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In Section 1, we overview notation, formally define our generative model, give miscellaneous2

technical tools, and review the basics on classical learning of structured distributions and on Haar3

wavelets. In Section 2, we define the semidefinite program that we use to compute skewness. In4

Section 3, we give our algorithm LEARNWITHFILTER and prove our main result, Theorem 1.1,5

restated here for convenience:6

Theorem 1.1. Let µ be a distribution over [n] which is η-approximated by an s-part piecewise7

polynomial with degree at most d. There is an algorithm which runs in time polynomial in all8

parameters and estimates µ to within O
(
η + ω + ε√

k

√
log 1/ε

)
in total variation after drawing N9

ε-corrupted batches, each of size k, where N = Õ
(
(s2d2/ε2) · log3(n)

)
is the number of batches.10

In Section 4, we describe our empirical evaluations of LEARNWITHFILTER on synthetic data. In11

Appendices A, B, and C, we complete the proofs of some deferred technical statements relating to12

deterministic regularity conditions and metric entropy bounds.13

1 Technical Preliminaries14

1.1 Notation15

• Given p ∈ [0, 1], let Bin(k, p) denote the normalized binomial distribution, which takes values in16

{0, 1/k, · · · , 1} rather than {0, 1, · · · , k}.17

• Let ∆n ⊂ Rn be the simplex of nonnegative vectors whose coordinates sum to 1. Any p ∈ ∆n18

naturally corresponds to a probability distribution over [n].19

• Let 1n ∈ Rn denote the all-ones vector. We omit the subscript when the context is clear.20

• Given matrix M ∈ Rn×n, let ‖M‖max denote the maximum absolute value of any entry in M , let21

‖M‖1,1 denote the absolute sum of its entries, and let ‖M‖F denote its Frobenius norm.22

• Given µ ∈ ∆n, let Mulk(µ) denote the distribution over ∆n given by sampling a frequency vector23

from the multinomial distribution arising from k draws from the distribution over [n] specified by24

µ, and dividing by k.25

• Given samples X1, · · · , XN ∼ Mulk(µ) and U ⊆ [N ], define w(U) : [N ] → [0, 1/N ] to be26

the set of weights which assigns 1/N to all points in U and 0 to all other points. Also define27

its normalization ŵ(U) , w(U)/‖w‖1. LetWε denote the set of weights w : [N ] → [0, 1/N ]28

which are convex combinations of such weights for |U | ≥ (1 − ε)N . Given w, define µ(w) ,29 ∑N
i=1

wi
‖w‖1Xi, and define µ(U) , µ(w(U)), that is, the empirical mean of the samples indexed30

by U .31

• Given samples X1, · · · , XN ∼ Mulk(µ), weights w, and ν1, ..., νN ∈ ∆n, define the matrices32

A(w, {νi}) =

N∑
i=1

wi(Xi − νi)⊗2 and B({νi}) =
1

N

N∑
i=1

E
X∼Mulk(νi)

[(X − νi)⊗2].

When ν1 = · · · = νN = ν, denote these matrices by A(w, ν) and B(ν) and note that33

B(ν) =
1

k

(
diag(ν)− ν⊗2

)
. (1)

Also define M(w, {νi})) , A(w, {νi}) − B({νi}) and M(w, ν) , A(w, ν) − B(ν). We will34

also denote M(w, µ(w)) by M(w) and M(ŵ(U)) by MU .35

To get intuition for these definitions, note that any bitstring v ∈ {0, 1}n corresponding to S ⊆36

[n] induces a normalized binomial distribution Y , Bin(n, 〈µ, v〉) ∈ [0, 1], and any sample37

Xi ∼ Mulk(µ) induces a corresponding sample 〈Xi, v〉 from Y . Then 〈vv>,MU 〉 is the difference38

between the empirical variance of Y and the variance of the binomial distribution Bin(n, 〈µ(U), v〉).39
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1.2 The Generative Model40

Throughout the rest of the paper, let ε, ω > 0, n, k,N ∈ N , and let µ be some probability distribution41

over [n].42

Definition 1.1. We say Y1, ..., YN is an ε-corrupted ω-diverse set of N batches of size k from µ if43

they are generated via the following process:44

• For every i ∈ [(1− ε)N ], Ỹi = (Ỹ 1
i , ..., Ỹ

k
i ) is a set of k iid draws from µi, where µi ∈ ∆n45

is some probability distribution over [n] for which dTV(µ, µi) ≤ ω.46

• A computationally unbounded adversary inspects Ỹ1, ..., Ỹ(1−ε)N and adds εN arbitrarily47

chosen tuples Ỹ(1−ε)N+1, ..., ỸN ∈ [n]k, and returns the entire collection of tuples in any48

arbitrary order as Y1, ..., YN .49

Let SG, SB ⊂ [N ] denote the indices of the uncorrupted (good) and corrupted (bad) batches.50

It turns out that we might as well treat each Yi as an unordered tuple. That is, for any Yi, define51

Xi ∈ ∆n to be the vector of frequencies whose a-th entry is 1
k

∑k
j=1 1[Y ji = a] for all a ∈ [n]. Then52

for each, i ∈ SG, Xi is an independent draw from Mulk(µi). Henceforth, we will work solely in this53

frequency vector perspective.54

1.3 Elementary Facts55

In this section we collect miscellaneous elementary facts that will be useful in subsequent sections.56

Fact 1.2. For X1, · · · , Xm ∈ Rn, weights w : [m] → R≥0, v ∈ Rn, µ ∈ Rn, and Σ ∈ Rn×n57

symmetric,58 ∑
wi
〈
(Xi − µ)⊗2,Σ

〉
=
∑

wi
〈
(Xi − µ(w))⊗2,Σ

〉
+ ‖w‖1 ·

〈
(µ(w)− µ)⊗2,Σ

〉
. (2)

In particular, by taking Σ = vv> for any v ∈ Rn,59 ∑
wi〈Xi − µ, v〉2 =

∑
wi〈Xi − µ(w), v〉2 + ‖w‖1 · 〈µ(w)− µ, v〉2.

That is, the function ν 7→
∑
i wi〈Xi − ν, v〉2 is minimized over ν ∈ Rn by ν = µ(w).60

Proof. Without loss of generality we may assume ‖w‖1 = 1. Using the fact that 〈u⊗2,Σ〉 −61

〈v⊗2,Σ〉 = (u− v)>Σ(u+ v) for symmetric Σ, we see that62 〈
(Xi − µ⊗2 − (Xi − µ(w))⊗2,Σ

〉
= (µ(w)− µ)>Σ(2Xi − µ− µ(w)).

Because
∑
wiXi = µ(w), we see that63 ∑

wi(µ(w)− µ)>Σ(2Xi − µ− µ(w)) =
〈
(µ(w)− µ)⊗2,Σ

〉
,

from which (2) follows. The remaining parts of the claim follow trivially.64

Fact 1.3. For any 0 < ε < 1, let weights w : [N ]→ [0, 1/N ] satisfy
∑
i∈[N ] wi ≥ 1−O(ε). If w′65

is the set of weights defined by w′i = wi for i ∈ SG and w′i = 0 otherwise, and if |SG| ≥ (1− ε)N ,66

then we have that ‖µ(w)− µ(w′)‖1 ≤ O(ε).67

Proof. We may write68

‖µ(w)− µ(w′)‖1 ≤ ‖
1

‖w‖1

∑
i∈SB

wiXi‖1 +

(
1

‖w‖1
− 1

‖w′‖1

)
‖
∑
i∈SG

wiXi‖1

≤ O(ε) +

(
1

‖w‖1
− 1

‖w′‖1

)
‖
∑
i∈SG

wiXi‖1 ≤ O(ε),

where the first step follows by definition of µ(·) and by triangle inequality, the second step follows by69

the fact that |SB | ≤ εN , and the third step follows by the fact that |‖w‖1−‖w′‖1| =
∣∣∑

i∈SB wi
∣∣ ≤ ε,70

while ‖
∑
i∈SG wiXi‖1 ≤ 1 as the samples Xi lie in ∆n.71
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It will be useful to have a basic bound on the Frobenius norm of M(w, ν).72

Lemma 1.4. For any ν ∈ ∆n and any weights w for which
∑
wi = 1, we have that ‖M(w, ν)‖F ≤73

3.74

Proof. For any sample X ∈ ∆n, we have that75

‖(X − ν)(X − ν)>‖F ≤ ‖X − ν‖22 ≤ 2

and76

‖B(ν)‖F ≤
1

k
‖ν‖2 +

1

k
‖ν‖22 ≤ 2/k,

from which the lemma follows by triangle inequality and the assumption that
∑
wi = 1.77

1.4 AK Norms and VC Complexity78

In this section we review basics about learning distributions which are close to piecewise polynomial.79

Definition 1.5 (AK norms, see e.g. [DL01]). For positive integers K ≤ n, define AK to be the set80

of all unions of at most K disjoint intervals over [n], where an interval is any subset of [n] of the81

form {a, a+ 1, · · · , b− 1, b}. The AK distance between two distributions µ, ν over [n] is82

‖µ− ν‖AK = max
S∈AK

|µ(S)− µ(S)|.

Equivalently, say that v ∈ {±1}n has 2K sign changes if there are exactly 2K indices i ∈ [n− 1]83

for which vi+1 6= vi. Then if Vn2K denotes the set of all such v, we have84

‖µ− ν‖AK =
1

2
max
v∈Vn2K

〈µ− ν, v〉.

Note that85

‖ · ‖A1
≤ ‖ · ‖A2

≤ · · · ≤ ‖ · ‖An/2 = ‖ · ‖TV.

