
How to Characterize The Landscape of
Overparameterized Convolutional Neural Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

For many initialization schemes, parameters of two randomly initialized deep neural1

networks (DNNs) can be quite different, but feature distributions of the hidden2

nodes are similar at each layer. With the help of a new technique called neural3

network grafting, we demonstrate that even during the entire training process,4

feature distributions of differently initialized networks remain similar at each layer.5

In this paper, we present an explanation of this phenomenon. Specifically, we6

consider the loss landscape of an overparameterized convolutional neural network7

(CNN) in the continuous limit, where the numbers of channels/hidden nodes in8

the hidden layers go to infinity. Although the landscape of the overparameterized9

CNN is still non-convex with respect to the trainable parameters, we show that very10

surprisingly, it can be reformulated as a convex function with respect to the feature11

distributions in the hidden layers. Therefore by reparameterizing neural networks12

in terms of feature distributions, we obtain a much simpler characterization of the13

landscape of overparameterized CNNs. We further argue that training with respect14

to network parameters leads to a fixed trajectory in the feature distributions.15

1 Introduction16

A good characterization of the landscape is very important for understanding remarkable successes of17

DNNs in various domains including computer vision, nature language processing and speech. There18

have been a lot of research [29, 21, 24, 20, 26, 8] analyzing the landscape of deep neural network in19

parameter space. On one hand, even one-hidden-layer neural network has complex landscape with20

exponential number of local minima and saddle points. On the other hand, some interesting empirical21

phenomena like mode connectivity, that low-cost solutions of DNN could be connected by simple22

path in parameter space, have been found, indicating that the loss landscape is not as complex as we23

expected. These two conclusions of the landscape in parameter space seem to be contradictory.24

We believe that the loss landscape should be investigated in the feature distribution space directly25

instead of the parameter space as existing studies have done due to the excellent capability of26

DNN to learn effective feature representations. But our understanding on the feature distribution27

learned by DNNs is still limited. For example, even to the basic question of to what extent two28

feature representations learned by different DNNs are essentially the same, various studies such29

as [23, 32, 19] reached different conclusions due to the redundancy in the feature representations30

comes from the special properties of DNNs, e.g., the permutation&scale invariance of the trainable31

parameters, the truncation operation in ReLU, etc. Two feature representations that look quite32

different at current layer could be essentially the same. As the example illustrated in Fig. 1(b), the33

difference may have little effect on the features in subsequent layers and could be alleviated, or even34

eliminated completely after passing the linear transformations and the activation functions ReLU35

in the subsequent layers. Although several remedies are proposed in recent studies, the redundancy36

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

……

……

……

……

……

……

……

……

……

……

……

……

……

……

……

layer ℓ-1

layer ℓ

layer ℓ+1

 Let weights be copied from
 neural network 1

 Train weights by minimizing
 objective (2)

 Let weights be copied from
 neural network 2

Step 1:

Step 2:

Step 3:

network 1 network 2grafted network

(a)

ℓ+1 ℓ+2 ℓ+3

(b)
Figure 1: (a) The flowchart of neural network grafting. (b) An example of redundancy. The yellow
and green curves left represent the features in layer `+ 1 learned in two nets. They look different but
are essential similar since they become the same after passing two more layers.

cannot be completely eliminated and different amounts of redundancy may lead to inconsistent37

conclusions. This discourages the researchers from investigating DNNs in feature distribution space.38

In this paper, we start from the problem of inconsistent conclusions above and propose an effective39

technique named neural network grafting (NNG) for comparing feature distributions (see Section 4).40

We consider the most direct way to identify whether the feature representations learned in two hidden41

layers of two networks are essentially the same. The key idea is to check whether the representation42

learned by one network can be used in the other one without significant sacrifice in accuracy, i.e.,43

whether one of these two networks can be grafted onto the other at that hidden layer (Fig. 1(a)).44

Using NNG, we find that feature distributions learned by two networks with the same architecture45

but different initilizations are almost the same during the whole training process. That means their46

solution paths, if we view them in the aspect of feature distributions, are the same, while they seem47

chaotic and quite different under the view of trainable parameters (see Section 6.1).48

Our surprising finding on the uniqueness of the solution path implies that NNs become much easier49

to understand if we view them in the aspect of feature distributions instead of trainable parameters.50

This motivates us to reparameterize NNs with respect to the feature function distributions to obtain51

a simpler loss landscape. Specifically, we first propose a new method to reformulate a CNN as an52

approximation to a continuous CNN, which is obtained by letting the number of channels/hidden53

nodes in each hidden layer go to infinity. We then extend the emerging technique for reformulating54

fully connected NNs [4, 5] to continuous CNN to reparameterize it with respect to feature distributions55

