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A Proofs and Additional Theoretical Results

A.1 Proof of Theorem 1

Proposition 1 (Generalized Adjoint Method). Consider the loss function (2). Then,
d`

dθ
=

∫
S
a>(τ)

∂fθ
∂θ

dτ where a(s) satisfies

{
ȧ>(s) = −a>(s)∂fθ∂z − ∂l

∂z

a>(S) = ∂L
∂z(S)

Proof. Let us define a Lagrange multiplier or adjoint state a, dual to z. As the dual of Rnz is Rnz
itself, a ∈ Rnz . Moreover, let L be a perturbed loss function of the form

L := `−
∫ S

0

a>(τ) [ż(τ)− fθ(s,xt, z(τ))] dτ

Since ż− fθ(s,x, z) = 0 by construction, the integral term in L is always null and, thus, a(s) can be
freely assigned while dL/dθ = d`/dθ. For the sake of compactness we do not explicitly write the
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dependence on variables of the considered functions unless strictly necessary. Note that,∫ S

0

a>żdτ = a>(τ)z(τ)
∣∣S
0
−
∫ S

0

ȧ>zdτ

obtained via integration by parts. Hence,

L = `− a>(τ)z(τ)
∣∣S
0

+

∫ S

0

(
ȧ>z + a>fθ

)
dτ

= L(z(S))− a>(τ)z(τ)
∣∣S
0

+

∫ S

0

(
ȧ>z + a>fθ + l

)
dτ

(11)

We can compute the gradient of ` with respect to θ as

d`

dθ
=

dL
dθ

=
∂L(z(S))

∂z(S)

dz(S)

dθ
− a>(S)

dz(S)

dθ
− a>(0)

�
�
�dz(0)

dθ

+

∫ S

0

[
ȧ>

dz

dθ
+ a>

(
∂fθ
∂θ

+
∂fθ
∂z

dz

dθ
+
∂fθ
∂x�

��dx

dθ
+
∂fθ
∂τ �

��dτ

dθ

)
+
∂l

∂z

dz

dθ
+
∂l

∂τ �
��dτ

dθ

]
dτ

which, by reorganizing the terms, yields to
d`

dθ
=

[
∂L

∂z(S)
− a>(S)

]
dz(S)

dθ
+

+

∫ S

0

(
ȧ> + a>

∂fθ
∂z

+
∂l

∂z

)
dz

dθ
dτ

+

∫ S

0

a>
∂fθ
∂θ

dτ

(12)

Now, if a(s) satisfies the final value problem

ȧ>(s) = −a>(s)
∂fθ
∂z
− ∂l

∂z
, a>(S) =

∂L

∂z(S)
(13)

to be solved backward in [0, S]; then (12) reduces to
d`

dθ
=

∫ S

0

a>
∂fθ
∂θ

dτ (14)

proving the result.

Remark 1 (Implementation of the generalized adjoint method). Note that, similarly to Chen et al.
(2018), the gradient (14) is practically computed by defining the parameters adjoint state aθ and
solving backward the system of ODEs

ȧ> = −a> ∂fθ
∂z
− ∂l

∂z
, a>(S) =

∂L

∂z(S)

ȧ>θ = −a> ∂fθ
∂θ

, aθ(S) = 0nθ

(15)

Then,

d`

dθ
= aθ(0).

A.2 Proof of Theorem 1

Theorem 1 (Infinite–Dimensional Gradients). Consider the loss function (2) and let θ(s) ∈ L2(S →
Rnθ ). Then, sensitivity of ` with respect to θ(s) (i.e. directional derivative in functional space) is

δ`

δθ(s)
= a>(s)

∂fθ(s)

∂θ(s)
where a(s) satisfies

{
ȧ>(s) = −a>(s)

∂fθ(s)
∂z − ∂l

∂z

a>(S) = ∂L
∂z(S)

Proof. The proof follows the same steps of the one of Theorem 1 up to (11). However, here θ(s) ∈ L2

and the loss sensitivity to θ(s) corresponds to the directional (Gateaux) derivative δ`/δθ(s) in L2
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derived as follows. We start by computing the total variation of `:

