
Munchausen Reinforcement Learning

Nino Vieillard
Google Research, Brain Team

Université de Lorraine, CNRS, Inria, IECL
F-54000 Nancy, France

vieillard@google.com

Olivier Pietquin
Google Research, Brain Team
pietquin@google.com

Matthieu Geist
Google Research, Brain Team

mfgeist@google.com

Abstract

Bootstrapping is a core mechanism in Reinforcement Learning (RL). Most algo-
rithms, based on temporal differences, replace the true value of a transiting state
by their current estimate of this value. Yet, another estimate could be leveraged to
bootstrap RL: the current policy. Our core contribution stands in a very simple idea:
adding the scaled log-policy to the immediate reward. We show that slightly modi-
fying Deep Q-Network (DQN) in that way provides an agent that is competitive
with distributional methods on Atari games, without making use of distributional
RL, n-step returns or prioritized replay. To demonstrate the versatility of this idea,
we also use it together with an Implicit Quantile Network (IQN). The resulting
agent outperforms Rainbow on Atari, installing a new State of the Art with very
little modifications to the original algorithm. To add to this empirical study, we
provide strong theoretical insights on what happens under the hood – implicit
Kullback-Leibler regularization and increase of the action-gap.

1 Introduction

Most Reinforcement Learning (RL) algorithms make use of Temporal Difference (TD) learning [29]
in some ways. It is a well-known bootstrapping mechanism that consists in replacing the unknown
true value of a transiting state by its current estimate and use it as a target for learning. Yet, agents
compute another estimate while learning that could be leveraged to bootstrap RL: their current policy.
Indeed, it reflects the agent’s hunch about which actions should be executed next and thus, which
actions are good. Building upon this observation, our core contribution stands in a very simple idea:
optimizing for the immediate reward augmented by the scaled log-policy of the agent when using any
TD scheme. We insist right away that this is different from maximum entropy RL [36], that subtracts
the scaled log-policy to all rewards, and aims at maximizing both the expected return and the expected
entropy of the resulting policy. We call this general approach “Munchausen Reinforcement Learning”
(M-RL), as a reference to a famous passage of The Surprising Adventures of Baron Munchausen
by Raspe [24], where the Baron pulls himself out of a swamp by pulling on his own hair.

To demonstrate the genericity and the strength of this idea, we introduce it into the most popular RL
agent: the seminal Deep Q-Network (DQN) [23]. Yet, DQN does not compute stochastic policies,
which prevents using log-policies. So, we first introduce a straightforward generalization of DQN to
maximum entropy RL [36, 17], and then modify the resulting TD update by adding the scaled log-
policy to the immediate reward. The resulting algorithm, referred to as Munchausen-DQN (M-DQN),
is thus genuinely a slight modification of DQN. Yet, it comes with strong empirical performances.
On the Arcade Learning Environment (ALE) [6], not only it surpasses the original DQN by a large

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

margin, but it also overtakes C51 [8], the first agent based on distributional RL (distRL). As far as
we know, M-DQN is the first agent not using distRL that outperforms a distRL agent1. The current
state of the art for single agent algorithms is considered to be Rainbow [18], that combines C51
with other enhacements to DQN, and does not rely on massivly distributed computation (unlike
R2D2 [19], SEED [12] or Agent57 [4]). To demonstrate the versatility of the M-RL idea, we apply
the same recipe to modify Implicit Quantile Network (IQN) [11], a recent distRL agent. The resulting
Munchausen-IQN (M-IQN) surpasses Rainbow, installing a new state of the art.

To support these empirical results, we provide strong theoretical insights about what happens under
the hood. We rewrite M-DQN under an abstract dynamic programming scheme and show that it
implicitly performs Kullback-Leibler (KL) regularization between consecutive policies. M-RL is
not the first approach to take advantage of KL regularization [27, 2], but we show that, because this
regularization is implicit, it comes with stronger theoretical guarantees. From this, we link M-RL
to Conservative Value Iteration (CVI) [20] and Dynamic Policy Programming (DPP) [3] that were
not introduced with deep RL implementations. We also draw connections with Advantage Learning
(AL) [5, 7] and study the effect of M-RL on the action-gap [13]. While M-RL is not the first scheme
to induce an increase of the action-gap [7], it is the first one that allows quantifying this increase.

