
Adaptive Reduced Rank Regression

Qiong Wu∗
William & Mary

Felix M. F. Wong
Independent Researcher†

Yanhua Li
Worcester Polytechnic Institute

Zhenming Liu
William & Mary

Varun Kanade
University of Oxford

Abstract

We study the low rank regression problem y = Mx + ε, where x and y are d1 and
d2 dimensional vectors respectively. We consider the extreme high-dimensional
setting where the number of observations n is less than d1+d2. Existing algorithms
are designed for settings where n is typically as large as rank(M)(d1 + d2). This
work provides an efficient algorithm which only involves two SVD, and establishes
statistical guarantees on its performance. The algorithm decouples the problem by
first estimating the precision matrix of the features, and then solving the matrix
denoising problem. To complement the upper bound, we introduce new techniques
for establishing lower bounds on the performance of any algorithm for this problem.
Our preliminary experiments confirm that our algorithm often out-performs existing
baselines, and is always at least competitive.

1 Introduction

We consider the regression problem y = Mx + ε in the high dimensional setting, where x ∈ Rd1 is
the vector of features, y ∈ Rd2 is a vector of responses, M ∈ Rd2×d1 are the learnable parameters,
and ε ∼ N(0, σ2

ε Id2×d2) is a noise term. High-dimensional setting refers to the case where the number
of observations n is insufficient for recovery and hence regularization for estimation is necessary [26,
30, 12]. This high-dimensional model is widely used in practice, such as identifying biomarkers [48],
understanding risks associated with various diseases [18, 7], image recognition [34, 17], forecasting
equity returns in financial markets [33, 39, 28, 8], and analyzing social networks [46, 35].

We consider the “large feature size” setting, in which the number of features d1 is excessively large
and can be even larger than the number of observations n. This setting frequently arises in practice
because it is often straightforward to perform feature-engineering and produce a large number of
potentially useful features in many machine learning problems. For example, in a typical equity
forecasting model, n is around 3,000 (i.e., using 10 years of market data), whereas the number
of potentially relevant features can be in the order of thousands [33, 22, 25, 13]. In predicting
the popularity of a user in an online social network, n is in the order of hundreds (each day is an
observation and a typical dataset contains less than three years of data) whereas the feature size can
easily be more than 10k [36, 6, 38].

Existing low-rank regularization techniques (e.g., [3, 23, 26, 30, 27]) are not optimized for the large
feature size setting. These results assume that either the features possess the so-called restricted
isometry property [10], or their covariance matrix can be accurately estimated [30]. Therefore, their
sample complexity n depends on either d1 or the smallest eigenvalue value λmin of x’s covariance
matrix. For example, a mean-squared error (MSE) result that appeared in [30] is of the form
∗ Correspondence to: Qiong Wu <qwu05@email.wm.edu>.
† Currently at Google.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

O
�
r(d1+d2)
nλ2

min

�
. When n ≤ d1/λ2min, this result becomes trivial because the forecast ŷ = 0 produces

a comparable MSE. We design an efficient algorithm for the large feature size setting. Our algorithm
is a simple two-stage algorithm. Let X ∈ Rn×d1 be a matrix that stacks together all features and
Y ∈ Rn×d2 be the one that stacks the responses. In the first stage, we run a principal component
analysis (PCA) on X to obtain a set of uncorrelated features Ẑ. In the second stage, we run another
PCA to obtain a low rank approximation of ẐTY and use it to construct an output.

While the algorithm is operationally simple, we show a powerful and generic result on using PCA to
process features, a widely used practice for “dimensionality reduction” [11, 21, 19]. PCA is known
to be effective to orthogonalize features by keeping only the subspace explaining large variations.
But its performance can only be analyzed under the so-called factor model [40, 39]. We show the
efficacy of PCA without the factor model assumption. Instead, PCA should be interpreted as a robust
estimator of x’s covariance matrix. The empirical estimator C = 1

nXXT in the high-dimensional
setting cannot be directly used because n � d1 × d2, but it exhibits an interesting regularity: the
leading eigenvectors of C are closer to ground truth than the remaining ones. In addition, the number
of reliable eigenvectors grows as the sample size grows, so our PCA procedure projects the features
along reliable eigenvectors and dynamically adjusts Ẑ’s rank to maximally utilize the raw features.
Under mild conditions on the ground-truth covariance matrix C∗ of x, we show that it is always
possible to decompose x into a set of near-independent features and a set of (discarded) features that
have an inconsequential impact on a model’s MSE.