δ` =
∂L

∂z(S)
δz(S)− a>(s)(δz(S)− δz(0))

+

∫ S

0

[
ȧ>(τ)δz(τ) + a>(τ)

(
∂fθ(τ)

∂z(τ)
δz(τ) +

∂fθ(τ)

∂θ(τ)
δθ(τ)

)
+

∂l

∂z(τ)
δz(τ)

]
dτ

Thus,
δ`

δθ(s)
=

[
∂L

∂z(S)
− a>(s)

]
δz(S)

δθ(s)
+
δz(0)

δθ(s)

+

∫ S

0

[
ȧ>(τ)

δz(τ)

δθ(s)
+ a>(τ)

(
∂fθ(τ)

∂z(τ)

δz(τ)

δθ(s)
+
∂fθ(τ)

∂θ(τ)

δθ(τ)

δθ(s)

)
+

∂l

∂z(τ)

δz(τ)

δθ(s)

]
dτ

Since it must hold ∫
δθ(τ)

δθ(s)
dτ = 1,

then, model class choice θ(s) ∈ L2 implies
δθ(τ)

δθ(s)
= δ(τ − s)

where δ(τ − s) is the Dirac’s delta. Therefore, it holds
δ`

δθ(s)
=

[
∂L

∂z(S)
− a>(s)

]
δz(S)

δθ(s)
+
δz(0)

δθ(s)

+

∫ S

0

[
ȧ>(τ)

δz(τ)

δθ(s)
+ a>(τ)

(
∂fθ(τ)

∂z(τ)

δz(τ)

δθ(s)
+
∂fθ(τ)

∂θ(τ)
δ(τ − s)

)
+

∂l

∂z(τ)

δz(τ)

δθ(s)

]
dτ

and, finally
δ`

δθ(s)
=

[
∂L

∂z(S)
− a>(s)

]
δz(S)

δθ(s)
+
δz(0)

δθ(s)

+

∫ S

0

(
ȧ>(τ) + a>(τ)

∂fθ(τ)

∂z(τ)
+

∂l

∂z(τ)

)
δz(τ)

δθ(s)
dτ

+ a>(s)
∂fθ(s)

∂θ(s)

Hence, if for any s ∈ S the adjoint state a(s) satisfies

ȧ> = −a> ∂fθ(s)
∂z

− ∂l

∂z
, a>(S) =

∂L

∂z(S)
we have

δ`

δθ(s)
= a>(s)

∂fθ(s)

∂θ(s)

A.3 Proof of Corollary 1

Corollary 1 (Spectral Gradients). Under the assumptions of Theorem 1, if θ(s) =
∑m
j=1 αj �ψj(s),

d`

dα
=

∫
S
a>(τ)

∂fθ(s)

∂θ(s)
ψ(τ)dτ, ψ = (ψ1, . . . , ψm)

Proof. The proof follows naturally from Theorem 1 by noticing that if θ(s) has some parametrization
θ = θ(s, µ) with parameters µ ∈ Rnµ , then,

d`

dµ
=

∫ S

0

a>(τ)
∂fθ
∂θ

∂θ

∂µ
dτ (16)

Therefore, if

θ(s) =

m∑
j=1

αj � ψj(s),
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the loss gradient with respect to the parameters α := (α1, . . . , αm) ∈ Rmnθ is computed as
d`

dα
=

∫ S

0

a>(τ)
∂fθ(τ)

∂θ(τ)

∂θ(s)

∂α
dτ

=

∫ S

0

a>(τ)
∂fθ(τ)

∂θ(τ)
ψdτ

being ψ := (ψ1, . . . , ψm).

