
Appendix A Pseudocode

Our algorithm alternates between optimizing the three components of the framework: a predictive
model, a propensity model, and an uncertainty model. Here we give pseudocode for the following
per-component objectives:

1. A predictive model ŷ = f(x), optimizing the squared loss:

Lpred(f ;S) =

m∑
i=1

(yi − ŷi)2

2. A propensity weight model w = eh(x), optimizing the log-loss:

Lprop(h;S,S ′) =

m∑
i=1

log(1 + eh(xi)) + log(1 + e−h(x
′
i))

3. An uncertainty interval model [`, u] = gτ (x), optimizing the τ -quantile loss:

L
(τ)
uncert(g;S, w) =

m∑
i=1

w(xi) max{(τ − 1)(yi − `i), τ(yi − `i)}

but note that others can be plugged in. The pseudocode is given below.

Algorithm 1 Lookahead(S, T, λ, η, τ)

1: f (0) ← argminf∈F Lpred(f ;S)
2: for t = 1, . . . , T do
3: x′i ← dη(xi; f

(t−1)) for all i = 1, . . . ,m . e.g., dη(x; f) = x+ ηΓ(∇f (x))
4: S ′ ← {x′i}mi=1

5: h(t) ← argminh∈H Lprop(h;S,S ′)
6: w ← eh

(t)

7: g(t) ← argming∈G L
(τ)
uncert(g;S, w)

8: f (t) ← argminf∈F Lpred(f ;S) + λR(g(t);S)

9: return f (T )

Appendix B Uncertainty models

Here we describe the two uncertainty methods used in our paper and how they apply to our setting.

B.1 Bootstrapping

Bootstrapping produces uncertainty intervals by combining the outputs of a collection of k models
{g(i)}ki=1, each trained independently for prediction on a random subset of the data. There are many
approaches to bootstrapping, and here we describe two:

• Vanilla bootstrapping: Each g(i) is trained using a predictive objective (e.g., squared loss) on a
sample set S(i) = {(x(i)j , y

(i)
j )}mj=1 where (x

(i)
j , y

(i)
j ) are sampled with replacement from S . The

sub-models are then combined using:

g(x) = [µ(x)− zσ(x), µ(x) + zσ(x)]

where:

µ(x) =
1

k

k∑
i=1

g(i)(x), σ(x) =
1

k

k∑
i=1

(µ(x)− g(i)(x))2

and z is the z-score corresponding to the confidence parameter τ under a normal distribution.
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• Bootstrapping residuals: First, a predictive model ḡ is fit to the data, and residuals r = y− ḡ(x)
are computed. Then, each g(i) is trained on the original sample data but with ground truth-labels
yi replaced with random pseudo-labels:

S(i) = {(xj , ȳ(i)j )}mj=1 ȳ
(i)
j = yi + rj

where rj are sampled with replacement from {rj}mj=1.

In our framework, because g must apply to p′, each g(i) is trained with propensity weights w. To
account for cases where p and p′ differ, the g(i) are trained not on sample sets of size m, but rather,
of size m̃(w), where m̃(w) is the effective sample size [24] given by:

m̃(w) =
mean({wi}mi=1)

var({wi}mi=1)
, wi = w(xi) ∀ i = 1, . . . ,m

B.2 Quantile regression

Quatile regression is a learning framework for training models to predict the τ -quantile of the
conditional label distribution p(y|x). Just as training with the squared loss is aimed at predicting the
mean of p(y|x), training with the absolute loss |y − ŷ| is aimed at the median. Quantile regression
generalizes the absolute loss by considering a ’tilted’ variant with slopes τ − 1 and τ :

Qτ (y, ŷ) = max{(1− τ)(y − ŷ), τ(y − ŷ)}

Appendix C Experimental details

C.1 Experiment 1: Quadratic curves

Here we set f∗(x) = −0.8x2 + 0.5x+ 0.1. F and G include quadratic functions, and H to include
linear functions. For uncertainty estimation we used vanilla bootstrap, and for propensity scores we
used logistic regression. For lookahead, we set λ = 4, τ = 0.95, use k = 10 bootstrapped models,
and train for T = 5 rounds. The data includes m = 25 samples x drawn from N(−0.8, 0.5), and
y = f∗(x) + ε where ε ∼ N(0, 0.25). We use a 75 : 25 train-test split. The three conditions vary
only in η with values η = 0.75, 1.25, and 3.5.

Quantitative results are given in the table below:

RMSE Imp. rate Imp. mag.

η = 0.75
baseline 0.349 0.857 1.109
lookahead 0.351 0.857 1.108

η = 1.25
baseline 0.342 0.143 -0.261
lookahead 0.424 0.714 1.065

η = 3.5
baseline 0.342 0 -35.13
lookahead 0.675 0.571 0.604

C.2 Experiment 2: Wine quality

The wine dataset includes m = 178 examples and d = 13 features. We learn a quadratic f∗(x) =∑
i θixi +

∑
i θ
′
ix

2
i . F , G, and H include linear functions. For uncertainty estimation we used

residuals bootstrap, and for propensity scores we used logistic regression. For lookahead, we set
τ = 0.95, use k = 20 bootstrapped models, and train for T = 10 rounds. For f , we use SGD with
a learning rate of 0.1 and 1000 epochs for initialization and 100 additional epochs per round. For
g, each sub-model was trained with SGD using a learning rate of 0.1 and for 500 epochs. We set
η = 0.5 and η = 2 for the fully and partially mutable settings, respectively.

C.3 Experiment 3: Diabetes

The diabetes dataset includes m = 442 examples and d = 10 features. We set f∗(x) to be a
generalized additive model (GAM) with splines of degree 10 trained on the entire dataset and tuned
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Figure 5: Sensitivity analysis of learning with misspecified η. (Left) Improvement rate of misspecified
models, trained on a single η and evaluated on data generated with varying values of η. (Right) The
ratio between the improvement rate of misspecified and correctly-specified models (i.e., trained on
the same η on which they are evaluated).

using cross-validation. In the first setting, F , G, and H include linear functions. In the second setting,
F , G are quadratic functions (i.e., linear in xi and in x2i ) and H remains linear. For uncertainty
estimation we used quantile regression, and for propensity scores we used logistic regression. For
lookahead, we set τ = 0.8 and train for T = 10 rounds. For f , we use SGD with a learning rate of
0.05 and 1000 epochs for initialization and 100 additional epochs per round. For g, we use SGD with
a learning rate of 0.05 and for 500 epochs. For both linear and non-linear settings we set η = 5, and
normalize y to be in [0, 1].

C.4 Sensitivity analysis

The experiments in the paper assume models are trained with the same η used in evaluation. Here we
evaluate the sensitivity of our method to the misspecification of η. We use the diabetes experimental
setup, train four different models with η ∈ {1, 2, 5, 10}, and evaluate each on action outcomes
generated with η′ ∈ {0, . . . , 30}. Figure 5 (left) shows the improvement rate of each model evaluated
on varying test-time η′. As can be seen, improvement rates across η′ show an inverse-U patter. In
most regimes performance is robust, although for large deviations between η and η′ improvement
rates deteriorate. To investigate this, in Figure 5 (right) we compare the improvement rate of the
misspecified model (i.e., trained on a fixed η) to that of a correctly-specified model, and report the
ratio.8 The correctly-specified model serves as a benchmark on performance, and results show that
misspecified models are competitive with this benchmark (except for extremely large values of η′).

8Due to randomness in experimentation, the ratio can be larger than one.
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