When features x are transformed into uncorrelated ones z, our original problem becomes y = Nz+ε,
which can be reduced to a matrix denoising problem [16] and be solved by the second stage. Our
algorithm guarantees that we can recover all singular vectors of N whose associated singular values
are larger than a certain threshold τ . The performance guarantee can be translated into MSE bounds
parametrized by commonly used variables (though, these translations usually lead to looser bounds).
For example, when N ’s rank is r, our result reduces the MSE from O(r(d1+d2)

nλ2
min

) to O(rd2n + n−c)

for a suitably small constant c. The improvement is most pronounced when n� d1.

We also provide a new matching lower bound. Our lower bound asserts that no algorithm can recover
a fraction of singular vectors of N whose associated singular values are smaller than ρτ , where
ρ is a “gap parameter”. Our lower bound contribution is twofold. First, we introduce a notion of
“local minimax”, which enables us to define a lower bound parametrized by the singular values of
N . This is a stronger lower bound than those delivered by the standard minimax framework, which
are often parametrized by the rank r of N [26]. Second, we develop a new probabilistic technique
for establishing lower bounds under the new local minimax framework. Roughly speaking, our
techniques assemble a large collection of matrices that share the same singular values of N but are far
from each other, so no algorithm can successfully distinguish these matrices with identical spectra.

2 Preliminaries

Notation. Let X ∈ Rn×d1 and Y ∈ Rn×d2 be data matrices with their i-th rows representing the
i-th observation. For matrix A, we denote its singular value decomposition as A = UAΣA(V A)T

and Pr(A) , UAr ΣAr V
A
r

T is the rank r approximation obtained by keeping the top r singular values
and the corresponding singular vectors. When the context is clear, we drop the superscript A and use
U,Σ, and V (Ur, Σr, and Vr) instead. Both σi(A) and σAi are used to refer to i-th singular value of
A. We use MATLAB notation when we refer to a specific row or column, e.g., V1,: is the first row of
V and V:,1 is the first column. ‖A‖F , ‖A‖2, and ‖A‖∗ are Frobenius, spectral, and nuclear norms
of A. In general, we use boldface upper case (e.g., X) to denote data matrices and boldface lower
case (e.g., x) to denote one sample. Regular fonts denote other matrices. Let C∗ = IE[xxT] and
C = 1

nX
TX be the empirical estimate of C∗. Let C∗ = V ∗Λ∗(V ∗)T be the eigen-decomposition of

the matrix C∗, and λ∗1 ≥ λ∗2, . . . ,≥ λ∗d1 ≥ 0 be the diagonal entries of Λ∗. Let {u1,u2, . . .u`} be
an arbitrary set of column vectors, and Span({u1,u2, . . . ,u`}) be the subspace spanned by it. An
event happens with high probability means that it happens with probability ≥ 1− n−5, where 5 is an
arbitrarily chosen large constant and is not optimized.

Our model. We consider the model y = Mx + ε, where x ∈ Rd1 is a multivariate Gaussian,
y ∈ Rd2 , M ∈ Rd2×d1 , and ε ∼ N(0, σ2

ε Id2×d2). We can relax the Gaussian assumptions on x and

2

STEP-1-PCA-X(X)

1 [U,Σ, V] = svd(X)
2 Λ = 1

n (Σ2); λi = Λi,i.
3 � Gap thresholding.
4 � � = n−O(1) is a tunable parameter.
5 k1 = max{k1 : λk1 − λk1+1 ≥ δ},
6 Λk1 : diagonal matrix comprised of f�igi≤k1 .
7 Uk1 , Vk1 : k1 leading columns of U and V .
8 Π̂ = (Λk1)−

1
2V T

k1

9 Ẑ+ =
√
nUk1(= XΠ̂T).

10 return {Ẑ+, Π̂}.

STEP-2-PCA-DENOISE(Ẑ+,Y)

1 N̂T
+ ← 1

n Ẑ
T
+Y.

2 � Absolute value thresholding.
3 � � is a suitable constant; �� is std. of the noise.