Remark 2 (Choose your parametrization). A further insight from this result, which paves the
way to future developments, is that we can easily compute the loss gradients with respect to any
parametrization of θ(s) through (16)

A.4 Proof of Corollary 2

Corollary 2 (Stacked Gradients). Under the assumptions of Theorem 1, if θ(s) = θi ∀s ∈ [si, si+1],

d`

dθi
= −

∫ si

si+1

a>(τ)
∂fθi
∂θi

dτ where a(s) satisfies

{
ȧ>(s) = −a>(s)

∂fθi
∂z − ∂l

∂z s ∈ [si, si+1]
a>(S) = ∂L

∂z(S)

Proof. The proof follows from the one of Theorems 1 and 1 by recalling the solution of the stacked
neural ODEs:

z(S) = hx(x) +

p−1∑
i=0

∫ si+1

s1

fθi(τ,x, z(τ))dτ

We can recover a relation similar to (12)
d`

dθi
=

[
∂L

∂z(S)
− a>(S)

]
dz(S)

dθi
+

+

p−1∑
j=0

∫ sj+1

sj

(
ȧ> + a>

∂fθj
∂z

+
∂l

∂z

)
dz

dθi
dτ

+

p−1∑
j=0

∫ sj+1

sj

a>
∂fθj
∂θi

dτ

Since

∀j = 0, . . . , p− 1
∂fθj
∂θi

6= 0⇔ j = i,

we have
p−1∑
j=0

∫ sj+1

sj

a>
∂fθj
∂θi

dτ =

∫ si+1

si

a>
∂fθi
∂θi

dτ = −
∫ si

si+1

a>
∂fθi
∂θi

dτ

which leads to the result by assuming a(τ) to satisfy

ȧ>(s) = −a>(s)
∂fθi
∂z
− ∂l

∂z
s ∈ [si, si+1]

a>(S) =
∂L

∂z(S)

A.5 Proof of Theorem 2

Proposition 2. For all ε > 0, x ∈ R there exists a parameter θ > 0 such that
|ϕ(x)− z(1)| < ε, (8)

where z(1) is the solution of the Neural ODE{
ż(s) = −θ(z(s) + x)
z(0) = x

, s ∈ [0, 1] . (9)
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Proof. The general solution of (9) is
z(s) = x(2e−θs − 1)

Thus,
e = ϕ(x)− z(1) = x+ x(2e−θ − 1) = 2xe−θ

⇔ |e| = 2|x|e−θ
It follows that

2|x|e−θ < ε

⇔ e−θ <
ε

2|x|

⇔ θ > − ln

(
ε

2|x|

)

A.6 Additional Theoretical Results

A.6.1 Explicit Parameter Dependence of the Loss

Note that, in both the seminal paper from Chen et al. (2018) and Theorem 1 the loss function was
consider without explicit dependence on the parameters. However, in practical applications (see, e.g.
(Finlay et al., 2020)) the loss has this explicit dependence:

` = L(z(S), θ) +

∫
S
l(s, z(τ), θ)dτ, (17)

In this case we need to modify the adjoint gradients accordingly

Theorem 2 (Generalized Adjoint Method with Parameter–Dependent Loss). Consider the loss
function (17). Then,

d`

dθ
=
∂L

∂θ
+

∫
S

(
a>(τ)

∂fθ
∂θ

+
∂l

∂θ

)
dτ

where a(s) satifies (13).

Proof. The proof follows immediately from Theorem 1 by noticing that, with the explicit dependence
on θ of `, (12) would become

d`

dθ
=
∂L

∂θ

+

[
∂L

∂z(S)
− a>(S)

]
dz(S)

dθ
+

+

∫ S

0

(
ȧ> + a>

∂fθ
∂z

+
∂l

∂z

)
dz

dθ
dτ

+

∫ S

0

(
a>

∂fθ
∂θ

+
∂l

∂θ

)
dτ

leading to the result.

In the depth–variant case where we might consider a loss function of type

` = L(z(S), θ(S)) +

∫
S
l(z(τ), θ(τ))dτ (18)

a similar result can be obtained for the infinite–dimensional adjoint.

A.6.2 Integration Bound Gradients

It is also possible to obtain the loss gradient with respect to the integration bound S.