Definition 1.6. We say that a distribution µ over [n] is (η, s)-piecewise degree-d if there is a86

partition of [n] into t disjoint intervals {[ai, bi]}1≤i≤t, together with univariate degree-d polynomials87

r1, · · · , rt and a distribution µ′ on [n], such that dTV(µ, µ′) ≤ η and such that for all i ∈ [t],88

µ′(x) = ri(x) for all x ∈ [n] in [ai, bi].89

A proof of the following lemma, a consequence of [ADLS17], can be found in [CLM19].90

Lemma 1.7 (Lemma 5.1 in [CLM19], follows by [ADLS17]). Let K = s(d + 1). If µ is (η, s)-91

piecewise degree-d and ‖µ− µ̂‖AK ≤ ζ , then there is an algorithm which, given the vector µ̂, outputs92

a distribution µ∗ for which dTV(µ, µ∗) ≤ 2ζ + 4η in time poly(s, d, 1/η).93

Henceforth, we will focus solely on the problem of learning in A` norm, where94

` , 2s(d+ 1). (3)

1.5 Haar Wavelets95

We briefly recall the definition of Haar wavelets, further details and examples of which can be found96

in [CLM19].97

Definition 1.8. Letm be a positive integer and let n = 2m. The Haar wavelet basis is an orthonormal98

basis over Rn consisting of the father wavelet ψ0father,0 = n−1/2 · 1, the mother wavelet ψ0mother,0 =99

n−1/2 · (1, · · · , 1,−1, · · · ,−1) (where (1, · · · , 1,−1, · · · ,−1) contains n/2 1’s and n/2 -1’s), and100

for every i, j for which 1 ≤ i < m and 0 ≤ j < 2i, the wavelet ψi,j whose 2m−i · j + 1, · · · , 2m−i ·101

j+2m−i−1-th coordinates are 2−(m−i)/2 and whose 2m−i ·j+(2m−i−1+1), · · · , 2m−i ·j+2m−i-th102

coordinates are −2−(m−i)/2, and whose remaining coordinates are 0.103

Additionally, we will use the following notation when referring to Haar wavelets:104

• Let Hm denote the n×n matrix whose rows consist of the vectors of the Haar wavelet basis105

for Rn. When the context is clear, we will omit the subscript and refer to this matrix as H .106
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• For ν ∈ [n], if the ν-th element of the Haar wavelet basis for Rn is some ψi,j , then define107

the weight h(ν) , 2−(m−i)/2.108

• For any index i ∈ {0father, 0mother, 1, · · · ,m− 1}, let Ti ⊂ [n] denote the set of indices ν for109

which the ν-th Haar wavelet is of the form ψi,j for some j.110

• Given any p ≥ 1, define the Haar-weighted Lp norm ‖ · ‖p;h on Rn by ‖w‖p;h , ‖w′‖p,111

where for every a ∈ [n], w′a , h(a)wa. Likewise, given any norm ‖ ·‖∗ on Rn×n, define the112

Haar-weighted ∗-norm ‖ · ‖∗;h on Rn×n by ‖M‖∗;h , ‖M′‖∗, where for every a, b ∈ [n],113

M′a,b , h(a)h(b)Ma,b.114

The key observation is that any v ∈ {±1}n with at most ` sign changes, where ` is given by (3),115

has an (` log n + 1)-sparse representation in the Haar wavelet basis. We will use the following116

fundamental fact about Haar wavelets, part of which appears as Lemma 6.3 in [CLM19].117

Lemma 1.9. Let v ∈ {±1}n have at most ` sign changes. Then Hv has at most ` log n+ 1 nonzero118

entries, and furthermore ‖Hv‖∞;h ≤ 1. In particular, ‖Hv‖22;h, ‖Hv‖1;h ≤ ` log n+ 1.119

Proof. We first show that Hv has at most ` log n + 1 nonzero entries. For any ψi,j with nonzero120

entries at indices [a, b] ⊂ [n] and such that i 6= 0father, if v has no sign change in the interval [a, b],121

then 〈ψi,j , v〉 = 0. For every index ν ∈ [n] at which v has a sign change, there are at most m = log n122

choices of i, j for which ψi,j has a nonzero entry at index ν, from which the claim follows by a union123

bound over all ` choices of ν, together with the fact that 〈ψ0father,0, v〉 may be nonzero.124

Now for each (i, j) for which 〈ψi,j , v〉 6= 0, note that125

2−(m−i)/2 · |〈ψi,j , v〉| ≤ 2−(m−i)/2 ·
(

2−(m−i)/2 · 2m−i
)

= 1,

as claimed. The bounds on ‖Hv‖1;h, ‖Hv‖22;h follow immediately.126

2 SDP for Finding the Direction of Largest Variance127

Recall that in [JO19], the authors consider the binary optimization problem maxv∈{0,1}n |v>MUv|.128

We would like to approximate the optimization problem maxv∈Vn` |v
>MUv|. Motivated by [CLM19]129

and Lemma 1.9, we consider the following convex relaxation:130

Definition 2.1. Let ` be given by (3). Let K denote the (convex) set of all matrices Σ ∈ Rn×n for131

which132

1. ‖Σ‖max ≤ 1.133

2. ‖HΣH>‖1,1;h ≤ ` log n+ 1.134

3. ‖HΣH>‖2F ;h ≤ ` log n+ 1.135

4. ‖HΣH>‖max;h ≤ 1.136

5. Σ � 0.137

Let ‖ · ‖K denote the associated norm given by ‖M‖K , supΣ∈K |〈M,Σ〉|. By abuse of notation,138

for vectors v ∈ Rn we will also use ‖v‖K to denote ‖vv>‖1/2K .139

Because K has an efficient separation oracle, one can compute ‖ · ‖K in polynomial time.140

Remark 2.2. Note that, besides not being a sum-of-squares program like the one considered in141

[CLM19], this relaxation is also slightly different because of Constraints 3 and 4. As we will see in142

Section B, these additional constraints will be crucial for getting refined sample complexity bounds.143

Note that Lemma 1.9 immediately implies that K is a relaxation of Vn` :144

Corollary 2.3 (Corollary of Lemma 1.9). vv> ∈ K for any v ∈ Vn` .145

Note also that Constraint 1 in Definition 2.1 ensures that ‖ · ‖K is weaker than ‖ · ‖1 and more146

generally that:147

4



Fact 2.4. For any a, b ∈ Rn and Σ ∈ K, a> · Σ · b ≤ ‖a‖1 · ‖b‖1. In particular, for any v ∈ Rn,148

‖v‖K ≤ ‖v‖1.149

As a consequence, we conclude the following useful fact about stability of the B(·) matrix.150

Corollary 2.5. For any µ, µ′ ∈ ∆n, ‖B(µ)−B(µ′)‖K ≤ 3
k‖µ− µ

′‖1.151

Proof. Take any Σ ∈ K. By symmetry, it is enough to show that 〈B(µ)− B(µ′),Σ〉 ≤ 3
k‖µ− µ

′‖1.152

By Constraint 1, we have that 〈µ− µ′, diag(Σ)〉 ≤ ‖µ− µ′‖1. On the other hand, note that153

µ′>Σµ′ − µ>Σµ = (µ′ − µ)>Σ(µ′ + µ) ≤ ‖µ′ − µ‖1 · ‖µ′ + µ‖1 ≤ 2‖µ′ − µ‖1,

where the second step follows from Fact 2.4. The corollary now follows.154

Note that if the solution to the convex program argmaxΣ∈K〈MU ,Σ〉 were actually integral, that is,155

some rank-1 matrix vv> for v ∈ Vn` , it would correspond to the direction v in which the samples156

in U have the largest discrepancy between the empirical variance and the variance predicted by the157

empirical mean. Then v would correspond to a subset of the domain [s] on which one could filter158

out bad points as in [JO19]. In the sequel, we will show that this kind of analysis applies even if the159

solution to argmaxΣ∈K〈MU ,Σ〉 is not integral.160

3 Filtering Algorithm and Analysis161

In this section we prove our main theorem, stated formally below:162

Theorem 3.1. Let µ be an (η, s)-piecewise degree-d distribution over [n]. Then for any 0 < ε < 1/2163

smaller than some absolute constant, and any 0 < δ < 1, there is a poly(n, k, 1/ε, 1/δ)-time164

algorithm LEARNWITHFILTER which, given165

N = Õ
(
log(1/δ)(s2d2/ε2) log3(n)

)
,

ε-corrupted, ω-diverse batches of size k from µ, outputs an estimate µ̂ such that ‖µ̂ − µ‖1 ≤166

O

(
η + ω +

ε
√

log 1/ε√
k

)
with probability at least 1− δ over the samples.167

In Section 3.1, we first describe and prove guarantees for a basic but important subroutine, 1DFILTER,168

of our algorithm. In Section 3.2, we describe our learning algorithm, LEARNWITHFILTER, in full. In169

Section 3.3 we define the deterministic conditions that the dataset must satisfy for LEARNWITHFIL-170

TER to succeed, deferring the proof that these deterministic conditions hold with high probability171

(Lemma 3.6) to Appendix A. In Section 3.4 we prove a key geometric lemma (Lemma 3.7). Finally,172

in Section 3.5, we complete the proof of correctness of LEARNWITHFILTER.173

3.1 Univariate Filter174

In this section, we define and analyze a simple deterministic subroutine 1DFILTER which takes as175

input a set of weights w and a set of scores on the batches X1, · · · , XN , and outputs a new set of176

weights w′ such that, if the weighted average of the scores among the bad batches exceeds that of the177

scores among the good batches, then w′ places even less weight relatively on the bad batches than178

does w. This subroutine is given in Algorithm 1 below.179

Algorithm 1: 1DFILTER(τ, w)
Input: Scores τ : [N ]→ R≥0, weights w : [N ]→ R≥0

Output: New weights w′ with even less mass on bad points than good points (see Lemma 3.2)
1 τmax ← maxi:wi>0 τi

2 w′i ←
(

1− τi
τmax

)
wi for all i ∈ [N ]

3 Output w′
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Lemma 3.2. Let τ : [N ] → R≥0 be a set of scores, and let w : [N ] → R≥0 be a weight. Given a180

partition [N ] = SG t SB for which181 ∑
i∈SG

wiτi <
∑
i∈SB

wiτi,

then the output w′ of 1DFILTER(τ, w) satisfies (a) w′i ≤ wi for all i ∈ [N ], (b) the support of w′ is182

a strict subset of the support of w, and (c)
∑
i∈SG wi − w

′
i <

∑
i∈SB wi − w

′
i.183

Proof. (a) and (b) are immediate. For (c), note that184 ∑
i∈SG

wi − w′i =
1

τmax

∑
i∈SG

τiwi <
1

τmax

∑
i∈SB

τiwi =
∑
i∈SB

wi − w′i,

from which the lemma follows.185

We note that this kind of downweighting scheme and its analysis are not new, see e.g. Lemma 4.5186

from [CSV17] or Lemma 17 from [SCV18].187

3.2 Algorithm Specification188

We can now describe our algorithm LEARNWITHFILTER. At a high level, we maintain weights189

w : [N ] → R≥0 for each of the batches. In every iteration, we compute Σ ∈ K maximizing190

|〈M(w),Σ〉|. If |〈M(w),Σ〉| ≤ O
(
ε
k log 1/ε

)
, then output µ(w). Otherwise, update the weights as191

follows: for every batch Xi, compute the score τi given by192

τi ,
〈
(Xi − µ(w))⊗2,Σ

〉
, (4)

and set the weights to be the output of 1DFILTER(τ, w). The pseudocode for LEARNWITHFILTER is193

given in Algorithm 2 below.194

Algorithm 2: LEARNWITHFILTER({Xi}i∈[N ], ε)

Input: Frequency vectors X1, · · · , XN coming from an ε-corrupted, ω-diverse set of batches
from µ, where µ is (η, s)-piecewise, degree d

Output: µ̂ such that ‖µ̂− µ‖1 ≤ O
(
η + ω +

ε
√

log 1/ε√
k

)
, provided uncorrupted samples

ε-good
1 w ← w([N ])
2 while ‖M(w)‖K ≥ Ω(ω + ε

k log 1/ε) do
3 Σ← argmaxΣ′∈K|〈M(w),Σ〉|
4 Compute scores τ : [N ]→ R≥0 according to (4).
5 w ←1DFILTER(τ, w)
6 Using the algorithm of [ADLS17] (see Lemma 1.7), output the s-piecewise, degree-d distribution

ŵ minimizing ‖µ(w)− µ̂‖s(d+1) (up to additive error η).