4 k2 = max
n
k2 : σk2(N̂+) ≥ θσε

q
d2
n

o
.

5 return Pk2(N̂+)

ADAPTIVE-RRR(X,Y)

1 [Ẑ+, Π̂] = STEP-1-PCA-A(X).
2 Pk2(N̂+) = STEP-2-PCA-DENOISE(Ẑ+,Y).
3 return M̂ = Pk2(N̂+)Π̂

Figure 1: Our algorithm (ADAPTIVE-RRR) for solving the regression y = Mx + �.

ε for most results we develop. We assume a PAC learning framework, i.e., we observe a sequence
{(xi,yi)}i≤n of independent samples and our goal is to find an M̂ that minimizes the test error
IEx,y[‖M̂x−Mx‖22]. We are specifically interested in the setting in which d2 ≈ n ≤ d1.

The key assumption we make to circumvent the d1 ≥ n issue is that the features are correlated. This
assumption can be justified for the following reasons: (i) In practice, it is difficult, if not impossible, to
construct completely uncorrelated features. (ii) When n� d1, it is not even possible to test whether
the features are uncorrelated [5]. (iii) When we indeed know that the features are independent, there
are significantly simpler methods to design models. For example, we can build multiple models
such that each model regresses on an individual feature of x, and then use a boosting/bagging
method [19, 37] to consolidate the predictions.

The correlatedness assumption implies that the eigenvalues of C∗ decays. The only (full rank)
positive semidefinite matrices that have non-decaying (uniform) eigenvalues are the identity matrix
(up to some scaling). In other words, when C∗ has uniform eigenvalues, x has to be uncorrelated.

We aim to design an algorithm that works even when the decay is slow, such as when λi(C∗) has a
heavy tail. Specifically, our algorithm assumes λi’s are bounded by a heavy-tail power law series:
Assumption 2.1. The λi(C∗) series satisfies λi(C∗) ≤ c · i−ω for a constant c and ω ≥ 2.
We do not make functional form assumptions on λi’s. This assumption also covers many benign
cases, such as when C∗ has low rank or its eigenvalues decay exponentially. Many empirical studies
report power law distributions of data covariance matrices [2, 31, 44, 14]. Next, we make standard
normalization assumptions. IE‖x‖22 = 1, ‖M‖2 ≤ Υ = O(1), and σε ≥ 1. Remark that we assume
only the spectral norm of M is bounded, while its Frobenius norm can be unbounded. Also, we
assume the noise σε ≥ 1 is sufficiently large, which is more important in practice. The case when
σε is small can be tackled in a similar fashion. Finally, our studies avoid examining excessively
unrealistic cases, so we assume d1 ≤ d32. We examine the setting where existing algorithms fail to
deliver non-trivial MSE, so we assume that n ≤ rd1 ≤ d42.

3 Upper bound

Our algorithm (see Fig. 1) consists of two steps. Step 1. Producing uncorrelated features. We run
a PCA to obtain a total number of k1 orthogonalized features. See STEP-1-PCA-X in Fig. 1. Let
the SVD of X be X = UΣ(V)T. Let k1 be a suitable rank chosen by inspecting the gaps of X’s
singular values (Line 5 in STEP-1-PCA-X). Ẑ+ =

√
nUk1 is the set of transformed features output

by this step. The subscript + in Ẑ+ reflects that a dimension reduction happens so the number of
columns in Ẑ+ is smaller than that in X. Compared to standard PCA dimension reduction, there are
two differences: (i) We use the left leading singular vectors of X (with a re-scaling factor

√
n) as the

output, whereas the PCA reduction outputs Pk1(X). (ii) We design a specialized rule to choose k1
whereas PCA usually uses a hard thresholding or other ad-hoc rules. Step 2. Matrix denoising. We

run a second PCA on the matrix (N̂+)T , 1
n Ẑ

T
+Y. The rank k2 is chosen by a hard thresholding rule

(Line 4 in STEP-2-PCA-DENOISE). Our final estimator is Pk2(N̂+)Π̂, where Π̂ = (Λk1)−
1
2V T

k1
is

computed in STEP-1-PCA-X(X).