2 Munchausen Reinforcement Learning

RL is usually formalized within the Markov Decision Processes (MDP) framework. An MDP models
the environment and is a tuple fS,A, P, r, γg, with S and A the state and action spaces, P the
Markovian transition kernel, r the bounded reward function and γ the discount factor. The RL agent
interacts with the MDP using a policy π, that associates to every state either an action (deterministic
policy) or a distribution over actions (stochastic policy). The quality of this interaction is quantified by
the expected discounted cumulative return, formalized as the state-action value function, q�(s, a) =
E�[

P 1
t=0 γ

tr(st, at)js0 = s, a0 = a], the expectation being over trajectories induced by the policy
π and the dynamics P . An optimal policy satisfies π� 2 argmax� q� . The associated optimal value
function q� = q�� satisfies the Bellman equation q� (s, a) = r(s, a) + γEs0js;a[maxa0 q� (s0, a0)].
A deterministic greedy policy satisfies π(ajs) = 1 for a 2 argmaxa0 q(s, a0) and will be written
π 2 G(q). We also use softmax policies, π = sm(q), π(ajs) = exp q(s;a)P

a 0 exp q(s;a0) .

A standard RL agent maintains both a q-function and a policy (that can be implicit, for example
π 2 G(q)), and it aims at learning an optimal policy. To do so, it often relies on Temporal Difference
(TD) updates. To recall the principle of TD learning, we quickly revisit the classical Q-learning
algorithm [34]. When interacting with the environment the agent observes transitions (st, at, rt, st+1).
Would the optimal q-function q� be known in the state st+1 , the agent could use it as a learning target
and build successive estimates as q(st, at) q(st, at) + η(rt + γmaxa0 q� (st+1 , a

0)� q(st, at)),
using the Bellman equation, η being a learning rate. Yet, q� is unknown, and the agent actually uses
its current estimate q instead, which is known as bootstrapping.

We argue that the q-function is not the sole quantity that could be used to bootstrap RL. Let’s assume
that an optimal deterministic policy π� is known. The log-policy is therefore 0 for optimal actions,
and�1 for sub-optimal ones. This is a very strong learning signal, that we could add to the reward to
ease learning, without changing the optimal control. The optimal policy π� being obviously unknown,
we replace it by the agent’s current estimate π, and we assume stochastic policies for numerical
stability. To sum up, M-RL is a very simple idea, that consists in replacing rt by rt + α lnπ(atjst)
in any TD scheme, assuming that the current agent’s policy π is stochastic, so as to bootstrap the
current agent’s guess about what actions are good.

To demonstrate the generality of this approach, we use it to enhance the seminal DQN [23] deep
RL algorithm. In DQN, the q-values are estimated by an online Q-network q�, with weights copied
regularly to a target network q ��. The agent behaves following a policy π� 2 G(q�) (with ε-greedy
exploration), and stores transitions (st, at, rt, st+1) in a FIFO replay buffer B. DQN performs

1It appears that the benefits of distRL do not really come from RL principles, but rather from the regularizing
effect of modelling a distribution and its role as an auxiliary task in a deep learning context [21].

2

stochastic gradient descent on the lossÊB [(q� (st ; at) � q̂dqn(r t ; st +1))2], regressing the targetq̂dqn:

q̂dqn(r t ; st +1) = r t +

X

a02A

� �� (a0jst +1)q�� (st +1 ; a0) with � �� 2 G(q��):

To derive Munchausen-DQN (M-DQN), we simply modify the regression target. M-RL assumes
stochastic policies while DQN computes deterministic policies. A simple way to address this is to not
only maximize the return, but also the entropy of the resulting policy, that is adopting the viewpoint
of maximum entropy RL [36, 17]. It is straightforward to extend DQN to this setting, see Appx. A.1
for a detailed derivation. We call the resulting agent Soft-DQN (S-DQN). Let� be the temperature
parameter scaling the entropy, it just amounts to replace the original regression target by

q̂s-dqn(r t ; st +1) = r t +

X

a02A

� �� (a0jst +1)
�

q�� (st +1 ; a0)� � ln � �� (a0jst +1)
�

with � �� = sm(
q��

�
); (1)

where we highlighted the differences with DQN in blue. Notice that this is nothing more than the
most straightforward discrete-actions version of Soft Actor-Critic (SAC) [17]. Notice also that in the
limit � ! 0 we retrieve DQN. The last step to obtain M-DQN is to add the scaled log-policy to the
reward. Let� 2 [0; 1] be a scaling factor, the regression target of M-DQN is thus

q̂m-dqn(r t ; st +1) = r t + �� ln � �� (at jst) +

X

a02A

� �� (a0jst +1)
�

q�� (st +1 ; a0)� � ln � �� (a0jst +1)
�

; (2)

still with � �� = sm(q��
�), where we highlighted the difference with Soft-DQN in red (retrieved by

setting� = 0). Hence, M-DQN is genuinely obtained by replacingq̂dqn by q̂m-dqn as the regression
target of DQN. All details of the resulting algorithm are provide in Appx. B.1.

