrogates 1000 5000 10000 1000 5000 10000

Boundary[17] 0 45.62 11.79 4.19 75.10 41.63 27.34
Boundary-ODS 4 6.03 0.69 0.43 24.11 5.44 2.97

D.5 Effect of the choice of surrogate models

In Section 5.1 and 5.2, we mainly used four pre-trained models as surrogate models. To investigate
the effect of the choice of surrogate models, we run attacks with seven different sets of surrogate
models. All settings except surrogate models are the same as the previous experiments.

Table G and H shows results for SimBA-ODS and Boundary-ODS, respectively. First, the first four
rows in both tables are results for a single surrogate model. The degree of improvements depends on
the model. ResNet34 gives the largest improvement and VGG19 gives the smallest improvement.
Next, the fifth and sixth rows show results for sets of two surrogate models. By combining surrogate
models, the query efficiency improves, especially for targeted attacks. This means that the diversity
from multiple surrogate models is basically useful to make attacks strong. Finally, the performances
in the seventh row are results for four surrogate models, which are not always better than results
for the combination of two models (ResNet34 and DenseNet121). When the performances for each
surrogate model are widely different, the combination of those surrogate models could be harmful.

Table G: Query counts and `2 perturbations for SimBA-ODS attacks with various sets of sur-
rogate models. In the column of surrogate models, R:ResNet34, D:DenseNet121, V:VGG19,
M:MobileNetV2.

untargeted targeted
surrogate success average median `2 success average median `2

models num. rate query distance rate query distance

R 1 100.0% 274 1.35 95.3% 5115 3.50
D 1 100.0% 342 1.38 96.7% 5282 3.51
V 1 100.0% 660 1.78 88.0% 9769 4.80
M 1 100.0% 475 1.70 95.3% 6539 4.53

R,D 2 100.0% 223 1.31 98.0% 3381 3.39
V,M 2 100.0% 374 1.60 96.3% 4696 4.27

R,V,D,M 4 100.0% 241 1.40 98.3% 3502 3.55

In Section 5.1.2, we compared ODS-RGF with P-RGF only using the ResNet34 surrogate model.
To show the effectiveness of ODS-RGF is robust to the choice of surrogate models, we evaluate
ODS-RGF with different surrogate models. Table I shows the query-efficiency of ODS-RGF and
P-RGF with the VGG19 surrogate model. We can observe that ODS-RGF outperforms P-RGF for all
settings and the results are consistent with the experiment in Section 5.1.2.

21



Table H: Median `2 perturbations for Boundary-ODS attacks with various sets of surrogate models.
In the column of surrogate models, R:ResNet34, D:DenseNet121, V:VGG19, M:MobileNetV2.

number of queries
surrogate untargeted targeted
models num. 1000 5000 10000 1000 5000 10000

R 1 9.90 1.41 0.79 31.32 11.49 7.89
D 1 10.12 1.39 0.76 32.63 11.30 7.44
V 1 22.68 3.47 1.52 49.18 24.26 17.75
M 1 20.67 2.34 1.10 44.90 18.62 12.01

R,D 2 7.53 1.07 0.61 26.00 8.08 6.22
V,M 2 17.60 1.70 0.92 39.63 14.97 9.21

R,V,D,M 4 7.57 0.98 0.57 27.24 6.84 3.76

Table I: Comparison between ODS-RGF and P-RGF with the VGG19 surrogate model. Settings in
the comparison are the same as Figure 4.

untargeted targeted
num. of average median `2 success average median `2

norm attack surrogates success queries perturbation success queries perturbation

`2
RGF 0 100.0% 633 3.07 99.3% 3141 8.23

P-RGF [25] 1 100.0% 467 3.03 97.0% 3130 8.18
ODS-RGF 1 100.0% 294 2.24 98.0% 2274 6.60

`∞
RGF 0 97.0% 520 - 25.0% 2971 -

P-RGF [25] 1 98.7% 337 - 29.0% 2990 -
ODS-RGF 1 99.7% 256 - 45.7% 2116 -

D.6 Effect of the number of surrogate models for the experiment in Section 5.3

We described that surrogate models with limited out-of-distribution training dataset are still useful
for ODS in Section 5.3. In the experiment, we used five surrogate models with the same ResNet18
architecture. Here, we reveal the importance of the number of surrogate models through experiments
with the different number of models. Table J shows the result for Boundary-ODS with the different
number of surrogate models. With the increase of the number of models, the query efficiency
consistently improves.