3.3 Deterministic Condition195

Definition 3.3 (ε-goodness). Take a set of points U ⊂ [N ], and let {µi}i∈U be a collection of196

distributions over [n]. For any W ⊆ U , define µW , 1
|W |

∑
i∈W µi. Denote µ , µU .197

We say U is ε-good if it satisfies that for all W ⊂ U for which |W | = ε|U |,198

(I) (Concentration of mean)199

‖µ(U)− µ‖K ≤ O

(
ε
√

log 1/ε√
k

)
and ‖µ(W )− µW ‖K ≤ O

(√
log 1/ε√
k

)
200
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(II) (Concentration of covariance)201

‖M(ŵ(U), {µi}i∈U )‖K ≤ O
(
ε log 1/ε

k

)
and ‖A(ŵ(W ), {µi}i∈W ‖K ≤ O

(
log 1/ε

k

)
202

(III) (Concentration of variance proxy)203

‖B(µ̂(U))−B({µi}i∈U )‖K ≤ O(ω2/k + ε/k)

204

(IV) (Heterogeneity has negligible effect, see Lemma 3.4)205

sup
Σ∈K

{
1

|U |
∑
i∈U

(µi − µ)> · Σ · (Xi − µi)

}
≤ O

(
ω ·

ε
√

log 1/ε√
k

)
.

206

sup
Σ∈K

{
1

|W |
∑
i∈W

(µi − µ)> · Σ · (Xi − µi)

}
≤ O

(
ω ·
√

log 1/ε√
k

)
.

207

We first remark that we only need extremely mild concentration in Condition (III), but it turns out208

this suffices in the one place where we use it (see Lemma 3.9).209

Additionally, note that we can completely ignore Condition (IV) when ω = 0. The following makes210

clear why it is useful when ω > 0.211

Lemma 3.4. For ε-good U , all W ⊂ U of size ε|U |, and all Σ ∈ K,212

‖A(µ̂(U), µ)−A(µ̂(U), {µi})‖K ≤ O

(
ω +

ε
√

log 1/ε√
k

)2

213

‖A(µ̂(W ), µ)−A(µ̂(W ), {µi})‖K ≤ O

(
ω +

√
log 1/ε√
k

)2

.

214

Proof. For S = U or S = W and any Σ ∈ K,215

〈Σ, A(µ̂(S), µ)−A(µ̂(S), {µi})〉

=
1

|S|
∑
i∈S
〈(Xi − µ)⊗2 − (Xi − µi)⊗2,Σ〉

=
1

|S|
∑
i∈S

(µi − µ)> · Σ · (2Xi − µi − µ)

=
2

|S|
∑
i∈S

(µi − µ)> · Σ · (Xi − µi) +
1

|S|
∑
i∈S
〈(µi − µ)⊗2,Σ〉. (5)

The first (resp. second) part of the lemma follows by taking S = U (resp. S = W ) and invoking216

the first (resp. second) part of Condition (IV) of ε-goodness to upper bound the first term in (5), and217

Fact 2.4 and the fact that ‖µi − µ‖1 ≤ ω for all i to upper bound the second term in (5).218

Corollary 3.5. If U is ε-good and µ , 1
|U |
∑
i∈U µi, then219

‖A(ŵ(U), µ)−B({µi})‖K ≤ O

(
ω +

ε
√

log 1/ε√
k

)2

.

220

Proof. This follows immediately from Lemma 3.4 and the first part of Condition (II) of ε-goodness.221

222
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In Appendix A, we will show that for N sufficiently large, the set SG of uncorrupted batches will223

satisfy the above deterministic condition.224

Lemma 3.6 (Regularity of good samples). If U is a set of Ω̃
(
log(1/δ)(`2/ε2) · log3(n)

)
independent225

samples from Mulk(µ1), ...,Mulk(µ|U |), then U is ε-good with probability at least 1− δ.226

3.4 Key Geometric Lemma227

The key property of ε-good sets is the following geometric lemma bounding the accuracy of an228

estimate µ(w) given by weights w in terms of ‖M(w)‖K.229

Lemma 3.7 (Spectral signatures). If SG is ε-good and |SG| ≥ (1− ε)N , then for any w ∈ Wε,230

‖µ(w)− µ‖K ≤ O
(

ε√
k

√
log 1/ε+ ε · ω +

√
ε
(
‖M(w)‖K + ω2 +

ε

k
log 1/ε

))
.

231

It turns out the proof ingredients for Lemma 3.7 will also be useful in our analysis of LEARNWITH-232

FILTER later, so we will now prove this lemma in full.233

Proof. Take any Σ ∈ K. Recalling that Σ is psd by Constraint 5 in Definition 2.1, we will sometimes234

write it as Σ = Ev[vv>], where the distribution over v is defined according to the eigendecomposition235

of Σ. We wish to bound Ev
[
〈µ(w)− µ, v〉2

]
. By splitting wi , 1/N − δi for i ∈ SG, we have that236

〈µ(w)− µ, v〉 =

N∑
i=1

wi〈Xi − µ, v〉

=

〈
|SG|
N

(µ(SG)− µ), v

〉
−
∑
i∈SG

δi〈Xi − µ, v〉+
∑
i∈SB

wi〈Xi − µ, v〉,

=

〈
|SG|
N

(µ(SG)− µ), v

〉
−
∑
i∈SG

δi〈Xi − µ, v〉+
∑
i∈SB

wi〈Xi − µ(w), v〉+ 〈µ(w)− µ, v〉
∑
i∈SB

wi.

We may rewrite this as237 (
1−

∑
i∈SB

wi

)
〈µ(w)−µ, v〉 =

〈
|SG|
N

(µ(SG)− µ), v

〉
−
∑
i∈SG

δi〈Xi−µ, v〉+
∑
i∈SB

wi〈Xi−µ(w), v〉.

Note further that238 ∑
i∈SG

δi〈Xi − µ, v〉 =
∑
i∈SG

δi〈Xi − µi, v〉+
∑
i∈SG

δi〈µi − µ, v〉,

so in particular,239

1

4

(
1−

∑
i∈SB

wi

)2

· E
v

[
〈µ(w)− µ, v〉2

]
≤ 1 + 2 + 3 + 4 (6)

where240

1 ,
|SG|2

N2 E
v

[
〈µ(SG)− µ, v〉2

]
2 , E

v

(∑
i∈SG

δi〈Xi − µi, v〉

)2


241

3 , E
v

(∑
i∈SG

δi〈µi − µ, v〉

)2
 4 , E

v

(∑
i∈SB

wi〈Xi − µ(w), v〉

)2


For 1 , note that242

1 ≤ |SG|
2

N2
‖µ(SG)− µ‖2K ≤ O

(
ε2 log 1/ε

k

)

8



by the first part of Condition (I) of ε-goodness of SG and the fact that |SG|/N ≥ 1− ε.243

For 2 , by Cauchy-Schwarz we have that244

2 ≤

(∑
i∈SG

δi

)
· E
v

[∑
i∈SG

δi〈Xi − µi, v〉2
]

≤ ε ·

〈∑
i∈SG

δi(Xi − µi)⊗2,E
v
[vv>]

〉
= ε 〈A(δ, {µi}),Σ〉

≤ O
(
ε2

k
log 1/ε

)
, (7)

where the last step follows by Lemma 3.8 below.245

For 3 , again by Cauchy-Schwarz,246

3 ≤

(∑
i∈SG

δi

)
· E
v

[∑
i∈SG

δi〈µi − µ, v〉2
]

≤ ε ·
∑
i∈SG

δi‖µi − µ‖2K

≤ ε2 ·max
i∈SG

‖µi − µ‖21

≤ ε2 · ω2,

where the penultimate step follows by Fact 2.4.247

Finally, we will relate 4 to ‖M(w)‖K. Let w′ be the set of weights given by w′i = wi for i ∈ SG248

and w′i = 0 for i 6∈ SG. By another application of Cauchy-Schwarz,249

4 ≤

(∑
i∈SB

wi

)
· E
v

[∑
i∈SB

wi〈Xi − µ(w), v〉2
]

≤ ε

(
E
v

[
N∑
i=1

wi〈Xi − µ(w), v〉2
]
− E

v

[∑
i∈SG

wi〈Xi − µ(w), v〉2
])

= ε 〈A(w, µ(w))−A(w′, µ(w)),Σ〉 (8)

≤ ε 〈A(w, µ(w))−A(w′, µ(w′)),Σ〉 (9)

≤ ε
〈
A(w, µ(w))− 1∑

w′i
B(µ(w′)),Σ

〉
+O

(
ε · ω2 +

ε2

k
log 1/ε

)
(10)

= ε〈M(w),Σ〉+ ε

〈
B(µ(w))− 1∑

w′i
B(µ(w′)),Σ

〉
+O

(
ε · ω2 +

ε2

k
log 1/ε

)
≤ ε‖M(w)‖K + ε‖B(µ(w))− 1∑

w′i
B(µ(w′))‖K +O

(
ε · ω2 +

ε2

k
log 1/ε

)
(11)

where (8) follows by the definition of A(w, ν), (9) follows by Fact 1.2, (10) follows by Lemma 3.9250

below. Lastly, by triangle inequality, we may upper bound ‖B(µ(w))− 1∑
w′
i
B(µ(w′))‖K by251

‖B(µ(w))−B(µ(w′))‖K+O(ε) ·‖B(µ(w′))‖K ≤
3

k
‖µ(w)−µ(w′)‖1 +O(ε/k) ≤ O(ε/k), (12)

where the first inequality follows by Corollary 2.5, and the bound on ‖µ(w)− µ(w′)‖1 in the last252

step follows from Fact 1.3. The lemma then follows from (6), (7), (11), and (12).253

Next, we show in Lemma 3.8 that small subsets of the good samples cannot contribute too much to254

the total energy. Lemma 3.9, which bounds the norm of M(w) for any set of weights w which is255

close to the uniform set of weights over SG, will follow as a consequence.256

9



Lemma 3.8. For any 0 < ε < 1/2, if U is ε-good, and δ : U → [0, 1/|U |] is a set of weights257

satisfying
∑
i∈U δi ≤ ε, then we have the following bounds:258

1. ‖A(δ, {µi})‖K ≤ O( εk log 1/ε)259

2. ‖
∑
i∈U δi(Xi − µi)‖K ≤ O( ε√

k

√
log 1/ε)260

3. ‖A(δ, µ)‖K ≤ O
(
ε · ω2 + ε log 1/ε

k

)
261

4. ‖
∑
i∈U δi(Xi − µ)‖K ≤ O( ε√

k

√
log 1/ε+ ε · ω).262

Proof. For the first part, we may assume without loss of generality that
∑
i∈U δi = ε. But then we263

may write δ as εEW [ŵ(W )] for some distribution over subsets W ⊂ U of size ε|U |. By Jensen’s264

inequality and the second part of Condition (II) of ε-goodness of U , we conclude that265

A(δ, {µi}) ≤ ε · E
W

[‖A(ŵ(W ), {µi})‖K] ≤ O
( ε
k

log 1/ε
)
,

giving the first part of the lemma.266

For the second part, for any Σ ∈ K of the form Σ = E[vv>],267 〈
Σ,

(∑
i∈U

δi(Xi − µi)

)⊗2〉
= E

(∑
i∈U

δi〈Xi − µi, v〉

)2


≤ E

[(∑
i∈U

δi

)
·

(∑
i∈U

δi〈Xi − µi, v〉2
)]

≤ ε‖A(δ, {µi})‖ ≤ O
(
ε2

k
log 1/ε

)
,

where the second step follows by Cauchy-Schwarz, the fourth step follows by the first part of the268

lemma. As this holds for all Σ ∈ K, we get the second part of the lemma.269

This also implies the fourth part of the lemma because270

‖
∑
i∈U

δi(Xi − µ)‖K ≤ ‖
∑
i∈U

δi(Xi − µi)‖K + ‖
∑
i∈U

δi(µi − µ)‖K

≤ O
(

ε√
k

√
log 1/ε

)
+
∑
i∈U

δi‖µi − µ‖1

≤ O
(

ε√
k

√
log 1/ε+ ε · ω

)
,

where the second step follows by the above together with Fact 2.4 and triangle inequality.271

Finally, for the third part of the lemma, upon regarding the weights δ as εEW [ŵ(W )] as before and272

applying Jensen’s to the second part of Lemma 3.4, we get that273

‖A(δ, µ)−A(δ, {µi})‖K ≤ ε ·O

(
ω +

√
log 1/ε√
k

)2

≤ O
(
ε · ω2 +

ε log 1/ε

k

)
.