Figure 1:Left: Human-normalized mean scores.Right: Human-normalized median scores.

Despite being an extremely simple modi�cation of DQN, M-DQN is very ef�cient. We show in
Fig. 10 the Human-normalized mean and median scores for various agents on the full set of 60 Atari
games of ALE (more details in Sec. 4). We observe that M-DQN signi�cantly outperforms DQN,
but also C51 [8]. As far we know, M-DQN is the �rst method that is not based on distRL which
overtakes C51. These are quite encouraging empirical results.

To demonstrate the versatility of the M-RL principle, we also combine it with IQN [11], a recent and
ef�cient distRL agent (note that IQN has had recent successors, such as Fully Parameterized Quantile
Function (FQF) [35], to which in principle, we could also apply M-RL). We denote the resulting
algorithm M-IQN. In a nutshell, IQN does not estimate theq-function, but the distribution of which
the q-function is the mean, using a distributional Bellman operator. The (implicit) policy is still
greedy according to theq-function, computed as the (empirical) mean of the estimated distribution.
We apply the exact same recipe: derive soft-IQN using the principle of maximum entropy RL (which
is as easy as for DQN), and add the scaled log-policy to the reward. For the sake of showing the
generality of our method, we combine M-RL with a version of IQN that uses3-steps returns (and
we compare to IQN and Rainbow, that both use the same). We can observe on Fig. 10 that M-IQN
outperforms Rainbow, both in terms of mean and median scores, and thus de�nes the new state of the
art. In addition, even when using only1-step returns, M-IQN still outperforms Rainbow. This result
and the details of M-IQN can be found respectively in Appx. B.3 and B.1.

3

3 What happens under the hood?

The impressive empirical results of M-RL (see Sec. 4 for more) call for some theoretical insights.
To provide them, we frame M-DQN in an abstract Approximate Dynamic Programming (ADP)
framework and analyze it. We mainly provide two strong results: (1) M-DQN implicitly performs KL
regularization between successive policies, which translates in an averaging effect of approximation
errors (instead of accumulation in general ADP frameworks); (2) it increases the action-gap by a
quanti�able amount which also helps dealing with approximation errors. We also use this section to
draw connections with the existing literature in ADP. Let's �rst introduce some additional notations.

We write � X the simplex over the �nite setX and Y X the set of applications fromX to the
set Y . With this, an MDP isfS ; A ; P 2 � S�A

S ; r 2 RS�A ;
 2 (0; 1)g, the state and ac-
tion spaces being assumed �nite. Forf; g 2 RS�A , we de�ne a component-wise dot product
hf; g i = (

P
a f (s; a)g(s; a)) s 2 RS . This will be used withq-functions and (log-) policies,e.g.for

expectations:Ea� � (�j s) [q(s; a)] = h�; q i (s). For v 2 RS , we havePv = (Es0j s;a [v(s0)]) s;a =
(
P

s0 P(s0js; a)v(s0)) s;a 2 RS�A . We also de�ned a policy-induced transition kernelP� as
P� q = Ph�; q i . With these notations, the Bellman evaluation operator isT� q = r +
P � q and its
unique �xed point isq� . An optimal policy still satis�es� � 2 argmax� 2 � S

A
q� . The set of greedy

policies can be written asG(q) = argmax � 2 � S
A

h�; q i . We'll also make use of the entropy of a policy,
H (�) = �h �; ln � i , and of the KL between two policies,KL(� 1jj � 2) = h� 1; ln � 1 � ln � 2i .