Theorem 3 (Integration Bound Gradient). Consider a loss function 2. Then,
d`

dS
=

∂L

∂z(S)
fθ(S)(S,x, z(S)) + l(z(S))
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Proof.
d`

dS
=

∂L

∂z(S)

dz(S)

dS
+

d

dS

∫ S

0

l(z(τ))dτ

=
∂L

∂z(S)

d

dS

(
hx(x) +

∫ S

0

fθ(τ)(τ,x, z(τ))

)
+

d

dS

∫ S

0

l(z(τ))dτ

Therefore, by applying the Leibniz integral rule we obtain
d`

dS
=

∂L

∂z(S)
fθ(S)(S,x, z(S)) + l(z(S))

B Practical Insights for Neural ODEs

B.1 Augmentation

Augmenting convolution and graph based architectures In the case of convolutional neural
network (CNN) or graph neural network (GNN) architectures, augmentation can be performed along
different dimensions i.e. channel, heigth, width or similarly node features or number of nodes. The
most physically consistent approach, employed in (Dupont et al., 2019) for CNNs, is augmenting
along the channel dimension, equivalent to providing each pixel in the image additional states. By
viewing an image as a lattice graph, the generalization to GNN–based Neural ODEs (Poli et al., 2019)
operating on arbitrary graphs can be achieved by augmenting each node feature with na additional
states.

Selective higher–order A limitation of system (6) is that a naive extension to second–order requires
a number of augmented dimensions na = nz/2. To allow for flexible augmentations of few
dimensions na < nz/2, the formulation of second–order Neural ODEs can be modified as follows.
Let z := (zq, zp, z̄), zq, zp ∈ Rna/2, z̄ ∈ Rnz−na . We can decide to give second order dynamics
only to the first na states while the dynamics of other nz − na states is free. Therefore, this approach
yields żqżp

˙̄z

 =

 zp
fpθ(s)(s, z)

f̄θ(s)(s, z)

 , (19)

A similar argument could be applied to orders higher than two. Selective higher–order Neural ODEs
are compatible with input layer augmentation.

B.2 Activations

Mind your activation We investigate the effects of appending an activation function to the last
layer of fθ. The chosen nonlinearity will strongly affect the “shape” of the vector field and, as a

Figure 8: Depth trajectories of the hidden state and relative vector fields fθ(z) for different activation
functions in a nonlinear classification task. It can be noticed how the models with tanh and ELU
outperform the others, as fθ is able to steer z along negative directions.
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consequence, the flows learnable by the model. Therefore, while designing fθ as a multi–layer neural
network, it is generally advisable to append a linear layer to maximize the expressiveness of the
underlying vector field. In some applications, conditioning the vector field (and thus the flows) with a
specific nonlinearities can be desirable, e.g., when there exist priors on the desired transformation,
such as boundedness of the vector field.

Effects of activations In order to compare the effect of different activation functions in the last
layer of fθ, we set up a nonlinear classification task with the half–moons dataset. For the sake of
completeness, we selected activations of different types, i.e., The dataset is comprised of 213 data

Activation Type

Hyperbolic tangent (tanh) bounded
Sigmoid bounded, non–negative output

ReLU unbounded, non–negative output
Softplus unbounded, non–negative output

ELU lower–bounded

points. We utilize the entire dataset for training and evaluation since the experiment has the aim of
delivering a qualitative description of the learned vector fields. fθ has been selected as a multilayer
perceptron with two hidden layers of 16 neurons each. The training has been carried out using Adam
(Kingma and Ba, 2014) optimizer with learning rate 10−3 and weight decay set to 10−4.

In Figure 8 we see how different activation functions in the last layer of fθ condition the vector fields
and the depth evolution of the hidden state in the classification of nonlinearly separable data. It is
worth to be noticed that the models with better performance are the ones with hyperbolic tangent
(tanh) and ELU (Clevert et al., 2015) as the vector field can assume both positive and negative values
and, thus, can “force” the hidden state in different directions. On the other hand, with sigmoid, ReLU
or softplus (Zheng et al., 2015), the vector field is nonnegative in all directions and thus has limited
freedom. Further, Figure 9 shows how different activation functions shape the vector field and as a
result the decision boundary.