3

3.1 Intuition of the design

While the algorithm is operationally simple, its design is motivated by carefully unfolding the
statistical structure of the problem. We shall realize that applying PCA on the features should not
be viewed as removing noise from a factor model, or finding subspaces that maximize variations
explained by the subspaces as suggested in the standard literature [19, 40, 41]. Instead, it implicitly
implements a robust estimator for x’s precision matrix, and the design of the estimator needs to be
coupled with our objective of forecasting y, thus resulting in a new way of choosing the rank.

Design motivation: warm up. We first examine a simplified problem y = Nz+ ε, where variables
in z are assumed to be uncorrelated. Assume d = d1 = d2 in this simplified setting. Observe that

1

n
ZTY =

1

n
ZT(ZNT + E) = (

1

n
ZTZ)NT +

1

n
ZTE ≈ Id1×d1NT +

1

n
ZTE = NT + E , (1)

where E is the noise term and E can be approximated by a matrix with independent zero-mean noises.
Solving the matrix denoising problem. Eq. 1 implies that when we compute ZTY, the problem
reduces to an extensively studied matrix denoising problem [16, 20]. We include the intuition for
solving this problem for completeness. The signalNT is overlaid with a noise matrix E . E will elevate
all the singular values of NT by an order of σε

p
d/n. We run a PCA to extract reliable signals: when

the singular value of a subspace is� σε
p
d/n, the subspace contains significantly more signal than

noise and thus we keep the subspace. Similarly, a subspace associated a singular value . σε
p
d/n

mostly contains noise. This leads to a hard thresholding algorithm that sets N̂T = Pr(N
T + E),

where r is the maximum index such that σr(NT + E) ≥ c
p
d/n for some constant c. In the general

setting y = Mx + ε, x may not be uncorrelated. But when we set z = (Λ∗)−
1
2 (V ∗)Tx, we see that

IE[zzT] = I . This means knowing C∗ suffices to reduce the original problem to a simplified one.
Therefore, our algorithm uses Step 1 to estimate C∗ and Z, and uses Step 2 to reduce the problem to
a matrix denoising one and solve it by standard thresholding techniques.

Relationship between PCA and precision matrix estimation. In step 1, while we plan to estimate
C∗, our algorithm runs a PCA on X. We observe that empirical covariance matrix C = 1

nX
TX =

1
nV (Σ)2(V)T, i.e., C’s eigenvectors coincide with X’s right singular vectors. When we use the
empirical estimator to construct ẑ, we obtain ẑ =

√
n(Σ)−1(V)Tx. When we apply this map to

every training point and assemble the new feature matrix, we exactly get Ẑ =
√
nXV (Σ)−1 =

√
nU .

It means that using C to construct ẑ is the same as running a PCA in STEP-1-PCA-X with k1 = d1.

100 200 300 400 500

100

200

300

400

500

0.2

0.4

0.6

0.8

Figure 2: The angle matrix between C and C∗.

When k1 < d1, PCA uses a low rank approxima-
tion of C as an estimator for C∗. We now explain
why this is effective. First, note that C is very far
from C∗ when n� d1, therefore it is dangerous to
directly plug in C to find ẑ. Second, an interesting
regularity of C exists and can be best explained by
a picture. In Fig. 2, we plot the pairwise angles
between eigenvectors of C and those of C∗ from a
synthetic dataset. Columns are sorted by the C∗’s
eigenvalues in decreasing order. When C∗ and C
coincide, this plot would look like an identity ma-
trix. When C and C∗ are unrelated, then the plot
behaves like a block of white Gaussian noise. We

observe a pronounced pattern: the angle matrix can be roughly divided into two sub-blocks (see
the red lines in Fig. 2). The upper left sub-block behaves like an identity matrix, suggesting that
the leading eigenvectors of C are close to those of C∗. The lower right block behaves like a white
noise matrix, suggesting that the “small” eigenvectors of C are far from those of C∗. When n grows,
one can observe the upper left block becomes larger and this the eigenvectors of C will sequentially
get stabilized. Leading eigenvectors are first stabilized, followed by smaller ones. Our algorithm
leverages this regularity by keeping only a suitable number of reliable eigenvectors from C while
ensuring not much information is lost when we throw away those “small” eigenvectors.

Implementing the rank selection. We rely on three interacting building blocks:

4

	Introduction
	Preliminaries
	Upper bound
	Intuition of the design

	Lower bound
	Related work and comparison
	Experiments
	Conclusion