A softmax is the maximizer of the Legendre-Fenchel transform of the entropy [9, 32], sm(q) =
argmax� h�; q i + H(�). Using this and the introduced notations, we can write M-DQN in the
following abstract form (each iteration consists of a greedy step and an evaluation step):

(
� k+1 = argmax � 2 � S

A
h�; q k i + � H (�)

qk+1 = r + �� ln � k+1 +
P h� k+1 ; qk � � ln � k+1 i + � k+1 :
M-VI(� , �) (3)

We call the resulting scheme Munchausen Value Iteration, or M-VI(� ,�). The term� k+1 stands for the
error between the actual and the ideal update (sampling instead of expectation, approximation ofqk
by a neural network, �tting of the neural network). Removing the red term, we retrieve approximate
VI (AVI) regularized by a scaled entropy, as introduced by Geist et al.[15], of which Soft-DQN is an
instantiation (as well as SAC, with additional error in the greedy step). Removing also the blue term,
we retrieve the classic AVI [26], of which DQN is an instantiation.

To get some insights, we rewrite the evaluation step, setting� = 1 and withq0
k , qk � � ln � k :

qk+1 = r + � ln � k+1 +
P h� k+1 ; qk � � ln � k+1 i + � k+1

, qk+1 � � ln � k+1 = r +
P h� k+1 ; qk � � ln � k � � ln
� k+1

� k
i + � k+1

, q0
k+1 = r +
P (h� k+1 ; q0

k i � � KL(� k+1 jj � k)) + � k+1 :

Then, the greedy step can be rewritten as (looking at what� k+1 maximizes)

h�; q k i + � H (�) = h�; q 0
k + � ln � k i � � h�; ln � i = h�; q 0

k i � � KL(� jj � k): (4)

We have just shown that M-VI(1,�) implicitly performs KL regularization between successive policies.

This is a very insightful result as KL regularization is the core component of recent ef�cient RL agents
such as TRPO [27] or MPO [2]. It is extensively discussed by Vieillard et al.[32]. Interestingly, we
can show that the sequence of policies produced by M-VI(� ,�) is the same as the one of their Mirror
Descent VI (MD-VI), with KL scaled by�� and entropy scaled by(1 � �)� . Thus, M-VI(� ,�) is
equivalent to MD-VI(�� , (1 � �)�), as formalized below (proof in Appx. A.2).
Theorem 1. For anyk � 0, de�neq0

k = qk � �� ln � k , we have

(3) ,

(
� k+1 = argmax � 2 � S

A
h�; q 0

k i � �� KL(� jj � k) + (1 � �)� H (�)
q0

k+1 = r +
P (h� k+1 ; q0
k i � �� KL(� k+1 jj � k) + (1 � �)� H (� k+1)) + � k+1

:

Moreover, [32, Thm. 1] applies to M-VI(1,�) and [32, Thm. 2] applies to M-VI(� < 1,�).

In their work, Vieillard et al.[32] show that using regularization can reduce the dependency to the
horizon(1 �
) � 1 and that using a KL divergence allows for a compensation of the errors� k over

4

iterations, which is not true for classical ADP. We refer to them for a detailed discussion on this topic.
However, we would like to highlight that they acknowledge thattheir theoretical analysis does not
apply to the deep RL setting. The reason being that their analysis does not hold when the greedy
step is approximated, and they deem as impossible to do the greedy step exactly when using neural
network. Indeed, computing� k+1 by maximizing eq.(4) yields an analytical solution proportional
to � k exp(qk

�), and that thus depends on the previous policy� k . Consequently, the solution to this
equation cannot be computed exactly when using deep function approximation (unless one would be
willing to remember every computed policy). On the contrary,their analysis applies in our deep RL
setting. In M-VI, the KL regularization is implicit, sowe do not introduce errors in the greedy step.
To be precise, the greedy step of M-VI is only a softmax of theq-function, which can be computed
exactly in a discrete actions setting, even when using deep networks. Their strong bounds for MD-VI
therefore hold for M-VI, as formalized in Thm. 1, and in particular for M-DQN.

Indeed, letq�� k
be thekth update of the target network, writeqk = q�� k

, � k+1 = sm(qk
�), and de�ne

� k+1 = qk+1 � (r + � ln � k+1 �
P h� k+1 ; qk � � ln � k+1 i), the difference between the actual
update and the ideal one. As a direct corollary of Thm. 1 and [32, Thm. 1], we have that, for� = 1 ,

kq� � q� k k1 �
2

1 �

1
k

kX

j =1

� j

1

+
4

(1 �
)2

rmax + � ln jAj
k

;

with rmax the maximum reward (in absolute value), and withq� k the true value function of the policy
of M-DQN. This is a very strong bound. The error term isk 1