B.3 Regularization for Stability

The concept of stability can be used to regularize Neural ODEs through a variety of additional terms
or different formulations (Finlay et al., 2020; Massaroli et al., 2020). (Finlay et al., 2020) proposes
minimizing a loss term:

`reg =

∫
S
‖fθ(τ)(τ,x, z(τ)‖2dτ, (20)

to achieve stability. A simple alternative stabilizing regularization term can be considered at no
significant additional computational cost:

`reg =
∥∥fθ(S)(S,x, z(S))

∥∥
2
, (21)

which penalizes non–convergence to some fixed point of fθ at s = S. The above can also be seen as
a cheaper alternative to the kinetic energy regularization proposed in (Finlay et al., 2020).

B.4 Approximation Capabilities

Vanilla Neural ODEs are not, in general, universal function approximators (UFAs) (Zhang et al.,
2019a). Besides some recent works on the topic (Zhang et al., 2019a; Li et al., 2019) this apparent
limitation is still not well–understood in the context of continuous–depth models. When Neural
ODEs are employed as general–purpose black–box modules, some assurances on the approximation
capabilities of the model are necessary. Let nz := nx + 1 and let z := (zx, za) (zx ∈ Rnx , za ∈ R).
(Zhang et al., 2019a) noticed that a depth–invariant augmented Neural ODE[

żx
ża

]
=

[
0nx
fθ(zx)

]
,

[
zx(0)
za(0)

]
=

[
x
0

]
, s ∈ [0, 1] (22)

where the output is picked as ŷ := za(1), can approximate any function Ψ : Rnx → R provided that
the neural network fθ(x) is an approximator of Ψ, since za(1) = fθ(x), mimicking the mapping
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x 7→ fθ(x). Although this simple result is not sufficient to provide a constructive blueprint to the
design of Neural ODE models, it suggests the following (open) questions:

• Why should we use a Neural ODE if its vector field can solve the approximation problem as
a standalone neural network?

• Can Neural ODEs be UFAs with non-UFA vector fields?

On the other hand, if Neural ODEs are used for model discovery or observation of dynamical systems,
requiring an UFA neural network to parametrize the model provides it with the ability to approximate
arbitrary dynamical systems.

B.5 Example Implementation of Data–Control

We report here a short PyTorch code snippet detailing the implementation of the simplest data–
controlled Neural ODE variant, accompanied, for further accessibility, by a brief text description.

class DC_DEFunc(nn.Module):
"""PyTorch implementation of data--controlled $f_\theta$"""
def __init__(self, f):

super().__init__()
self.f = f

def forward(self, s, z):
"""Forward is called by the ODE solver repeatedly"""

self.nfe += 1
# data-control step:
# alternatives include embeddings of input data `x` i.e g(x)
# or addition `x + z`
z = torch.cat([z, self.x], 1)
dz = self.f(z)
return dz

where the initial condition x is passed to the model at the start of the integration at s = 0. The
information contained is thus passed repeatedly to the function fθ, conditioning the dynamics. It
should be noted that even in the case of concatenation of x and z(s), the above is not a form of
augmentation, since the state itself is not given additional dimensions during forward propagation. In
fact, the dynamics take the form of a function fθ : Rnx ×Rnz → Rnz instead of fθ : Rna ×Rnx →
Rna × Rnx as is the case for general first–order augmentation with nz = nx + na.

C Experimental Details

Computational resources The experiments were carried out on a cluster of two NVIDIA® TITAN
RTX GPUs with CUDA 10.1 and INTEL® I9 10980XE CPU. All Neural ODEs were trained on GPU.
The code was built upon Pytorch’s torchdyn library for neural differential equations (Poli et al.,
2020b).

General experimental setup We report here general information about the experiments. All Neural
ODEs are solved numerically via the Dormand–Prince method (Prince and Dormand, 1981). We
refer to concat as the depth–variant Neural ODE variants where the depth–variable s is concatenated
to z(s) as done in (Chen et al., 2018). Furthermore, we denote Galërkin Neural ODEs as GalNODE
for convenience.