The third part of the lemma then follows by the first part, together with triangle inequality.274

Lemma 3.9. If SG is ε-good, and w : SG → [0, 1] satisfies ‖w − ŵ(SG)‖1 ≤ ε and
∑
i∈SG wi = 1,275

then ‖M(w)‖K ≤ O(ω2 + ε
k log 1/ε).276

Proof. Define δi = 1/|SG| − wi for all i ∈ SG and take any Σ ∈ K.277

By Fact 1.2 and the assumption that ‖w‖1 = 1,278

〈A(w, µ(w)),Σ〉 = 〈A(w, µ),Σ〉 − ‖µ(w)− µ‖2K. (13)
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For the second term on the right-hand side of (13), note that we can write279

µ(w)− µ =
∑
i∈SG

wi(Xi − µ)

=
∑
i∈SG

(1/|SG| − δi)(Xi − µ)

= (µ(SG)− µ)−
∑
i∈SG

δi(Xi − µ)

= (µ(SG)− µ)−
∑
i∈SG

δi(Xi − µi)−
∑
i∈SG

δi(µi − µ),

where the first step follows by the fact that
∑
i∈SG wi = 1. So by triangle inequality,280

‖µ(w)− µ‖K ≤ ‖µ(SG)− µ‖K + ‖
∑
i∈SG

δi(Xi − µ)‖K ≤ O
(

ε√
k

√
log 1/ε+ ε · ω

)
(14)

where the second step follows by the first part of Condition (I) in the definition of ε-goodness for SG,281

together with the second part of Lemma 3.8.282

Next, we bound the first term on the right-hand side of (13). We have283

|〈A(w, µ),Σ〉| ≤ |〈A(ŵ(SG), µ),Σ〉|+ |〈A(δ, µ),Σ〉|

≤ |〈A(ŵ(SG), µ),Σ〉|+O
( ε
k

log 1/ε+ ε · ω2
)

≤ |〈B({µi}),Σ〉|+O

(
ω2 +

ε log 1/ε

k

)
≤ |〈B(µ̂(SG)),Σ〉|+O

(
ω2 +

ε log 1/ε

k

)
, (15)

where the second step follows by the third part of Lemma 3.8, the third step follows by Corollary 3.5,284

and the fourth step follows by Condition (III) of ε-goodness.285

Additionally, by Corollary 2.5, we can bound286

|〈B(µ(w)),Σ〉 − 〈B(µ̂(SG)),Σ〉| ≤ 3

k
‖µ(w)− µ̂(SG)‖1 ≤

3

k
‖w − ŵ(SG)‖1 ≤ O(ε/k). (16)

By (15) and (16) we conclude that 〈A(w, µ),Σ〉 ≤ 〈B(µ(w)),Σ〉+ O( εk log 1/ε), so this together287

with (13) and (14) yields the desired bound.288

3.5 Analyzing the Filter With Spectral Signatures289

We now use Lemma 3.7 to show that under the deterministic condition that the uncorrupted points290

are ε-good, LEARNWITHFILTER satisfies the guarantees of Theorem 3.1.291

The main step is to show that as long as we remain in the main loop of LEARNWITHFILTER, and we292

have so far thrown out more bad weight than good weight, we are guaranteed to throw out more bad293

weight than good weight in the next iteration of the main loop:294

Lemma 3.10. Let w and w′ be the weights at the start and end of a single iteration of the main loop295

of LEARNWITHFILTER. There is an absolute constant C > 0 such that if ‖M(w)‖K > C · εk log 1/ε296

and
∑
i∈SG

1
N − wi <

∑
i∈SB

1
N − wi, then

∑
i∈SG wi − w

′
i <

∑
i∈SB wi − w

′
i.297

Proof. Suppose the scores τ1, · · · , τN in this iteration are sorted in decreasing order, and let T denote298

the smallest index for which
∑
i∈[T ] wi ≥ 2ε. As FILTER does not modify wi for i > T , we just need299

to show that
∑
i∈SG∩[T ] wi−w′i <

∑
i∈SB∩[T ] wi−w′i, and by Lemma 3.2 it is enough to show that300 ∑

i∈SG∩[T ]

wiτi <
∑

i∈SB∩[T ]

wiτi. (17)

First note that because each weight is at most ε, we may assume that
∑
i∈[T ] wi ≤ 3ε. We begin by301

upper bounding the left-hand side of (17).302
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Lemma 3.11.
∑
i∈SG∩[T ] wiτi ≤ O

(
ε
k log 1/ε+ ε · ω2 + ε2‖M(w)‖K

)
.303

Proof. Let w′′ be the weights given by w′′i for i ∈ SG ∩ [T ] and w′′i = 0 otherwise. Then304 ∑
SG∩[T ] wiτi is equal to305 ∑

i∈[N ]

w′′i τi =
∑
i∈[N ]

w′′i
〈
(Xi − µ(w))⊗2,Σ

〉
=
∑
i∈[N ]

w′′i
〈
(Xi − µ(w′′))⊗2,Σ

〉
+ ‖w′′‖1 ·

〈
(µ(w′′)− µ(w))⊗2,Σ

〉
(18)

≤
∑
i∈[N ]

w′′i
〈
(Xi − µ(w′′))⊗2,Σ

〉
+O(ε) · ‖µ(w′′)− µ(w)‖2K (19)

≤
∑
i∈[N ]

w′′i
〈
(Xi − µ)⊗2,Σ

〉
+O(ε) · ‖µ(w′′)− µ(w)‖2K (20)

≤ O
(
ε · ω2 +

ε

k
log 1/ε

)
+O(ε) · ‖µ(w′′)− µ(w)‖2K

where (18) and (20) both follow from Fact 1.2, (19) follows from the earlier assumption that306 ∑
i∈[T ] wi ≤ 3ε and the definition of ‖ · ‖K, and the last step follows by the third part of Lemma 3.8.307

Now note that308

‖µ(w′′)− µ(w)‖K ≤ ‖µ(w′′)− µ‖K + ‖µ(w)− µ‖K

≤ O

(√
log 1/ε√
k

+ ω

)
+ ‖µ(w)− µ‖K

≤ O

(√
log 1/ε√
k

+ ω +

√
ε
(
‖M(w)‖K + ω2 +

ε

k
log 1/ε

))
,

where the second step follows by the fourth part of Lemma 3.8 and the third step holds by Lemma 3.7.309

The desired bound follows.310

One consequence of this is that outside of the tails, the scores among good samples are small.311

Corollary 3.12. For all i > T , τi ≤ O( 1
k log 1/ε+ ε‖M(w)‖K + ω2).312

Proof. Note that313 ∑
i∈SG∩[T ]

wi =
∑
i∈[T ]

wi −
∑

i∈SB∩[T ]

wi ≥ 2ε−
∑
i∈SB

wi ≥ ε,

so the claim follows from Lemma 3.11 and averaging.314

Next, we show that the deviation of the total scores of the good points from their expectation is315

negligible.316

Lemma 3.13.
∑
i∈SG wiτi − 〈B(µ(w)),Σ〉 ≤ O

(
ε
k log 1/ε+ ε · ω2 + ε · ‖M(w)‖K

)
.317

Proof. Let w′ be the weights given by w′i = wi for i ∈ SG and w′i = 0 otherwise. Then by Fact 1.2,318 ∑
i∈SG

wiτi =
∑
i∈SG

wi〈(Xi − µ(w′))⊗2,Σ〉+ ‖w‖1 · 〈(µ(w)− µ(w′))⊗2,Σ〉

≤ 1∑
i∈SG wi

(
〈B(µ(w′)),Σ〉+O

( ε
k

log 1/ε
))

+ ‖µ(w)− µ(w′)‖2K
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where in the second step we used Fact 1.2, and in the third step we used Lemma 3.9 and the definition319

of ‖ · ‖K. To bound the ‖µ(w)− µ(w′)‖2K term, note that320

‖µ(w)− µ(w′)‖K ≤ ‖µ(w)− µ‖K + ‖µ(w′)− µ‖K

≤ ‖µ(w)− µ‖K +O

(
ε
√

log 1/ε√
k

+ ε · ω

)

≤ O

(
ε
√

log 1/ε√
k

+ ε · ω +

√
ε
(
‖M(w)‖K + ω2 +

ε

k
log 1/ε

))
,

where the second step follows by the fourth part of Lemma 3.8, and the third step follows by321

Lemma 3.7. Finally, by Corollary 2.5 we have that322

〈B(µ(w′)),Σ〉 ≤ 〈B(µ(w)),Σ〉+
3

k
‖µ(w′)− µ(w)‖1 ≤ 〈B(µ(w)),Σ〉+O(ε/k),

where the last step follows by Fact 1.3. This completes the proof of the claim.323

We are now ready to complete the proof of Lemma 3.10. In light of Lemma 3.11, we wish to lower324

bound the right-hand side of (17).325

Claim 3.14. If C > 0 in the lower bound ‖M(w)‖K > C( εk log 1/ε+ ω2) is sufficiently large, then326

〈M(w),Σ∗〉 must be positive.327

Proof. Let w′ denote the weights given by w′i = wi for i ∈ SG and w′i = 0 otherwise. We have328

M(w) =
∑
i∈[N ]

wi(Xi − µ(w))⊗2 −B(µ(w))

�
∑
i∈SG

w′i(Xi − µ(w))⊗2 −B(µ(w))

�
∑
i∈SG

w′i(Xi − µ(w′))⊗2 −B(µ(w))