(See Section 5). We show that although the loss of continuous CNN is still non-convex with respect56

to the trainable parameters, it becomes convex with respect to the feature distributions. Therefore, we57

obtain a much simper characterization for the loss landscape.58

Although our convexity is reformulated in the feature distribution space instead of the trainable59

parameter space, it has significant implications on NN optimization. In fact, it can be shown that60

under suitable conditions, the training algorithms (e.g., SGD) of DNNs converge to a solution that is61

a stationary point of the convex reformulation, as shown in Section B of the Appendix. This excludes62

bad local minimum solutions for DNN optimization. Moreover, the convexity and unique solution63

path imply that CNNs are much simpler if we view them in the feature distribution space. All these64

demonstrate the value of studying DNNs in feature distribution space.65

Notations. For a positive integer n, we let [n] to be the set {1, 2, . . . , n}. We denote ‖x‖1 and ‖x‖66

to be the `1 and `2 norm of a vector x in Rd. For any k ∈ [d], we let xk be the value of the k-th67

dimension of x and denote vec(w) to be the operator for reshaping a matrix or tensor w into a vector.68

2 Related Work69

2.1 Characterization of DNNs’ Landscape70

One main purpose of the studies on landscape characterization is to explain why DNNs with massive71

parameters can be trained efficiently in practice. They mainly explore the following subjects:72

Geometry of loss surface The training of DNNs depends highly on the network architecture, op-73

timization techniques (e.g., batch normalization (BN)) and some other considerations. Some re-74

searchers try to study the impacts of these factors on the geometry of the loss surface. They [8, 21]75

show that the loss landscapes quickly transit from being nearly convex to being highly chaotic when76

the network becomes deeper, and residual connections promote surface smoothness and prevent77

2

the explosion of non-convexity, which verifies that skip connection is essential for extremely deep78

networks. Moreover, [28] demonstrates that the effectiveness of BN comes from its effects on the79

smoothness of the landscape instead of controlling covariate shift.80

Properties of local minima These studies attempt to understand the phenomenon observed in81

practice that local minima found by training algorithms are nearly always good. They show that in82

idealized settings, the local minima of DNNs have similar loss values [12, 11]. To be precise, [18]83

proved that linear networks have no sub-optimal local minima. [30] shows that for deep residual84

network with a single output unit, the objective values of all local minima are no higher than what85

can be obtained with a linear predictor. However, these existing studies are restricted to strong86

assumptions of model simplifications, such as linear activation. For nonlinear DNNs in practice,87

theoretical properties of local minima are still unknown.88

Mode Connectivity The phenomenon of mode connectivity implies that the optima of DNNs may89

have special and simple structures. Some efforts have been made to understand it theoretically. [26]90

shows that for overparameterized DNNs with piece-wise linear activations, the sublevel sets of their91

loss functions are connected and bounded. For nonlinear DNNs, [20, 27, 31] prove the existence of92

these low-cost paths under the assumptions such as the DNNs are dropout stable or noise stable.93

Despite the above breakthroughs on characterizing the landscapes of DNNs, many empirical phenom-94

ena of DNNs are still poorly understood. Some studies [32, 19] even had inconsistent conclusions,95

e.g., whether randomly initialized DNNs with the same architecture learn the same representation.96

2.2 Overparameterized Deep Learning Theory97

The theoretical work about overparameterized NN, motivated by its great empirical success, can98

be roughly divided into two categories, i.e. mean field limit and neural tangent kernel (NTK)99

limit, based on whether the network parameters change a lot during training. The NTK limit100

[17, 10, 14, 22, 13, 2, 3, 6, 7] considers a tiny neighborhood of the initialization, and with an101

appropriate scaling that approaches infinity, it can be shown that the global minimum is achieved102

within the tiny neighborhood (called NTK regime) that becomes infinitesimal in the limit. Therefore103

the neural network can be linearized around the initialization, and the resulting formulation becomes104

convexity. However, it is observed that NNs within the NTK region does not perform well compared105

to fully trained NNs using standard methods, which always go out of the NTK regime. Therefore NTK106

cannot be used to study the standard NN training process and the associated landscape characterization,107

as we are interested in doing in this paper. To overcome this discrepancy between theory and practice,108

the mean field limit [24, 9, 25] has been proposed. This is also the approach most related to this paper,109

because we also consider the standard training process that goes out of the NTK regime. The original110

mean field framework works with distributions over NN parameters, which is difficult to extend to111

deep networks. This paper considers the convex reformulation idea in [4, 5], where overprameterized112