Benchmark problems Throughout the paper we extensively utilize the concentric annuli bench-
mark task introduced in (Dupont et al., 2019) is used extensively. Namely, given r > 0 define
ϕ : Rn → Z

ϕ(x) =

{
−1 ‖x‖2 < r
1 ‖x‖2 ≥ r

. (23)
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Figure 9: Decision boundaries learned by the vector field of a Neural ODE are directly conditioned
by the choice of activation function.

We consider learning the map ϕ(x) with Neural ODEs prepending a linear layer Rn → R. Notice
that ϕ has been slightly modified with respect to (Dupont et al., 2019), to be well–defined in its
domain. For the one–dimensional case, we will often instead refer to the map ϕ(x) = −x as the
crossing trajectories problem. The optimization is carried out by minimizing mean squared error
(MSE) losses of model outputs and mapping ϕ.

C.1 Experiments of Section 3

Trajectory tracking Consider the problem of tracking a periodic signal β(s). We show how this
can be achieved without introducing additional inductive biases such as (Greydanus et al., 2019)
through a synergistic combination of a two–layer Galërkin Neural ODEs and the generalized adjoint
with integral loss l(s) := ‖β(s)− z(s)‖22. In particular, we construct a two–layer Galërkin Neural
ODE with Fourier series and m = 2 harmonics as the eigenfunctions. The training is carried out
for 1000 epochs with learning rate 10−3. The practical implementation of the generalized adjoint
necessary to distribute the loss across the depth domain is discussed in Appendix A.

The models, trained in s ∈ [0, 1] generalize accurately when tasked to perform long trajectory
extrapolation of several seconds.

Depth–varying classification We showcase how different discretization options of the functional
optimization problem discussed in Sec. 3 affect the final dynamics of θ(s). Namely, we consider a
simple binary classification on the nested spirals problem, training all models for 300 epochs and
learning rate 5 · 10−3. Galërking Neural ODEs are equipped with a polynomial basis with m = 10.
The Fig.s in Sec 3 reveal the different nature of θ(s) depending on model choice: depth–discretization
of Stacked yields a flexible, though lower resolution form of θ(s), whereas spectral discretizations
limit the functional form of θ(s) to the span of a chosen eigenbasis.

Mind your input network experiments We tackle the concentric annuli task with a Neural ODE
preceded by a simple two–layer neural network with 16 units and ReLU activation. The second layer
is linear.

C.2 Experiments of Section 4

Image classification We use AdamW with learning rate 10−3, batch size 64, weight decay 5∗10−4

and a learning rate step schedule with multiplicative factor γ = 0.9 every 5 epochs. We train
each model for 20 epochs. The vector fields fθ are parametrized by 3–layer depth–invariant CNNs,
with each layer followed by an instance normalization layer. The choice of depth–invariance is
motivated by the discussion carried out in Section 5: both augmentation and depth–variance can
relieve approximation limitations of vanilla, depth–invariant Neural ODEs. As a result, including
both renders the ablation study for augmentation strategies less accurate. We note that the results of
this ablation analysis do not utilize any form of data augmentation; data augmentation can indeed be
introduced to further improve performance.

For input layer augmented Neural ODE models, namely IL–NODE and 2nd order, we prepend to
the Neural ODE a single, linear CNN layer. In the case of 2nd order models, we use input layer
augmentation for the positions and initialize the velocities at 0. The hidden channel dimension of the
CNN parametrizing fθ in augmented models is set to 32 on MNIST and 42 on CIFAR; vanilla Neural
ODEs, on the other hand, are equipped with dimensions 42 and 62 for a fair comparison. The output
class probabilities are then computed by mapping the output of the Neural ODE through average
pooling followed by a linear layer. Second order Neural ODEs, 2nd, use fθ to compute the vector
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Figure 10: Depth evolution over the learned vector fields of the standard models: depth–invariant
and depth–variant (“concat” fθ(s, z(s)) and GalNODE fθ(s, z(s))). As expected the Neural ODE
cannot approximate the map ϕ(x) = −x.

field of velocities: therefore, the output of fθ is nx/2–dimensional, and the remaining nx/2 outputs
to concatenate (vector field of positions) are obtained as the last nx/2 elements of z.