= M(w′) +B(µ(w′))−B(µ(w)) (21)

where the third step follows by Fact 1.2. Furthermore,329

‖B(µ(w′))−B(µ(w))‖K ≤
3

k
· ‖µ(w′)− µ(w)‖1 ≤ O(ε/k) (22)

by Corollary 2.5 and Fact 1.3. Lastly, we must bound ‖M(w′)‖K. Letting ŵ′ denote the normalized330

version of w′, we have that331

‖M(w′)‖K ≤ ‖M(ŵ′)‖K + ‖M(w′)−M(ŵ′)‖K
≤ ‖M(ŵ′)‖K + ‖A(ŵ′ − w′, µ)‖K

≤ O
( ε
k

log 1/ε+ ω2
)
, (23)

where the penultimate step follows by Fact 1.2 and the definition of the matrix M(·), and the last step332

follows by Lemma 3.9 and the third part of Lemma 3.8.333

We conclude by (21), (22), and (23) that334

min
Σ∈K
〈M(w),Σ〉 ≥ −O

( ε
k

log 1/ε+ ω2
)
, (24)

so we simply need to take C larger than the constant implicit in the right-hand side of (24) to ensure335

that 〈M(w),Σ∗〉 > 0.336

By Claim 3.14 and the definition of the scores,337 ∑
i∈[N ]

wiτi − 〈B(µ(w)),Σ∗〉 = 〈M(w),Σ∗〉 ≥ ‖M(w)‖K.
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This, together with Lemma 3.13, yields
∑
i∈SB wiτi ≥ C ′‖M(w)‖K for some C ′ < C which we338

can take to be arbitrarily large. We want to show that this same sum, over only SB ∩ [T ], enjoys339

essentially the same bound. Indeed,340 ∑
i∈SB∩[T ]

wiτi ≥ C ′‖M(w)‖K −
∑

i∈SB\[T ]

wiτi

≥ C ′‖M(w)‖K −

(∑
i∈SB

wi

)
·O
(

1

k
log 1/ε+ ω2 + ε‖M(w)‖K

)
≥ C · ‖M(w)‖K,

for some arbitrarily large absolute constant C, where the second step follows by Corollary 3.12, and341

the last by the assumption that ‖M(w)‖K > C · ( εk log 1/ε+ ω2). On the other hand, by this same342

assumption and by Lemma 3.11,343 ∑
i∈SG∩[T ]

wiτi ≤ O
( ε
k

log 1/ε+ ε · ω2 + ε2‖M(w)‖K
)
≤ C · ‖M(w)‖K,

where C can be taken to be smaller than C. This proves (17) and thus Lemma 3.10.344

We can now combine Lemma 3.7 and Lemma 3.10 to get a proof of Theorem 3.1.345

Proof of Theorem 3.1. Let µ̂ be the output of LEARNWITHFILTER. By Lemma 1.7, it suffices to346

show that µ̂ satisfies ‖µ̂ − µ‖As(d+1)
≤ O(ω + ε√

k

√
log 1/ε), or equivalently that for all v ∈ Vn` ,347

where ` , 2s(d+ 1), we have that 〈(µ̂− µ)⊗2, vv>〉1/2 ≤ O(ω + ε√
k

√
log 1/ε). By Corollary 2.3,348

it is enough to show that ‖µ̂ − µ‖K ≤ O(ω + ε√
k

√
log 1/ε). By Lemma 3.7 together with the349

termination condition of the main loop of LEARNWITHFILTER, we just need to show that the350

algorithm terminates (in polynomial time) and that w ∈ WO(ε).351

But by induction and Lemma 3.10, every iteration of the loop removes more mass from the bad points352

than from the good points. Furthermore, by Lemma 3.2, the support of w goes down by at least one353

every time 1DFILTER is run, so the loops terminates after at most N iterations, each of which can be354

implemented in polynomial time. At the end, at most an ε fraction of the total mass on SG has been355

removed, so the final weights w satisfy w ∈ W2ε as desired.356

4 Numerical Experiments357

In this section we report on empirical evaluations of our algorithm on synthetic data. We compared358

our algorithm LEARNWITHFILTER, the naive estimator which simply takes the empirical mean of all359

samples, the “oracle” algorithm which computes the empirical mean of the uncorrupted samples, and360

the threshold of ε/
√
k which our theorems show that LEARNWITHFILTER achieves, up to constant361

factors (in Figures 1 and 2, these are labeled “filter”, “naive”, “oracle”, and ε/
√
k respectively). Note362

that by definition, the oracle dominates the algorithms considered in [CLM19] and [JO19] for the363

unstructured case, as those algorithms search for a subset of the data and output the empirical mean364

of that subset. But as Theorem 3.1 predicts, LEARNWITHFILTER should actually outperform the365

oracle in settings where the underlying distribution µ is structured and there are too few samples for366

the empirical mean of the uncorrupted points to concentrate sufficiently. In these experiments, we367

confirm this empirically.368

4.1 Experimental Design369

Our experiments fall under two types: (A) those on learning an arbitrary distribution in A`/2370

norm and B) those on learning a structured distribution in total variation distance. The purpose371

of experiments of type (A) will be to convey that LEARNWITHFILTER can be used to learn from372

untrusted batches in A`/2 norm even for distributions which are not necessarily structured. The373

purpose of experiments of type (B) will be to demonstrate that LEARNWITHFILTER can outperform374

the oracle for structured distributions.375
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Figure 1: Arbitrary Distributions:

Throughout, ω = 0 and ` = 10. While our algorithm can also be implemented for larger ` (as the376

size of the SDP we solve does not depend on `), we choose ` = 5 because it is small enough that377

the sample complexity savings of our algorithm are very pronounced, yet large enough that for the378

domain sizes n we work with, enumerating over Vn` would be prohibitively expensive, justifying the379

need to use an SDP.380

For experiments of type (A), we chose the true underlying distribution µ by sampling uniformly from381

[0, 1]n and normalizing, and for experiments of type B), we chose µ by sampling a uniformly random382

piecewise constant function with ` = 5 pieces.383

Given µ and a prescribed parameter δ, the distribution from which the corrupted batches were drawn384

was taken to be Mulk(ν), where ν was constructed to satisfy dTV(µ, ν) = δ by adding 2δ
n to the385

smallest entries of µ and subtracting 2δ
n from the largest. Sometimes this does not give a probability386

distribution, in which case we resample µ. When k, ε,N are clear from context and we say that N387

ε-corrupted batches are drawn from the distribution specified by (µ, ν), we mean that b(1− ε)Nc388

samples are drawn from Mulk(µ) and N − b(1− ε)Nc from Mulk(ν).389

As noted in [JO19], choosing δ too high makes it too easy to detect the corruptions in the data, while390

choosing δ too low means the naive estimator will already perform quite well. In light of this and391

the fact that the above process for generating ν only ensures that dTV(µ, ν) = δ, whereas ‖µ− ν‖A`392

might be much smaller, we chose δ for our experiments as follows. For experiments of type (A),393

we took δ = 0.5 to ensure that the typical A`/2 distance between the empirical mean and the truth394

was still sufficiently large that the the naive estimator was not competitive. For experiments of type395

B) where we measure error in terms of total variation distance, we could afford to choose δ slightly396

smaller, namely δ = 0.3.397

We first describe the experiments of type (A). We examined the effect of varying one of the following398

four parameters at a time: domain size n, batch size k, corruption fraction ε, and total number of399

batches N . Each of the following four experiments was repeated for a total of ten trials.400
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Figure 2: Structured Distributions:

(a) Varying domain size n: We fixed ε = 0.4, k = 1000, and N = b `/ε
2

1−ε c to ensure b`/ε2c401

samples from Mulk(µ). We chose such large k to ensure the gap between empirical mean402

and our algorithm was very noticable. In each trial and for each n ∈ [4, 8, 16, 32, 64, 128],403

we randomly generated (µ, ν) via the above procedure, drew N ε-corrupted samples from404

distribution specified by (µ, ν). Note that while N is independent of n, the performance of405

our algorithm is comparable to that of the oracle.1406

(b) Varying batch size k: We fixed ε = 0.4, n = 64, and N = `/ε2

1−ε c. In each trial,407

we randomly generated (µ, ν) via the above procedure, and then for each value of408

k ∈ [1, 50, 100, 250, 500, 750, 1000] we drew N samples from the distribution specified409

by (µ, ν). Note that while our algorithm’s error and the oracle’s error decay with k, the410

empirical mean’s error remains fixed.411

(c) Varying corruption fraction ε: We fixed ε∗ = 0.4, n = 64, k = 1000, and N = b`/ε∗2c. In412

each trial, we randomly generated (µ, ν) via the above procedure and drew N samples from413

Mul(k, µ). Then for each ε ∈ [0.0, 0.1, 0.2, 0.3, 0.4], we augmented this with an additional414

b εN1−ε samples from Mul(k, ν). Note that while our algorithm’s error remains close to ε∗/
√
k,415

the empirical mean’s error increases linearly in ε.416

(d) Varying number of batches N : We fixed ε = 0.4, n = 128, and k = 500. In417

each trial, we randomly generated (µ, ν) via the above procedure, and then for each418

ρ ∈ [0.5, 0.75, 1, 1.25, 1.5], we drew N = bρ · `/ε2c samples from the distribution specified419

by (µ, ν). Note that even with such a small number of samples, our algorithm can compete420

with the oracle. Also note that our error bottoms out at ε/
√
k while the oracle’s error goes421

beneath this threshold.422

For type (B), we ran the exact same set of four experiments but over structured µ, with the key423

difference that after generating an estimate with LEARNWITHFILTER, we post-processed it by424

1The naive estimator’s error is decreasing in n for an unrelated reason: as n increases, the above procedure for
sampling (µ, ν) appears to skew towards µ for which the resulting perturbation ν is close in A`/2.
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rounding to a piecewise constant function via a simple dynamic program. We then compare the error425

of this piecewise constant estimator in total variation distance to that of the empirical mean of the426

whole dataset, and the empirical mean of the uncorrupted points.427

As is evident from Figure 2, our algorithm outperforms even the oracle, as predicted by Theorem 3.1.428

4.2 Implementation Details429

The experiments were conducted on a MacBook Pro with 2.6 GHz Dual-Core Intel Core i5 processor430

and 8 GB of RAM. The experiments of type (A) respectively took 110m36.499s, 73m19.477s,431

50m54.655s, and 536m39.212s to run. The experiments of type (B) respectively took 64m28.346s,432

52m7.859s, 39m36.754s, and 362m50.742s to run. The discrepancy in runtimes between (A) and (B)433

can be explained by the fact that a number of unrelated processes were also running at the time of434

the former. The experiment of varying the number of batches N was the most expensive because435

we chose domain size n = 128 to accentuate the gap between our algorithm and the oracle. The436

abovementioned runtimes imply that over a domain of size 128, LEARNWITHFILTER takes roughly437

7-10 minutes.438

For the implementation, we used the SCS solver in CVXPY for our semidefinite programs. In order439

to achieve reasonable runtimes, we needed to set the feasibility tolerance to 1e− 2, and as a result440

the SDP solver would occasionally output matrices Σ which are moderately far from K; in particular,441

one mode of failure that arose was that Σ might be non-PSD and give rise to negative scores in442

LEARNWITHFILTER. We chose to address this mode of failure heuristically by terminating the443

algorithm whenever this happened and simply outputting the estimate for µ at that point in time. Of444

the 480 total trials that were run across all experiments, this happened 53 times. Another heuristic445

that we used was to terminate the algorithm as soon as ‖Σ‖K stopped increasing during a run of446