Table J: Median `2 perturbations for Boundary-ODS attacks with different number of surrogate
models against out-of-distribution images on ImageNet.

number of queries
num. of untargeted targeted

surrogates 1000 5000 10000 1000 5000 10000

1 19.45 2.90 1.66 47.86 25.30 20.46
2 15.45 2.42 1.35 43.45 19.30 13.78
3 13.75 1.96 1.14 41.63 16.91 11.14
4 14.23 1.86 1.21 41.65 14.86 9.64
5 11.27 1.63 0.98 41.67 13.72 8.39

D.7 Score-based attacks with ODS against out-of-distribution images

In Section 5.3, we demonstrated that the decision-based Boundary-ODS attack works well even if
we only have surrogate models trained with limited out-of-distribution dataset. Here, we evaluate
score-based SimBA-ODS with these surrogate models. Except surrogate models, we adopt the same
setting as Section 5.1.

22



In Table K, SimBA-ODS with out-of-distribution dataset outperforms SimBA-DCT in untargeted
settings. In targeted settings, while SimBA-ODS improves the `2 perturbation, the average queries for
SimBA-ODS are comparable with SimBA-DCT. We hypothesize that it is because ODS only explores
the subspace of the input space. The restriction to the subspace may lead to bad local optima. We can
mitigate this local optima problem by applying random sampling temporally when SimBA-ODS fails
to update a target image in many steps in a low.

We note that decision-based Boundary-ODS with OOD dataset is effective, as shown in Section 5.3.
We hypothesize that the difference in effectiveness is because Boundary-ODS does not use scores of
the target model and thus does not trap in local optima.

Table K: Query counts and `2 perturbations for SimBA-ODS attacks with surrogate models trained
with OOD images on ImageNet.

untargeted targeted
success average median `2 success average median `2

attack rate queries perturbation rate queries perturbation

SimBA-DCT [18] 100.0% 909 2.95 97.0% 7114 7.00
SimBA-ODS (OOD dataset) 100.0% 491 1.94 94.7% 6925 4.92
SimBA-ODS (full dataset) 100.0% 242 1.40 98.3% 3503 3.55

D.8 ODS against robust defense models

In this paper, we mainly discuss transferability when surrogate models and the target model are
trained with similar training schemes. On the other hand, it is known that transferability decreases
when models are trained with different training schemes, e.g. the target model uses adversarial
training and surrogate models use natural training. If all surrogate models are trained with natural
training scheme, ODS will also not work against adversarially trained target models. However, we
can mitigate the problem by simultaneously using surrogates obtained with various training schemes
(which are mostly publicly available). In order to confirm this, we run an experiment to attack a
robust target model using SimBA-ODS with both natural and robust surrogate models (a natural
model and a robust model). In Table L, the first row shows the attack performance of SimBA-DCT
(without surrogate models) and the others show the performance of SimBA-ODS. In the fourth
row of Table L, SimBA-ODS with natural and robust surrogate models significantly outperforms
SimBA-DCT without surrogate models. This suggests that if the set of surrogates includes one that
is similar to the target, ODS still works (even when some other surrogates are "wrong"). While
the performance with natural and robust surrogate models slightly underperforms single adversarial
surrogate model in the third row, dynamic selection of surrogate models during the attack will improve
the performance, as we mentioned in the conclusion of the paper.

Table L: Transferability of ODS when training schemes of surrogate models are different from the
target model. R50 shows pretrained ResNet50 model, and R101(adv) and R152(adv) are adversarially
trained ResNeXt101 and ResNet152 denoise models from [31], respectively. All attacks are held in
the same setting as Section 5.1.

target surrogate success rate average queries median `2 perturbation

R101(adv) - 89.0% 2824 6.38
R101(adv) R50 80.0% 4337 10.15
R101(adv) R152(adv) 98.0% 1066 4.93
R101(adv) R50, R152(adv) 98.0% 1304 5.62

E Relationship and Comparison between ODS and MultiTargeted

In this section, we describe that ODS gives better diversity than the MultiTargeted attack [16] for
initialization and sampling.