k

P k
j =1 � j k1 , to be compared to the one

of AVI [26], (1�
)
P k

j =1
 k � j k� j k1 . Instead of having a discounted sum of the norms of the errors,
we have the norm of the average of the errors. This is very interesting, as it allows for a compensation
of errors between iterations instead of an accumulation (sum and norm do not commute). The error
term is scaled by(1 �
) � 1 (the average horizon of the MDP), while the one of AVI would be scaled
by (1 �
) � 2. This is also quite interesting, a
 close to 1 impacts less negatively the bound. We
refer to [32, Sec. 4.1] for further discussions about the advantage of this kind of bounds. Similarly,
we could derive a bound for the case� < 1, and even more general and meaningful component-wise
bounds. We defer the statement of these bounds and their proofs to Appx. A.3.

From Eq.(3), we can also relate the proposed approach to another part of the literature. Still
from basic properties of the Legendre-Fenchel transform, we have thatmax� hq; � i + � H (�) =
h� k+1 ; qk i + � H (� k+1) = ln h1; expqi . In other words, if the maximizer is the softmax, the maximum
is the log-sum-exp. Using this, Eq. (3) can be rewritten as (see Appx. A.4 for a detailed derivation)

qk+1 = r +
P (� lnh1; exp
qk

�
i) + � (qk � � lnh1; exp

qk

�
i) + � k+1 : (5)

This is very close to Conservative Value Iteration2 (CVI) [20], a purely theoretical algorithm, as
far as we know. With� = 0 (without Munchausen), we get Soft Q-learning [14, 16]. Notice
that with this, CVI can be seen as softQ-learning plus a scaled and smooth advantage (the term
� (qk � � lnh1; exp qk

� i)). With � = 1 , we retrieve a variation of Dynamic Policy Programming
(DPP) [3, Appx. A]. DPP has been extended to a deep learning setting [30], but it is less ef�cient than
DQN3 [32]. Taking the limit� ! 0, we retrieve Advantage Learning (AL) [5, 7] (see Appx. A.4):

qk+1 = r +
P h� k+1 ; qk i + � (qk � h � k+1 ; qk i) + � k+1 with � k+1 2 G(qk): (6)

AL aims at increasing the action-gap [13] de�ned as the difference, for a given state, between the
(optimal) value of the optimal action and that of the suboptimal ones. The intuitive reason to want
a large action-gap is that it can mitigate the undesirable effects of approximation and estimation
errors made onq on the induced greedy policies. Bellemare et al.[7] have introduced a family of
Bellman-like operators that are gap-increasing. Not only we show that M-VI is gap-increasing but we
also quantify the increase. To do so, we introduce some last notations. As we explained before, with
� = 0 , M-VI(0, �) reduces to AVI regularized by an entropy (that is, maximum entropy RL). Without
error, it is known that the resulting regularized MDP has a unique optimal policy� �

� and a unique
optimalq-function4 q�

� [15]. This being de�ned, we can state our result (proven in Appx. A.5).
2In CVI, h1; exp qk

� i is replaced byh 1
jAj ; exp qk

� i .
3In fact, Tsurumine et al.[30] show better performance for deep DPP than for DQN in their setting. Yet, their

experiment involves a small number of interactions, while the function estimated by DPP is naturally diverging.
See [33, Sec. 6] for further discussion about this.

4It can be related to the unregularized optimalq-function,kq�
� � q� k1 � � ln jAj

1�
 [15].

5

Theorem 2. For any states 2 S, de�ne the action-gap of an MPD regularized by an entropy scaled
by � as� �

� (s) = max a q�
� (s; a) � q�

� (s; �) 2 RA
+ . De�ne also� �;�

k (s) as the action-gap for thekth

iteration of M-VI(� ,�), without error (� k = 0): � �;�
k (s) = max a qk (s; a) � qk (s; �) 2 RA

+ . Then, for
anys 2 S, for any0 � � � 1 and for any� > 0, we have

lim
k !1

� �;�
k (s) =

1 + �
1 � �

� (1 � �) �
� (s);

with the convention that1 � 0 = 0 for � = 1 .

Thus, the original action-gap is multiplied by1+ �
1� � with M-VI. In the limit � = 1 , it is even in�nite

(and zero for the optimal actions). This suggests choosing a large value of� , but not too close to 1
(for numerical stability: if having a large action-gap is desirable, having an in�nite one is not).