LEARNWITHFILTER; this was primarily to have a stopping criterion that avoids the need to tune447

constant factors. As demonstrated by Figures 1 and 2, these heuristic decisions ultimately had448

negligible effect on the performance of our algorithm.449
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A Concentration467

In this section we prove Lemma 3.6, restated here for convenience:468

Lemma 3.6 (Regularity of good samples). If U is a set of Ω̃
(
log(1/δ)(`2/ε2) · log3(n)

)
independent469

samples from Mulk(µ1), ...,Mulk(µ|U |), then U is ε-good with probability at least 1− δ.470
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A.1 Technical Ingredients471

The key technical fact we use to get sample complexity that depend quadratically on ` is:472

Lemma A.1. For every 0 < η ≤ 1, there exists a netN ⊂ Rn×n of sizeO(n3`2 log2 n/η)(` logn+1)2473

of matrices such that for every Σ ∈ K, there exists some Σ̃ =
∑
ν Σ∗ν for Σ∗ν ∈ N such that the474

following holds: 1) ‖Σ− Σ̃‖F ≤ η, 2)
∑
ν αν ≤ 1, and 3) ‖Σ∗ν‖max ≤ O(1).475

Note that this is a strengthening of a special case of Lemma 6.9 from [CLM19]. We defer the proof476

of Lemma A.1 to Appendix B.477

For ε-goodness to hold, it will be crucial to establish the following sub-exponential tail bounds for the478

empirical covariance of a set of samples X1, · · · , XN ∼ Mulk(µ), as well as for ‖µ̂− µ‖2K, where µ̂479

is the empirical mean of those samples.480

Lemma A.2. Let ξ > 0 and let N ⊂ Rn×n be any finite set for which ‖Σ‖max ≤ O(1) for all481

Σ ∈ N . Let µ1, ..., µN , µ ∈ ∆n satisfy µ , 1
N

∑N
i=1 µi. Then for Xi ∼ Mulk(µi) for i ∈ [N ],482

Pr

[∣∣∣∣∣
〈

1

N

N∑
i=1

(Xi − µi)⊗2 − E
X∼Mulk(µi)

[
(X − µi)⊗2

]
,Σ

〉∣∣∣∣∣ > t ∀ Σ ∈ N

]
< 2|N | exp

(
−Ω

(
Nk2t2

1 + kt

))
,

where the probability is over the samples X1, · · · , XN .483

Lemma A.3. Let ξ > 0 and let N ⊂ Rn×n be any finite set for which ‖Σ‖max ≤ O(1) for all484

Σ ∈ N . For Xi ∼ Mulk(µi) for i ∈ [N ], µ̂ , 1
N

∑N
i=1Xi, and µ , 1

N

∑N
i=1 µi,485

Pr
[∣∣〈(µ̂− µ)⊗2,Σ

〉
− E

[〈
(µ̂− µ)⊗2,Σ

〉]∣∣ > t ∀ Σ ∈ N
]
< 2|N | exp

(
−Ω

(
N2k2t2

1 +Nkt

))
,

where the probability is over the samples X1, · · · , XN .486

Lemma A.4. Let ξ > 0 and let N ⊂ Rn×n be any finite set for which ‖Σ‖max ≤ O(1) for all487

Σ ∈ N . Let µ1, ..., µN , µ ∈ ∆n satisfy ‖µi − µ‖1 ≤ ω for all i ∈ [N ]. For Xi ∼ Mulk(µi) for488

i ∈ [N ],489

Pr

[∣∣∣∣∣ 1

N

N∑
i=1

(µi − µ)>Σ(Xi − µi)

∣∣∣∣∣ > ω · t ∀ Σ ∈ N

]
< 2|N | exp

(
−Ω

(
kNt2

))
,

where the probability is over the samples X1, · · · , XN .490

Note that if N consisted solely of matrices of the form vv> for v ∈ {±1}n, these lemmas would491

follow straightforwardly from standard binomial tail bounds. Instead, we only have entrywise bounds492

for the matrices in N and will therefore need to compute moment estimates from scratch in order to493

prove Lemmas A.2 and A.3. We defer the details of this to Appendix C.494

Lastly, we will need the following elementary consequence of Stirling’s formula:495

Fact A.5. For any m ≥ 1, log
(
m
εm

)
≤ 2m · ε log 1/ε.496

A.2 Proof of Lemma 3.6497

We are now ready to prove that the four conditions for ε-goodness hold for a set U of independent498

draws from Mulk(µ1), ...,Mulk(µ|U |) respectively, of size499

|U | = Ω̃
(
log(1/δ)(`2/ε2) · log3(n)

)
. (25)

Proof of Lemma 3.6. As ‖ · ‖K is defined as a supremum over K, we will reduce controlling the500

infinitely many directions in K to controlling a finite net of such directions by invoking Lemma A.1.501

Specifically, recall that for any Σ ∈ K, by Lemma A.1, there is some Σ̃ =
∑
ν ανΣ∗ν such that502

Σ∗ν ∈ N and ‖Σ− Σ̃‖F ≤ η.503
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(Condition (I)) By Lemma A.3, with probability at least 1− 2|N | exp
(
−Ω(N

2k2t2

1+Nkt )
)

, we have that504

for all Σ ∈ K,505 〈
(µ(U)− µ)⊗2,Σ

〉
≤
〈

(µ(U)− µ)⊗2, Σ̃
〉

+ ‖µ(U)− µ‖22 · ‖Σ− Σ̃‖F

≤
〈

(µ(U)− µ)⊗2, Σ̃
〉

+ 2η

=
∑
ν

αν
〈
(µ(U)− µ)⊗2,Σ∗ν

〉
+ 2η

≤ 1

N

N∑
i=1

E
[〈

(X − µi)⊗2,Σ∗ν
〉]

+
∑
ν

αν · t+ 2η

≤ O(1/k|U |) + t+ 2η, (26)

where the first step follows by Cauchy-Schwarz and triangle inequality, the second step follows by506

the trivial bound ‖µ(U) − µi‖22 ≤ 2 and the bound on ‖Σ − Σ̃‖F guaranteed by Lemma A.1, the507

fourth step holds with the claimed probability by Lemma A.3 and the fact that ‖Σ∗ν‖max ≤ O(1)508

for all ν by the guarantees of Lemma A.1, and the last step follows by the bound on
∑
αν by the509

guarantees of Lemma A.1, as well as the moment bound in Lemma C.2 applied to r = 1.510

If |U | satisfies (25) and η, t = O( ε
2

k log 1/ε), the first part of Condition (I) holds.511

For the second part, by the steps leading to (26), a union bound over the
( |U |
ε|U |
)

subsets W and512

Fact A.5, with probability at least513

1− 2 exp(2|U | · ε log 1/ε) · |N | exp

(
−Ω

(
ε2|U |2k2t2

1 + ε|U |kt

))
we have that ‖µ(W )−µW ‖2K ≤ O

(
1

εk|U |

)
+ t+ 2η for all W . Note that 2 log 1/ε ≤ O

(
ε|U |2k2t2
1+ε|U |kt

)
514

provided t = Ω
(

log 1/ε
k

)
, so if |U | satisfies (25) and η = O( log 1/ε

k ), the second part of Condition (I)515

holds.516

(Condition (II)) For the first part, let M̂ ,M(ŵ(U), {µi}i∈U ). By Lemma A.2, with probability at517

least 1− 2|N | exp
(
−Ω

(
|U |k2t2
1+kt

))
, we have that for all Σ ∈ K,518

〈M̂,Σ〉 ≤ 〈M̂, Σ̃〉+ ‖M̂‖F · ‖Σ− Σ̃‖F
≤ 〈M̂, Σ̃〉+ 3η

≤
∑
ν

αν〈M̂,Σ∗ν〉+ 3η

≤
∑
ν

αν · t+ 3η

≤ t+ 3η (27)

where the first step follows by Cauchy-Schwarz and triangle inequality, and the second step follows519

by Lemma 1.4 and the bound on ‖Σ− Σ̃‖F guaranteed by Lemma A.1, the fourth step holds with520

the claimed probability by Lemma A.2 and the fact that ‖Σ∗ν‖max ≤ O(1) for all ν by the guarantees521

of Lemma A.1, and the last step follows by the bound on
∑
αν by the guarantees of Lemma A.1.522

If |U | satisfies (25), η = O
(
ε
k log 1/ε

)
, t = O

(
ε
k log 1/ε

)
, the first part of Condition (II) holds.523

For the second part, first note that it is slightly different from the first part because we do not subtract524

out B(µ), the reason being that ‖B(µ)‖K ≤ O(1/k) = o( log 1/ε
k ), so this term is negligible. By the525

steps leading to (27), a union bound over the
( |U |
ε|U |
)

subsets W , and Fact A.5, with probability at least526

1− 2|N | exp(2ε|U | log 1/ε) · exp

(
−Ω

(
ε|U |k2t2

1 + kt

))
,
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we have that ‖M(ŵ(W ), {µi}i∈W )‖K ≤ t+3η for allW . Note that 2 log 1/ε ≤ O
(
k2t2

1+kt

)
provided527

t = Ω
(

log 1/ε
k

)
, so if |U | satisfies (25) and η = O

(
log 1/ε
k

)
, the second part of Condition (II) holds.528

(Condition (III)) First note that529

B({µi})−B(µ) =
1

|U |
∑
i∈U

1

k

(
diag(µi − µ)− (µ⊗2

i − µ
⊗2)
)

= − 1

|U |
∑
i∈U

1

k
(µ⊗2
i − µ

⊗2).

Also note that530 〈
Σ,

1

|U |
∑
i∈U

(µ⊗2
i − µ

⊗2)

〉
=

1

|U |
∑
i∈U

〈
(µi − µ)⊗2,Σ

〉
≤ max

i
‖µi − µ‖21 ≤ ω2,

where in the last step we used Fact 2.4. So ‖B({µi})−B(µ)‖K ≤ ω2/k.531

It remains to bound ‖B(µ̂(U))−B(µ)‖K. As we only need to show extremely mild concentration532

here, we will not make an effort to obtain tight bounds. Note that by (1),533

|〈Σ, B(µ̂(U))−B(µ)〉| ≤ 1

k
|〈diag(µ̂(U)− µ),Σ〉|+ 1

k

∣∣〈µ̂(U)⊗2 − µ⊗2,Σ〉
∣∣ . (28)

We have534

〈diag(µ̂(U)− µ),Σ〉 ≤
∑
ν

αν〈diag(µ̂(U)− µ),Σ∗ν〉+ ‖Σ− Σ̃‖F · ‖µ̂(U)− µ‖2

≤
∑
ν

αν〈µ̂(U)− µ, diag(Σ∗ν)〉+O(η). (29)

Note that for any ν, 〈µ̂(U) − µ, diag(Σ∗ν)〉 = 1
|U |
∑
i∈U Z

ν
i for Zνi , 〈Xi − µi, diag(Σ∗ν). These535

are independent, mean-zero, O(1)-bounded random variables, so by Hoeffding’s, for any fixed ν we536

have that |〈µ̂(U)− µ, diag(Σ∗ν)〉| ≤ t with probability at least 1− 2 exp(−Ω(|U |t2)). If we union537

bound over N , then by taking η, t = O(ε), and |U | satisfying (25), (29) will be at most O(ε).538