NNs are parameterized using feature distributions of the hidden neurons. We investigate the empirical113

justifications and their relationship to the theory of convex reformulation.114

3 Basics115

In this section, we give the detailed formulation of standard CNN, and hereafter we refer to it as116

discrete CNN in contrast to our continuous CNN in Section 5.1. We notice that fully connected layer117

can be viewed as a convolutional layer by treating each hidden node as a special channel valued in118

R1×1. Therefore, we can write the fully connected and convolutional layers into a unified form to119

simplify the formulas. Below we define a (L+ 1)-layer CNN mapping an input into a real valued120

vector in RK . The number of hidden nodes/channels in each hidden layer ` is denoted to be m(`).121

We denote all the trainable parameters in the network as θ = (w(1), . . . , w(L), u), which will be122

specified later. First, given an input x ∈ RW (0)×H(0)×C , let m(0) = C and define the nodes in the123

input later as f̂ (0)
j (θ;x) = x:,:,j with j ∈ [m(0)]. Then, for the hidden layer ` ∈ [L], define the output124

of its j-th hidden node/channel f̂ (`)
j (θ;x) ∈ RW (`)×H(`)

with j ∈ [m(`)] as125

f̂
(`)
j (θ;x) = h(`)

(
ĝ

(`)
j (θ;x)

)
with ĝ(`)

j (θ;x) =
1

m(`−1)

m(`−1)∑
k=1

f̂
(`−1)
k (θ;x) ∗ w(`)

j,k,

3

where w(`)
j = [w

(`)
j,1, . . . , w

(`)

j,m(`−1)] ∈ Ra(`)×b(`)×m(`−1)

is the j-th kernel, h(`) = P(`) ◦ ψ(`) with126

ψ(`) being the activation function and P(`) being the pooling operator if layer ` is followed by a127

pooling layer otherwise P(`) is an identity mapping. For the top layer, we denote uj to be a vector128

valued in RK , then the output f̂(θ;x) ∈ RK can be defined as f̂(θ;x) = 1
m(L)

∑m(L)

j=1 uj f̂
(L)
j (θ;x).129

The goal of training a CNN is to minimize the following objective function:130

Q̂(w, u) = J(f̂) + R̂(w, u), with R̂(w, u) =

L∑
`=1

λ(`)R̂(`)(w(`)) + λ(u)R̂(u)(u), (1)

where J(f̂) = Ex,yφ(f̂(x), y) with φ(·, ·) being the loss function and R̂(w, u) is the the regularizer131

with λ(`) and λ(u) being its non-negative hyper-parameters. In this paper, we focus on the following132

`1,2 regularier proposed in [4] due to its ability in learning efficient features:133

R̂(`)(w(`)) =
1

m(`−1)

m(`−1)∑
k=1

r2

 1

m(`)

m(`)∑
j=1

r1

(
w

(`)
j,k

) , R̂(u)(u) =
1

m(L)

m(L)∑
j=1

r(u)(uj),

where r1(w) = ‖vec(w)‖1, r2(w) = w2 and r(u)(u) = ‖u‖22.134

4 Neural Network Grafting135

In this section, we introduce a new method called neural network grafting (NNG) to check whether136

two different CNNs learn similar feature representations at each layer. The intuition is that if two137

networks θ1 and θ2 learn similar feature representations at layer `, then the features of θ1 at layer `138

can be used in θ2 without significant error increasing, that is, the first ` layers of θ1 with the trained139

parameters in them can be grafted onto the last L− ` layers of θ2 by only training the parameters at140

the joint. As shown in Fig.1(a), NNG is conducted by first copying parameters from θ1 and θ2 to141

construct a new network θ̃(1,2) = (θ
(1)
1 , · · · , θ(`)

1 , θ̃
(`+1)
(1,2) , θ

(`+2)
2 , · · · , θ(L)

2 , u2) and then training the142

parameters θ̃(`+1)
(1,2) to align the neurons at the joint by minimizing the following feature matching loss:143

min
θ̃
(`+1)

(1,2)

1

N

N∑
i=1

m(`+1)∑
k=1

‖ĝ(`+1)
k (θ̃(1,2);xi)− ĝ

(`+1)
k (θ2;xi)‖22. (2)