4 Experiments

Munchausen agents. We implement M-DQN and M-IQN as variations of respectively DQN and
IQN from Dopamine [10]. We use the same hyperparameters for IQN5, and we only change the
optimizer from RMSProp to Adam for DQN. This is actually not anodyne, and we study its impact in
an ablation study. We also consider a Munchausen-speci�c modi�cation,log-policy clipping. Indeed,
the log-policy term is not bounded, and can cause numerical issues if the policy becomes too close to
deterministic. Thus, with a hyperparameterl0 < 0, we replace� ln � (ajs) by [� ln � (ajs)]0

l 0
, where

[�]yx is the clipping function. For numerical stability, we use a speci�c log-sum-exp trick to compute
the log-policy (see App. B.1). Hence, we add three parameters to the modi�ed agent:�; � andl0.
After some tuning on a few Atari games, we found a working zone for these parameters to be� = 0 :9,
� = 0 :03 andl0 = � 1, used for all experiments, in M-DQN and M-IQN. All details about the rest of
the parameters can be found in Appx. B.1. DQN and IQN use"-greedy policies to interact with the
environment. Although M-DQN and M-IQN produce naturally stochastic policies, we use the same
"-greedy policies. We discuss this further in Appx. B.2, where we also compare to stochastic policies.

Baselines. First, we consider both DQN and IQN, as these are the algorithms we modify. Second,
we compare to C51 because, as far as we know, it has never been outperformed by a non-distRL agent
before. We also consider Rainbow, as it stands for being the state-of-the-art non-distributed agent on
ALE. All our baselines are taken from Dopamine. For Rainbow, this version doesn't contain all the
original improvements, but only the ones deemed as the more important and ef�cient by Hessel et al.
[18]: n-steps returns and Prioritized Experience Replay (PER) [25], on top of C51.

Task. We evaluate our methods and the baselines in the ALE environment,i.e. on the full set of60
Atari games. Notice that it is not a “canonical” environment. For example, choosing to end an episode
when an agent loses a life or after game-over can dramatically change the score an agent can reach
(e.g., [10, Fig. 4]). The same holds for using sticky actions, introducing stochasticity in the dynamics
(e.g., [10, Fig. 6]). Even the ROMs could be different, with unpredictable consequences (e.g.different
video encoding). Here, we follow the methodological best practices proposed by Machado et al.[22]
and instantiated in Dopamine [10], that also makes the ALE more challenging. Notably, the results we
present are hardly comparable to the ones presented in the original publications of DQN [23], C51 [8],
Rainbow [18] or IQN [11], that use a different, easier, setting. Yet, for completeness, we report results
on one game (Asterix) using an ALE setting as close as possible to the original papers, in Appx. B.4:
the baseline results match the previously published ones, and M-RL still raises improvement. We also
highlight that we stick to a single-agent version of the environment: we do not claim that our method
can be compared to highly distributed agents, such as R2D2 [19] or Agent57 [4], that use several
versions of the environment in parallel, and train on a much higher number of frames (around10G
frames vs200M here). Yet, we are con�dent that our approach could easily apply to such agents.

Metrics. All algorithms are evaluated on the same training regime (details in Appx.B.1), during
200M frames, and results are averaged over3 seeds. As a metric for any games, we compute the
“baseline-normalized” score, for each iteration (here,1M frames), normalized so that0%corresponds
to a random score, and100%to the �nal performance of the baseline. At each iteration, the score is

5By default, Dopamine's IQN uses 3-steps returns. We rather consider 1-step returns, as in [11].

6

the undiscounted sum of rewards, averaged over the last 100 learning episodes. The normalized score
is then a� r

jb� r j , with a the score of the agent,b the score of the baseline, andr the score of a random
policy. For a human baseline, the scores are those provided in Table 3 (Appx. B.6), for an agent
baseline the score is the one after 200M frames. With this, we provide aggregated results, showing
the mean and the median over games, as learning proceeds when the baseline is the human score (e.g.,
Fig. 1), or after 200M steps with human and Rainbow baselines in Tab. 3 (more results in Appx. B.6,
as learning proceeds). We also compute a “baseline-improvement” score asa� b

jb� r j , and use it to report
a per-game improvement after 200M frames (Fig. 4, M-Agent versus Agent, or Appx. B.6).

Figure 2: Action-gaps (Asterix).