We also have that539 ∣∣〈µ̂(U)⊗2 − µ⊗2,Σ〉
∣∣ =

∣∣〈(µ̂(U)− µ)⊗2,Σ〉 − 2µ>Σ(µ̂(U)− µ)
∣∣

≤ O
(
ε2 log 1/ε

k

)
+ 2

∣∣µ>Σ(µ̂(U)− µ)
∣∣ , (30)

where the second step follows by the first part of this lemma. For the other term, we have540

µ>Σ(µ̂(U)− µ) ≤
∑
ν

ανµ
>Σ∗ν(µ̂(U)− µ) + ‖Σ− Σ̃‖F · ‖µ‖2 · ‖µ̂(U)− µ‖2

≤
∑
ν

ανµ
>Σ∗ν(µ̂(U)− µ) +O(η). (31)

For any ν, µ>Σ∗ν(µ̂(U)− µ) = 1
|U |
∑
i∈U W

ν
i for W ν

i , µ>Σ∗ν(Xi − µi). These are independent,541

mean-zero, O(1)-bounded random variables, so by Hoeffding’s, for any fixed ν, we have that542

|µ>Σ(µ̂(U)− µ)| ≤ t with probability at least 1− 2 exp(−Ω(|U |t2)). If we union bound over N ,543

then by taking η, t = O(ε) and |U | satisfying (25) again, (31) and thus (30) will be at most O(ε).544

By (28), we thus conclude that ‖B(µ̂(U))−B(µ)‖K ≤ O(ε/k) as claimed.545
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(Condition (IV)) By Lemma A.4, with probability at least 1− 2|N | exp
(
−Ω

(
k|U |t2

))
, we have546

that for all Σ ∈ K,547

1

|U |
∑
i∈U

(µi − µ)>Σ(Xi − µi)

≤ 1

|U |
∑
i∈U

(µi − µ)>Σ̃(Xi − µi) +
1

|U |
∑
i∈U
‖Σ− Σ̃‖F · ‖µi − µ‖2 · ‖Xi − µi‖2

≤
∑
ν

αν ·
1

|U |
∑
i∈U

(µi − µ)>Σ∗ν(Xi − µi) + 2ω · η

≤
∑
ν

αν · t+ 2ω · η

≤ ω · t+ 2ω · η (32)
where the first step follows by triangle inequality and Cauchy-Schwarz, the second step follows by548

the bound on ‖Σ− Σ̃‖F guaranteed by Lemma A.1 and the assumption that ‖µi − µ‖2 ≤ ω, and the549

third step holds with the claimed probability by Lemma A.4 and the fact that ‖Σ∗ν‖max ≤ O(1) for all550

ν by Lemma A.1, and the last step follows by the bound on
∑
αν by the guarantees of Lemma A.1.551

If |U | satisfies (25) and η, t = O

(
ε
√

log 1/ε√
k

)
, the first part of Condition (IV) holds.552

For the second part, by the steps leading to (32), a union bound overW , and Fact A.5, with probability553

at least554

1− 2|N | exp(2ε|U | log 1/ε) · exp
(
−Ω

(
εk|U |t2

))
,

we have that 1
|W |

∑
i∈W (µi − µ)>Σ(Xi − µi) ≤ ω · t+ 2ω · η for all W .555

Note that 2 log 1/ε ≤ O(kt2) provided t = Ω

(√
log 1/ε√
k

)
, so if |U | satisfies (25) and η =556

O

(√
log 1/ε√
k

)
, the second part of Condition (IV) holds.557

B Netting Over K558

In this section we prove Lemma A.1, restated here for convenience:559

Lemma A.1. For every 0 < η ≤ 1, there exists a netN ⊂ Rn×n of sizeO(n3`2 log2 n/η)(` logn+1)2560

of matrices such that for every Σ ∈ K, there exists some Σ̃ =
∑
ν Σ∗ν for Σ∗ν ∈ N such that the561

following holds: 1) ‖Σ− Σ̃‖F ≤ η, 2)
∑
ν αν ≤ 1, and 3) ‖Σ∗ν‖max ≤ O(1).562

As alluded to in Remark 2.2 and Appendix A, we will use the extra Constraints 3 and 4 in the563

definition of K to tighten the proof of Lemma 6.9 from [CLM19] to obtain Lemma A.1 above.564

The following well-known trick will be useful.565

Lemma B.1 (“Shelling”). If v ∈ Rm satisfies ‖v‖2 ≤ C and ‖v‖1 = C ·
√
k, then there exist k-sparse566

vectors v[1], ..., v[m/k] with disjoint supports for which 1) v =
∑m/k
i=1 v[i], 2)

∑m/k
i=1 ‖v[i]‖2 ≤ 2C,567

and 3)
∑m/k
i=1 ‖v[i]‖∞ ≤ 1

k‖v‖1 + ‖v‖∞.568

Proof. Assume without loss of generality thatC = 1. LettingB1 ⊂ [m] be the indices of the k largest569

entries of v in absolute value,B2 those of the next k largest, etc., we can write [m] = B1t· · ·tBm/k.570

For i ∈ [m/k], define v[i] ∈ Rm to be the restriction of v to the coordinates indexed by Bi. For any i571

and j ∈ Bi, |vj | ≤ 1
k‖v[i− 1]‖1. This immediately implies that572

m/k∑
i=1

‖v[i]‖∞ ≤ ‖v‖∞ +
1

k

m/k∑
i=1

‖v[i]‖1,

yielding 3) above. Likewise, it implies that573

‖v[i]‖22 =
∑
j∈Bi

v2
j ≤ k ·

1

k2
· ‖v[i− 1]‖21 =

1

k
‖v[i− 1]‖21.
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So ‖v[i]‖2 ≤ ‖v[i− 1]‖1/
√
k and thus574

m/k∑
i=1

‖v[i]‖2 ≤ ‖v[1]‖2 +
1√
k
‖v‖1 ≤ 2,

giving 2) above.575

By rescaling the entries of v in Lemma B.1, we immediately get the following extension to Haar-576

weighted norms:577

Corollary B.2. If v ∈ Rm satisfies ‖v‖2;h ≤ C and ‖v‖1;h = C ·
√
k, then there exist k-sparse578

vectors v1, ..., vm/k with disjoint supports for which 1) v =
∑m/k
i=1 vi, 2)

∑m/k
i=1 ‖vi‖2;h ≤ 2C, and579

3)
∑m/k
i=1 ‖v[i]‖∞;h ≤ 1

k‖v‖1;h + ‖v‖∞;h.580

We remark that whereas in [CLM19], shelling was applied to the unweighted L1, L2 norms, and the581

only L2 information used about v ∈ Vn` was that ‖v‖22 = n, in the sequel we will shell under the582

Haar-weighted norms and use the refined bounds on the Haar-weighted norms given by Constraints 3583

and 4 from Definition 2.1. This will be crucial to getting a net of size exponential in `2 rather than584

just poly(`).585

We now complete the proof of Lemma A.1.586

Proof of Lemma A.1. Let s = ` log n+1, and letm = log n. LetN ′ be anO
(

η
n·s2

)
-net in Frobenius587

norm for all s2-sparse n× n matrices of unit Frobenius norm. Because Ss2−1 has an O
(

η
n·s2

)
-net in588

L2 norm of size O(n · s2/η)s
2

, by a union bound we have that589

|N ′| ≤
(
n2

s2

)
·O(n · s2/η)s

2

= O(n3`2 log2 n/η)s
2

Take any Σ ∈ K and consider L , HΣH>. By Constraints 2, 3, 4 in Definition 2.1,590

‖L‖1,1;h ≤ s2, ‖L‖2F ;h ≤ s2, and ‖L‖max;h ≤ 1. (33)

We can use the first two of these and apply Corollary B.2 to the n2-dimensional vector L to conclude591

that L =
∑
j L

j for some matrices {Lj}j of sparsity at most s2 and for which
∑
j ‖Lj‖F ;h ≤ 2s2592

and
∑
j ‖Lj‖max;h ≤ 1

s2 ‖L
j‖1,1;h + ‖Lj‖max;h.593

By definition of the Haar-weighted Frobenius norm, ‖Lj‖F ≤ n · ‖Lj‖F,µ, so594 ∑
j

‖Lj‖F ≤ O(n · s2).

For each Lj , there is some (L′)j ∈ N ′ such that for L̃j , ‖Lj‖F · (L′)j ,595

‖Lj − L̃j‖F ≤ O
( η

n · s2

)
‖Lj‖F . (34)

We conclude that if we define L̃ ,
∑
j L̃

j , then ‖L− L̃‖F ≤ η.596

Now let N , H−1N−1(H−1)>. As Σ = H−1L(H−1)> and H−1 is an isometry, if we define597

Σ̃j , H−1L̃j(H−1)> and Σ̃ ,
∑
j Σ̃j , then we likewise get that ‖Σ − Σ̃‖F ≤ η, and clearly598

Σ̃j ∈ PN for every j, concluding the proof of part 1) of the lemma.599

For each Σ̃j , define600

αj , ‖Lj‖max;h/2 (35)

and define Σj∗ , Σ̃j/αj so that Σ̃ =
∑
j,σ,τ αj · Σ

j
∗. Note that by part 3) of Corollary B.2 and (33),601 ∑

j

αj =
1

2

∑
j

‖Lj‖max;h

≤ 1

2

1

s2
‖L‖1,1;h + ‖L‖max;h ≤ 1
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where in the last step we used the fact that ‖L‖1,1;h ≤ s2 and ‖L[σ, τ ]‖max;h ≤ 1. This concludes602

the proof of part 2) of the lemma.603

Finally, we need to bound ‖Σj∗‖max. Note first that for any matrix J supported only on a submatrix604

consisting of entries of L from the rows i (resp. columns j) for which i ∈ Tσ (resp. j ∈ Tτ ), we have605

that606

‖H−1J(H−1)>‖max = 2−(m−σ)/2 · 2−(m−τ)/2 · ‖J‖max =
2(σ+τ)/2

n
‖J‖max

because the Haar wavelets {ψσ,j}j (resp. {ψτ,j}j) have disjoint supports and L∞ norm 2−(m−σ)/2607

(resp. 2−(m−τ)/2). For general J, by decomposing J into such submatrices, call them J[σ, τ ], we get608

by triangle inequality that609

‖H−1J(H−1)>‖max ≤
∑
σ,τ

2(σ+τ)/2

n
‖J[σ, τ ]‖max ≤ ‖J‖max. (36)

By applying this to J = Σ̃j , we get610

‖Σ̃j‖max ≤
(
‖H−1Lj(H−1)>‖max + ‖H−1

(
Lj − L̃j

)
(H−1)>‖max

)
≤ ‖Lj‖max + ‖Lj − L̃j‖max

≤ ‖Lj‖max + ‖Lj − L̃j‖F

≤ ‖Lj‖max +O
( η

n · s2

)
‖Lj‖F

≤ ‖Lj‖max · (1 +O (η/n))