We note that vanilla Neural ODEs are capable of convergence without any spikes in loss or NFEs.
We speculate the numerical issues encountered in (Dupont et al., 2019) to be a consequence of the
specific neural network architecture used to parametrize the vector field fθ, which employed an
excessive number of channels inside fθ, i.e 92.

C.3 Experiments of Section 5

Experiments on crossing trajectories We trained both current state–of–the–art as well as proposed
models to learn the map ϕ(x) = −x. We created a training dataset sampling x equally spaced in
[−1, 1]. The models have been trained to minimize L1 losses using Adam (Kingma and Ba, 2014)
with learning rate lr = 10−3 and weight decay 10−5 for 1000 epochs using the whole batch. We
trained vanilla Neural ODEs, i.e. both depth–invariant and depth variant models (“concat” and
GalNODE). As expected, these models cannot approximate ϕ. Both depth–invariant and concat have
been selected with two hidden layers of 16 and 32 neurons each, respectively and tanh activation. The
GalNODE have been designed with one hidden layer of 32 neurons whose depth–varying weights
were parametrized by a Fourier series of five modes. The resulting trajectories over the learned vector
fields are shown in Fig. 10.

Data–controlled Neural ODEs We evaluate both the handcrafted linear depth–invariant model (9)
and the general formulation of data–controlled models (10), realized with two hidden layers of 32
neurons each and tanh activation in all layers but the output. Note that the loss of the handcrafted
model results to be convex and continuously differentiable. Moreover, proof A.5 provides analytically
a lower bound on the model parameter to ensure the loss to be upper–bounded by a desired ε, making
its training superfluous. Nevertheless, we provide results with a trained version to show that the
benefits of data–controlled Neural ODEs are compatible with gradient–based learning.

The results are shown in Fig.s 10 and 11. The input data information embedded into the vector field
allows the Neural ODE to steer the hidden state towards the desired label through its continuous
depth. Data–controlled Neural ODEs can be used to learn challenging maps (Dupont et al., 2019)
without augmentation.

Concentric annuli with non–augmented variants We train each model for 1024 iterations using
AdamW with learning rate 10−3, weight decay 10−6 and batch size 1024. All models have a single
hidden layer of dimension 32. The GalNODE layer is parametrized by a Fourier series of five modes.

Conditional continuous normalizing flows We train data–controlled continuous normalizing
flows for 2000 iterations with samples of size 214. We use AdamW with learning rate 10−3 and
weight decay 10−7. Absolute and relative tolerances of the chosen solver, dopri5 are set to 10−8.
The CNF network have 2 hidden layers of dimension 128 with softplus nonlinearities.

Adaptive depth Neural ODEs The experiments have been carried out with a depth–variant Neural
ODE in “concat” style where f was parametrized by a neural network with two hidden layers of
8 units and tanh activation. Moreover, the function gω(x) computing the data–adaptive depth of
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Figure 11: Depth evolution over the learned vector fields of (9) and a data–controlled Neural ODE.
As discussed in Sec.5 introducing data–control allows the model to approximate the map ϕ(x) = −x.
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Figure 12: Evolution of the input data through the depth of the Neural ODEs

the Neural ODE was composed by a neural network with one hidden layer (8 neurons and ReLU
activation) whose output is summed to one and then taken in absolute value,

g(x) =
∣∣1 + w>o σ(wix + bi) + bo

∣∣
where σ is the ReLU activation, wo, wi, bi ∈ R8 and ω = (wo, bo,wi,bi). In particular, the
summation to one has been employed to help the network “sparsify” the learned integration depths
and avoid highly stiff vector fields, while the absolute value is needed to avoid infeasible integration
intervals. The training results can be visualized in Fig. 12. This early result should be intended as
a proof of concept rather than a definitive evaluation of the depth adaptation methods, which we
reserve for future work. We note that the result of Fig. 5 showed in the main text has been obtained
by training the model only on x ∈ {−1, 1} and manually setting s∗−1 = 1, s∗1 = 3.
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