23



MultiTargeted is a variant of white-box PGD attacks, which maximizes ft(x)− fy(x) where f(x)
is logits, y is the original label and t is a target label. The target label is changed per restarts. In
other words, MultiTargeted moves a target image to a particular direction in the output space, which
is represented as like wd = (1, 0,−1, 0) where 1 and -1 correspond to the target and original label,
respectively. Namely, the procedure of MultiTargeted is technically similar to ODS.

However, there are some key differences between MultiTargeted and ODS. One of the difference is
the motivation. MultiTargeted was proposed as a white-box attack and the study only focused on
`p-bounded white-box attacks. On the other hand, our study gives broader application for white- and
black-box attacks. As far as we know, ODS is the first method which exploits the output diversity for
initialization and sampling.

Another difference is the necessity of the original label of target images. ODS does not require the
original class of the target image, and thus ODS is applicable for black-box attacks even if surrogate
models are trained with out-of-distribution training dataset, as shown in Section 5.3. On the other
hand, since MultiTargeted exploits the original label of target images to calculate the direction of the
attack, we cannot apply MultiTargeted to sampling for black-box attacks against out-of-distribution
images.

Finally, the level of diversity is also different. As we mentioned in Section 6, the direction of
MultiTargeted is restricted to away from the original class. This restriction could be harmful
for diversity because the subspace to explore directions is limited. To show this statement, we
apply MultiTargeted to initialization for white-box attacks and sampling for black-box attacks, and
demonstrate that ODI provides better diversity than MultiTargeted for initialization and sampling
(especially for sampling).

Initialization in white-box settings We apply MultiTargeted to initalization for white-box attacks
in Section 4.1. Table M represents the comparison of the attack performance with initialization by
MultiTargeted and ODI. For PGD attacks, MultiTargeted is slightly better than ODI. We hypotheses
that it is because MultiTargeted was developed as a variant of PGD attacks and the initialization by
MultiTargeted also works as an attack method. On the other hand, ODI outperforms MultiTargeted
for C&W attacks. In this setting, MultiTargeted does not work as an attack method, and thus the
difference in the diversity makes the difference in the performance.

Table M: Comparison of model performance under attacks with MultiTargeted (MT) and ODI. The
values are model accuracy (lower is better) for PGD and the average of the minimum `2 perturbations
(lower is better) for C&W. All results are the average of three trials. Results for ODI are from Table 1.

PGD C&W
model MT ODI MT ODI

MNIST 89.95± 0.05% 90.21± 0.05% 2.26± 0.01 2.25± 0.01
CIFAR-10 44.33± 0.01% 44.45± 0.02% 0.69± 0.01 0.67± 0.00
ImageNet 42.2± 0.0% 42.3± 0.0% 2.30± 0.01 1.32± 0.01

Sampling in black-box settings We use MultiTargeted for sampling on the Boundary Attack in
Section 5.2 (called Boundary-MT), and compare it with Boundary-ODS. Table N and Figure G
show the results of the comparison. While Boundary-MT outperforms the original Boundary Attack,
Boundary-ODS finds much smaller adversarial perturbation than Boundary-MT.

In Figure G, Boundary-MT slightly outperforms Boundary-ODS at small queries. We hypotheses
that it is because MultiTargeted not works for providing diversity, but works for the approximation of
gradients of the loss function. However, with the number of queries, the curve of Boundary-MT is
saturated, and Boundary-MT underperforms Boundary-ODS. This is an evidence that the restriction
of directions is harmful for sampling.

24



Table N: Median `2 perturbations for Boundary Attack with ODS and MultiTargeted (MT).

number of queries
untargeted targeted

attack 1000 5000 10000 1000 5000 10000

Boundary [17] 45.07 11.46 4.30 73.94 41.88 27.05
Boundary-ODS 7.57 0.98 0.57 27.24 6.84 3.76
Boundary-MT 7.65 2.20 2.01 28.16 18.48 16.59

Untargeted Targeted

Figure G: Relationship between median `2 perturbations and the number of queries for Boundary
Attack with ODS and MultiTargeted. Error bars show 25%ile and 75%ile of `2 perturbations.

25