≤ 2 · ‖Lj‖max,

where the first inequality is triangle inequality, the second inequality follows by (36), the third611

inequality follows from monotonicity of Lp norms, the fourth inequality follows from (34), and the612

fifth inequality follows from the fact that Lj is s2 sparse.613

Recalling (35) and the definition of Σσ,τ ;j
∗ , we conclude that ‖Σσ,τ ;j

∗ ‖max ≤ O(1) as claimed.614

C Sub-Exponential Tail Bounds From Section A615

In this section, we provide proofs for Lemmas A.2, A.3, and A.4, restated here for convenience.616

Lemma A.2. Let ξ > 0 and let N ⊂ Rn×n be any finite set for which ‖Σ‖max ≤ O(1) for all617

Σ ∈ N . Let µ1, ..., µN , µ ∈ ∆n satisfy µ , 1
N

∑N
i=1 µi. Then for Xi ∼ Mulk(µi) for i ∈ [N ],618

Pr

[∣∣∣∣∣
〈

1

N

N∑
i=1

(Xi − µi)⊗2 − E
X∼Mulk(µi)

[
(X − µi)⊗2

]
,Σ

〉∣∣∣∣∣ > t ∀ Σ ∈ N

]
< 2|N | exp

(
−Ω

(
Nk2t2

1 + kt

))
,

where the probability is over the samples X1, · · · , XN .619

Lemma A.3. Let ξ > 0 and let N ⊂ Rn×n be any finite set for which ‖Σ‖max ≤ O(1) for all620

Σ ∈ N . For Xi ∼ Mulk(µi) for i ∈ [N ], µ̂ , 1
N

∑N
i=1Xi, and µ , 1

N

∑N
i=1 µi,621

Pr
[∣∣〈(µ̂− µ)⊗2,Σ

〉
− E

[〈
(µ̂− µ)⊗2,Σ

〉]∣∣ > t ∀ Σ ∈ N
]
< 2|N | exp

(
−Ω

(
N2k2t2

1 +Nkt

))
,

where the probability is over the samples X1, · · · , XN .622

Lemma A.4. Let ξ > 0 and let N ⊂ Rn×n be any finite set for which ‖Σ‖max ≤ O(1) for all623

Σ ∈ N . Let µ1, ..., µN , µ ∈ ∆n satisfy ‖µi − µ‖1 ≤ ω for all i ∈ [N ]. For Xi ∼ Mulk(µi) for624

i ∈ [N ],625

Pr

[∣∣∣∣∣ 1

N

N∑
i=1

(µi − µ)>Σ(Xi − µi)

∣∣∣∣∣ > ω · t ∀ Σ ∈ N

]
< 2|N | exp

(
−Ω

(
kNt2

))
,

where the probability is over the samples X1, · · · , XN .626

23



We remark that if we restricted our attention to test matrices of the form Σ = vv> for v ∈ {±1}n,627

these lemmas would follow straightforwardly from Bernstein’s and the sub-Gaussianity of binomial628

distributions.629

We will need the following well-known combinatorial fact, a proof of which we include for complete-630

ness in Section C.1631

Fact C.1. For any m, r ∈ Z, there are at most O(m)r · r! tuples (i1, ..., i2r) ∈ [m]t for which every632

element of [m] occurs an even (possibly zero) number of times.633

Central to the proofs of Lemmas A.2 and A.3 is the following sub-exponential moment bound. We634

remark that this moment bound would be an immediate consequence of McDiarmid’s if Σ not only635

satisfied ‖Σ‖max but was also psd, but because the matrices arising from shelling need not be psd, it636

turns out to be unavoidable that we must prove this moment bound from scratch.637

In this section, given µ ∈ ∆n, let Dµ denote the distribution over standard basis vectors {ei} of Rn638

where for any i ∈ [n], ei has probability mass equal to the i-th entry of µ.639

Lemma C.2. Let Σ ∈ Rn×n have entries bounded in absolute value byO(1), and for µ1, ..., µm, µ ∈640

∆n, let µ , 1
m

∑m
i=1 µi. If Y1, ..., Ym are independent draws from Dµi respectively, and µ̂ ,641

1
m

∑m
i=1 Yi, then for every r ≥ 1, E

[(
(µ̂− µ)>Σ(µ̂− µ)

)r] ≤ Ω(m)−r · r!.642

Proof. Without loss of generality, suppose Σ has entries bounded in absolute value by 1. For643

i, i′ ∈ [m], define Zi,i′ , (Yi−µi)>Σ(Yi′−µi′). Note that because ‖Yi−µi‖1 ≤ 2 with probability644

1 for all i ∈ [m], and the entries of Σ are bounded in absolute value by 1, |Zi,i′ | ≤ 4 with probability645

1 for all i, i′ ∈ [m]. We can write E
[(

(µ̂− µ)>Σ(µ̂− µ)
)r]

as646

1

m2r E

 ∑
i,i′∈[m]

Zi,i′

r =
1

m2r

∑
(i1,i′1),...,(ir,i′r)

E

 r∏
j=1

Zij ,i′j

 . (37)

Now that if there exists some index i ∈ [m] which occurs an odd number of times among647

i1, i
′
1, ..., ir, i

′
r, then by the fact that the tensor E

[
(Yi − µi)⊗a

]
is identically zero for odd a, we have648

that E
[∏r

j=1 Zij ,i′j

]
. So the nonzero summands on the right-hand side of (37) correspond to indices649

{(ij , i′j)}j∈[r] which must satisfy that every index appearing among i1, i′1, ..., ir, i
′
r appears an even650

number of times. By Fact C.1, there are O(m)r · r! such tuples.651

Finally, by the fact that |Zi,i′ | ≤ 4 with probability 1 for all i, i′ ∈ [M ], each monomial652

E
[∏r

j=1 Zij ,i′j

]
is upper bounded by 4r. We conclude that E

[(
(µ̂− µ)>Σ(µ̂− µ)

)r] ≤ 1
m2r ·653

O(m)r · r! · 4r, from which the claim follows.654

Similarly, a crucial ingredient to the proof of Lemma A.4 is the following moment bound.655

Lemma C.3. Let Σ ∈ Rn×n have entries bounded in absolute value by O(1), and suppose656

µ1, ..., µm, µ ∈ ∆n satisfy ‖µi − µm‖1 ≤ ω for all i ∈ [m]. Then for every r ∈ Z,657

E
[(

1
m

∑m
i=1(µi − µ)>Σ(Yi − µi)

)r]
is 0 if r is odd and at most O(rω2/m)r/2 otherwise.658

Proof. It is clear that the r-th moment is zero when r is odd. Henceforth, write r as 2r. Without659

loss of generality, suppose Σ has entries bounded in absolute value by 1. For i ∈ [m], define660

Zi , (µi − µ)>Σ(Yi − µi). Note that because ‖Yi − µi‖1 ≤ 2 with probability 1 for all i ∈ [m],661

and the entries of Σ are bounded in absolute value by 1, |Zi| ≤ 2ω with probability 1 for all i ∈ [m].662

We can write E
[(

1
m

∑m
i=1(µi − µ)>Σ(Yi − µi)

)2r]
as663

1

mr E

∑
i∈[m]

Zi

r =
1

mr

∑
i1,....,i2r

E

 2r∏
j=1

Zij

 .
As in the proof of Lemma C.2, the only nonzero summands correspond to tuples (i1, ..., i2r) such664

that every element of [m] appears an even (possibly zero) number of times. By Fact C.1, there are at665

most O(m)r · r! such tuples, from which we can complete the proof.666
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Lemmas A.2 and A.3 will now follow as consequences of Lemma C.2 and the following standard tail667

bound for random variables with sub-exponential moments:668

Fact C.4. Let Z1, ..., Zm be random variables for which there exists a constant ν > 0 such that669

E[Zri ] ≤ 1
2ν

r · r! for all integers r ≥ 1 and i ∈ [m]. Then670

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Zi − E[Z]

∣∣∣∣∣ > t

]
≤ 2e

−Ω
(

mt2

ν2+νt

)
.

671

Similarly, Lemma A.4 will follow as a consequence of Lemma C.3 and the following standard tail672

bound for random variables with sub-Gaussian moments:673

Fact C.5. Let Z1, ..., Zm be random variables for which there exists a constant ν > 0 such that674

E[Zri ] ≤ (r · ν2)r/2 for all integers r ≥ 1 and i ∈ [m]. Then675

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Zi − E[Z]

∣∣∣∣∣ > t

]
≤ 2e−Ω(mt2/ν2).

676

Proof of Lemma A.2. This follows by taking m = k in Lemma C.2 and m = N in Fact C.4 and677

noting that for any Σ ∈ N , ‖Σ‖max ≤ O(1) by Lemma A.1.678

Proof of Lemma A.3. This follows by taking m = kN in Lemma C.2 and m = 1 in Fact C.4 and679

noting that for any Σ ∈ N , ‖Σ‖max ≤ O(1) by Lemma A.1.680

Proof of Lemma A.4. This follows by taking m = k in Lemma C.3 and m = N in Fact C.5 and681

noting that for any Σ ∈ N , ‖Σ‖max ≤ O(1) by Lemma A.1.682

C.1 Proof of Fact C.1683

Proof. To count the number N∗ of such tuples (i1, ..., i2r), for every 1 ≤ s ≤ r let Ns denote the684

number of tuples β ∈ {2, 4..., 2r}s for which
∑s
i=1 βi = 2r. By balls-and-bins, Ns =

(
r+s−1
r

)
≤685

( 3es
2r )r. Now note that to enumerate N∗, we can 1) choose the number 1 ≤ s ≤ min(m, r) of unique686

indices among {ij}, 2) choose a subset S of [m] of size s, 3) choose one of the Ns tuples β, and 4)687

choose one of the
(

2r
β1,...,βs

)
ways of assigning index S1 to β1 indices in {ij}, S2 to β2 indices, etc.688

For convenience, let r′ , min(m, r). We get an upper bound of689

N∗ ≤
min(m,r)∑
s=1

(
m

s

)
·Ns ·

(
2r

β1, ..., βs

)

≤
min(m,r)∑
s=1

ms

s!

(
3es

2r

)r
· (2s)!

≤ mr′

(r′)!
· r′ ·

(
3er′

2r

)r
· (2r′)!

≤ mr

(r)!
· r · (3e/2)

r · (2r)!

= mr · r · (3e/2)r ·
(

2r

r

)
· r!

≤ O(m)r · r!,

where in the second step we used basic bounds on binomial and multinomial coefficients together690

with the above bound on Ns, in the third step we used the fact that the summands are increasing in s,691

and in the fourth step we used this fact along with the fact that r′ ≤ r by definition.692

25


	Technical Preliminaries
	Notation
	The Generative Model
	Elementary Facts
	AK Norms and VC Complexity
	Haar Wavelets

	SDP for Finding the Direction of Largest Variance
	Filtering Algorithm and Analysis
	Univariate Filter
	Algorithm Specification
	Deterministic Condition
	Key Geometric Lemma
	Analyzing the Filter With Spectral Signatures

	Numerical Experiments
	Experimental Design
	Implementation Details

	Concentration
	Technical Ingredients
	Proof of Lemma 3.6

	Netting Over K
	Sub-Exponential Tail Bounds From Section A
	Proof of Fact C.1


