
Memory Based Trajectory-conditioned Policies
for Learning from Sparse Rewards

Yijie Guo1 Jongwook Choi1 Marcin Moczulski2 Shengyu Feng1
Samy Bengio2 Mohammad Norouzi2 Honglak Lee2,1

1University of Michigan 2Google Brain
{guoyijie,jwook,shengyuf}@umich.edu moczulski@google.com

{bengio,mnorouzi,honglak}@google.com

Abstract
Reinforcement learning with sparse rewards is challenging because an agent can
rarely obtain non-zero rewards and hence, gradient-based optimization of param-
eterized policies can be incremental and slow. Recent work demonstrated that
using a memory buffer of previous successful trajectories can result in more ef-
fective policies. However, existing methods may overly exploit past successful
experiences, which can encourage the agent to adopt sub-optimal and myopic
behaviors. In this work, instead of focusing on good experiences with limited
diversity, we propose to learn a trajectory-conditioned policy to follow and expand
diverse past trajectories from a memory buffer. Our method allows the agent to
reach diverse regions in the state space and improve upon the past trajectories to
reach new states. We empirically show that our approach significantly outperforms
count-based exploration methods (parametric approach) and self-imitation learning
(parametric approach with non-parametric memory) on various complex tasks with
local optima. In particular, without using expert demonstrations or resetting to
arbitrary states, we achieve the state-of-the-art scores under five billion number of
frames, on challenging Atari games such as Montezuma’s Revenge and Pitfall.

1 Introduction
Deep reinforcement learning (DRL) algorithms with parameterized policy and value function have
achieved remarkable success in various complex domains [32, 49, 48]. However, tasks that require
reasoning over long horizons with sparse rewards remain exceedingly challenging for the parametric
approaches. In these tasks, a positive reward could only be received after a long sequence of appro-
priate actions. The gradient-based updates of parameters are incremental and slow and have a global
impact on all parameters, which may cause catastrophic forgetting and performance degradation.
Many parametric approaches rely on recent samples and do not explore the state space systematically.
They might forget the positive-reward trajectories unless the good trajectories are frequently collected.

Recently, non-parametric memory from past experiences is employed in DRL algorithms to improve
policy learning and sample efficiency. Prioritized experience replay [45] proposes to learn from past
experiences by prioritizing them based on temporal-difference error. Episodic reinforcement learning
[43, 22, 28], self-imitation learning [36, 19], and memory-augmented policy optimization [27] build
a memory to store past good experience and thus can rapidly latch onto past successful policies when
encountering with states similar to past experiences. However, the exploitation of good experiences
within limited directions might hurt performance in some cases. For example on Montezuma’s
Revenge (Fig. 1), if the agent exploits the past good trajectories around the yellow path, it would
receive the small positive rewards quickly but it loses the chance to achieve a higher score in the long
term. Therefore, in order to find the optimal path (red), it is better to consider past experiences in
diverse directions, instead of focusing only on the good trajectories which lead to myopic behaviors.
Inspired by recent work on memory-augmented generative models [21, 9], we note that generating a

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Figure 1:Left: The map of the �rst level in Montezuma's Revenge. We simplify the agent's paths and enlarge
some objects to illustrate typicalexploration challenges. The agent also needs to tacklecontrol challenges(e.g.,
jumping between platforms, avoiding collision with moving enemies and electric �elds, etc.), but they are not
highlighted here. After getting two keys, the agent can easily expense the keys to open doors in the middle
via the yellow path and achieve small incremental rewards, but as each key can only be used once, the agent
is unlikely to open doors at the bottom �oor to clear the level. The previous SOTA fails to open the last two
doors. Ours visits the left-most room at the bottom �oor, gets many diamonds, and goes to the next level.Right:
Comparison to CoEX [13] (previous SOTA) with high-level state embedding. In a challenging setting with
random initial delay, without using expert demonstrations or resetting to arbitrary state, ours explores more
rooms and achieves a signi�cantly higher score.

new sequence by editing prototypes in external memory is easier than generating one from scratch. In
an RL setting, we aim to generate new trajectories visiting novel states by editing or augmenting the
trajectories stored in the memory from past experiences. We propose a novel trajectory-conditioned
policy where a full sequence of states is given as the condition. Then a sequence-to-sequence model
with an attention mechanism learns to `translate' the demonstration trajectory to a sequence of actions
and generate a new trajectory in the environment with stochasticity. The single policy could take
diverse trajectories as the condition, imitate the demonstrations to reach diverse regions in the state
space, and allow for �exibility in the action choices to discover novel states.

Our main contributions are summarized as follows. (1) We propose a novel architecture for a
trajectory-conditioned policy that can �exibly imitate diverse demonstration trajectories. (2) We show
the importance of exploiting diverse past experiences in the memory to indirectly drive exploration,
by comparing with existing approaches on various sparse-reward RL tasks with stochasticity in the
environments. (3) We achieve a performance superior to the state-of-the-art under 5 billion number of
frames, on hard-exploration Atari games of Montezuma's Revenge and Pitfall, without using expert
demonstrations or resetting to arbitrary states. We also demonstrate the effectiveness of our method
on other benchmarks.

2 Method
2.1 Background and Notation for DTSIL
In the standard RL setting, at each time stept, an agent observes a statest , selects an actionat 2 A ,
and receives a rewardr t when transitioning to a next statest +1 2 S, whereS andA is a set of states
and actions respectively. The goal is to �nd a policy� � (ajs) parameterized by� that maximizes
the expected returnE� � [

P T
t =0
 t r t], where
 2 (0; 1] is a discount factor. In our work, instead of

directly maximizing expected return, we propose a novel way to �nd best demonstrationsg� with
(near-)optimal return and train the policy� � (�jg) to imitate any trajectoryg in the buffer, includingg� .
We assume a statest includes the observationot (e.g., raw pixel image) and a high-level abstract state
embeddinget (e.g., the agent's location in the abstract space). The embeddinget may be available as
a part ofst (e.g., the physical features in the robotics domain) or may be learnable fromo� t (e.g.,
[13, 54] could localize the agent in Atari games, as discussed in Sec. 5). Atrajectory-conditioned
policy � � (at je� t ; ot ; g) (which can be viewed as a goal-conditioned policy and denoted as� � (�jg))
takes a sequence of state embeddingsg = f eg

1; eg
2; � � � ; eg

jgj g as input for a demonstration, wherejgj is
the length of the trajectoryg. A sequence of the agent's past state embeddingse� t = f e1; e2; � � � ; et g
is provided to determine which part of the demonstration has been followed by the agent. Together
with the current observationot , it helps to determine the correct actionat to imitate the demonstration.
Our goal is to �nd a set of optimal state embedding sequence(s)g� and the policy� �

� (�jg) to maximize
the return:g� ; � � , arg maxg;� E� � (�j g) [

P T
t =0
 t r t]. We approximately solve this joint optimization

2

	Introduction
	Method
	Background and Notation for DTSIL
	Overview of DTSIL
	Learning Trajectory-Conditioned Policy
	Extensions of DTSIL for Improved Robustness and Generalization

	Related Work
	Experiments
	Apple-Gold Domain
	Atari Games
	Continuous Control Tasks
	Other Domains: Deep Sea and Mujoco Maze

	Discussions: Robustness and Generalization of DTSIL
	Robustness of DTSIL with Learned State Representations
	Robustness of DTSIL in Stochastic Environments
	Generalization Ability of DTSIL

	Conclusion