Detailed steps are given in Alg.1 in Appendix. We could imagine that if the representation at layer `144

in θ1 is similar to that of θ2, then the loss in (2) would be low after grafting, and the final validation145

error of θ̃(1,2) will be similar to that of θ2 and otherwise it will be significantly higher than θ2.146

Remark 1. In our grafting process, we minimize the feature difference at layer ` + 1 instead of147

minimize the final loss to compare the feature representations more directly.148

Notice that both our NNG and previous metrics (e.g., [23], [19] and [32]) can address the case149

when two feature representations are quite different but can be matched after a linear transformation.150

However, our NNG can address at least another important case that existing metrics cannot deal with.151

To be precise, if two feature representations are quite different but the difference is not important152

for subsequent layers, they would be regarded to be different by previous metrics while they are153

essentially similar. Such difference could be alleviated and even eliminated completely by, for154

example, the small weight and truncation of ReLU in subsequent layers. An example is shown in155

Fig. 1(b), where green and yellow curves represent feature representations of network θ2 and θ̃(1,2)156

respectively. Detailed quantitative evaluation for it is presented in Fig. 2(c).157

5 Landscape Characterization158

In this section, we present our landscape characterization method. We first reformulate an overparam-159

eterized CNN as an approximation to a continuous CNN, which is obtained by letting the number of160

channels/hidden nodes in each hidden layer go to infinity (Section 5.1). Then we reformulate it with161

respect to the feature distributions to obtain a simpler landscape characterization (Section 5.2).162

4

5.1 Continuous CNN163

Following the mean-field limit of overparameterized NN, below we give the definition of continuous164

CNN by letting the number of the channels/hidden nodes in each layer of a discrete CNN go to165

infinity. Firstly, for the input layer we denote Z(0) = [C] to be its channel space corresponding to166

the C channels of the input x. We let ρ(0) be a probability measure on Z(0) and unless otherwise167

specified, in this paper, we fix ρ(0) to be a uniform distribution on Z(0). For each z(0) ∈ Z(0), we let168

f (0)(ρ, z(0);x) = x:,:,z(0) .

For layer ` ∈ [L], let Z(`) be the space of the hidden nodes/channels in layer ` equipped with169

probability measure ρ(`). Denote w(z`, z(`−1)) ∈ Ra(`)×b(`) to be the weight/kernel connecting the170

nodes/channels z(`−1) ∈ Z(`−1) and z(`) ∈ Z(`), the output of hidden nodes/channels can be defined171

as172

f (`)(ρ, z(`);x) = h(`)
(
g(`)(ρ, z(`);x)

)
,

where z(`) ∈ Z(`) and g(`)(ρ, z(`);x) =

∫
f (`−1)(ρ, z(`−1);x) ∗ w(z(`), z(`−1))dρ(`−1)(z(`−1)).

At last, by denoting u(z(L)) ∈ RK to be the weight connecting the node z(L) and the final output,173

then the final (fully connected) output layer is given by174

f(ρ, u;x) =

∫
u(z(L))f (L)(ρ, z(L);x)dρ(L)(z(L)).

The objective function then takes form of175

Q(ρ, u, w) = J(f) +R(ρ, u, w) (3)

where R(ρ, u, w) =

L∑
`=1

λ(`)R(`)(w, ρ,w) + λ(u)R(u)(ρ, u, w)

with R(`)(ρ, w) =

∫
r2

(∫
r1

(
w(z(`), z(`−1))

)
dρ(`)(z(`))

)
dρ(`−1)(z(`−1)),

R(u)(ρ, u) =

∫
r(u)

(
u(z(L)

)
dρ(L)(z(L)).

Discussion: Discrete CNN can be constructed from a continuous CNN by sampling m(`) hidden176

nodes/channels {z(`)
1 , . . . , z

(`)

m(`)} for each layer ` according to the probability measure ρ(`) and letting177

the parameter connecting z(`)
i and z(`−1)

j bew(z
(`)
i , z

(`−1)
j) for all i ∈ [m(`)] and j ∈ [m(`−1)]. From178

[4] we know that when m(`) →∞ for all ` ∈ [L], the final output of discrete CNN converges to that179

of the continuous one. Therefore, discrete CNN is an approximation to a continuous CNN.180

5.2 Reformulate Continuous CNNs181

The uniqueness of the solution path, i.e., the unique feature distribution evolution path, discovered by182

our technique NNG (Sections 4 and 6.1) implies that DNNs could be much simpler if we view them183

with respect to feature distributions. Therefore, we reformulate continuous CNN with respect to the184

distribution of pre-activation of neurons, i.e., feature distribution, to eliminate the redundancy caused185

by weights and obtain a simpler loss landscape characterization, which is inspired from the emerging186

techniques [4, 5] for reformulating fully connected DNNs. First, we define187

V(0) = {v(0) : v(0) = [x1
:,:i, . . . , x

N
:,:,i], i ∈ [C]}, and p(0)(v(0) = [x1

:,:i, . . . , x
N
:,:,i]) = 1/C, i ∈ [C].