Action-gap. We start by illustrating the action-gap phe-
nomenon suggested by Thm. 2. To do so, letq� be theq-
function of a given agent after training for 200M steps. At
any time-stept, write ât 2 argmaxa2A q� (st ; a) the cur-
rent greedy action, we compute the empirical action-gap
as the difference of estimated values between the best and
second best actions,q� (st ; ât) � maxa2Anf â t g q� (st ; a).
We do so for M-DQN, for AL (that was introduced specif-
ically to increase the action-gap) and for DQN with Adam
optimizer (Adam DQN), as both build on top of it (only
changing the regression targets, see Appx. B.1 for details).
We consider the game Asterix, for which the �nal average performance of the agents are (roughly)
15k for Adam DQN, 13k for AL and 20k for M-DQN. We report the results on Fig. 2: we run each
agent for 10 trajectories, and average the resulting action-gaps (the length of the resulting trajectory
is the one of the shorter trajectory, we also apply an exponential smoothing of0:99). Both M-DQN
and AL increase the action-gaps compared to Adam DQN. If AL increases it more, it seems also
to be less stable, and less proportional to the original action-gap. Despite this increase, it performs
worse than Adam DQN (13k vs 15k), while M-DQN increases it and performs better (20k vs 15k).
An explanation to this phenomenon could the one of Van Seijen et al.[31], who suggest that what is
important is not the value of the action gap itself, but its uniformity over the state-action space: here,
M-DQN seems to bene�t from a more stable action-gap than AL. This �gure is for an illustrative
purpose, one game is not enough to draw conclusions. Yet, the following ablation shows that globally
M-DQN performs better than AL. Also, it bene�ts from more theoretical justi�cations (not only
quanti�ed action-gap increase, but also implicit KL-regularization and resulting performance bounds).

Ablation study. We've build M-DQN from DQN by adding the Adam optimizer (Adam DQN),
extending it to maximum entropy RL (Soft-DQN, Eq.(1)), and then adding the Munchausen term
(M-DQN, Eq.(2)). A natural ablation is to remove the Munchausen term, and use only maximum
entropy RL, by considering M-DQN with� = 0 (instead of0:9 for M-DQN), and the same� (here,
3e � 2), which would give Soft-DQN(�). However, Thm. 1 states that M-DQN performs entropy
regularization with an implicit coef�cient of(1 � �)� , so to compare M-DQN and Soft-DQN fairly,
one should evaluate Soft-DQN with such a temperature, that is3e � 3 in this case. We denote this
ablation as Soft-DQN((1 � �)�). As sketched in Sec. 3, AL can also be seen as a limit case (on an
abstract way, as� ! 0, see also Appx. B.1 for details on the algorithm). We provide an ablation
study of all these variations, all using Adam (except DQN), in Fig. 3. All methods perform better
than DQN. Adam DQN performs very well and is even competitive with C51. This is an interesting
insight, as changing the optimizer compared to the published parameters dramatically improves the
performance, and Adam DQN could be considered as a better baseline6. Surprisingly, if better than
DQN, Soft-DQN does not perform better than Adam DQN. This suggests that maximum entropy RL
alone might not be suf�cient. We kept the temperature� = 0 :03, and one could argue that it was not
tuned for Soft DQN, but it is on par with the temperature of similar algorithms [28, 32]. We observe
that AL performs better than Adam DQN. Again, we kept� = 0 :9, but this is consistent with the
best performing parameter of Bellemare et al.[7, e.g., Fig. 7]. The proposed M-DQN outperforms all
other methods, both in mean and median, and especially Soft-DQN by a signi�cant margin (the sole
difference being the Munchausen term).

Comparison to the baselines. We report aggregated results as Human-normalized mean and
median scores on Figure 1, that compares the Munchausen agents to the baselines. M-DQN is largely

6To be on par with the literature, we keep using the published DQN as the baseline for other experiments.

7

	Introduction
	Munchausen Reinforcement Learning
	What happens under the hood?
	Experiments
	Conclusion
	Detailed derivation and proofs
	Derivation of Soft-DQN
	Proof of Thm. 1
	Component-wise bounds for Munchausen VI
	Details on related works
	Proof of Thm. 2

	Additional experimental details and results
	Detailed description of the Munchausen agents
	Comparison of greedy and stochastic policies
	Comparison of 1-step and 3-steps learning in M-IQN
	Element of comparison with the original ALE setting
	Additional results on the ablation study
	Additional comparison results