For ` ∈ [L], we denote v(`) to be the pre-activation of neuron z(`) at N training samples, i.e.,188

v(`) = [g(`)(ρ, z(`);x1), . . . , g(`)(ρ, z(`);xN)] ∈ RW (`)×H(`)×N and let V(`) be the space of v(`),i.e.,189

V(`) = {v(`) : z(`) ∈ Z(`)}. We denote p(`)(v(`)) to be the probability density function of v(`). For190

any v(`−1) and v(`), we let w(v(`), v(`−1)) ∈ Ra(`)×b(`) be the weight connecting them. Problem (3)191

can then be reformulated as192

min
w,p,u

1

N

N∑
i=1

φ (f(xi), yi) +R(w, p, u) (4)

5

s.t. 1)
∑

v(0)∈V(0)

v
(0)
i ∗ w(v(1), v(0))p(1)(v(1))p(0)(v(0)) = p(1)(v(1))v

(1)
i , i ∈ [N];

2)

∫
h(`−1)(v

(`−1)
i) ∗ w(v(`), v(`−1))p(`)(v`)p(`−1)(v(`−1))dv(`−1) = v

(`)
i p(`)(v`), ` ≥ 2, i ∈ [N];

3)

∫
p(`)(v(`))dv(`) = 1 and p(`)(v(`)) ≥ 0,

where f(xi) and R(w, p, u) are defined as193

f(xi) =

∫
h(L)(v

(L)
i)u(v(L))p(L)(v(L))dv(L), R(w, p, u) =

L∑
`=1

λ(`)R(`)(w, p) + λ(u)R(u)(u, p),

with R(1)(w, p) =
∑

v(0)∈V(0)

r2

(∫
r1

(
w(v(1), v(0))p(0)(v(0))p(1)(v(1))

)
dv(1)

)
/p(0)(v(0)),

R(`)(w, p) =

∫
r2

(∫
r1

(
w(v(`), v(`−1))p(`−1)(v(`−1))p(`)(v(`))

)
dv(`)

)
/p(`−1)(v(`−1))dv(`−1),

` ≥ 2 and R(u)(u, p) =

∫
r(u)

(
u(v(L))p(L)(v(L))

)
/p(L)(v(L))dv(L).

The weights w in problem (4) are determined by p(`) via a series of constraints in 1) and 2), hence194

the network can be regarded as being parameterized by p(`) without w. Therefore, the redundancy195

from w in networks parameterized via w is eliminated. One issue with Problem (4) is that it is still196

non-convex due to its non-convex constraints. Fortunately, we find that by reparameterizing the197

above colored items according to Eqn.(5), the constraints above become either convex or linear, and198

then problem (4) can be rewritten into a simpler convex form. We summarized the main point in the199

following theorem and details are presented in Appendix A.200

Theorem 1. If we change the variables u and w as follows:201 {
(i) w̃(v(`), v(`−1)) = w(v(`), v(`−1))p(`)(v(`))p(`−1)(v(`−1)), ` ∈ [L];

(ii) ũ(v(L)) = u(v(L))p(L)(v(L));
(5)

then problem (4) becomes a convex optimization problem with respect to w̃, p and ũ.202

Discussion: To the best of our knowledge, we give the first global convex formulation in Theorem203

1 for continuous CNNs, i.e., a much simpler loss landscape characterization than existing methods.204

Although we find this convexity in feature distribution space instead of trainable parameter space,205

this would not overshadow its significant value. For one thing, as empirically shown in Section206

6.1, the solution paths of DNNs during training, if we view them in the feature distribution space,207

are unique although they seem chaotic and quite different in the parameter space, which indicates208

that DNNs could be more understandable and simpler if we analyze them from feature distribution209

space. For another, the unique solution path implies that the training algorithms (e.g., SGD) could210

essentially work on the feature distribution space instead of the parameter space, which together with211

the convexity naturally explain why one usually does not observe bad local minima in practice. In212

fact, it can be shown that under suitable conditions, the training algorithms (e.g., SGD) of DNNs213

converge to a solution that is a stationary point of the convex reformulation, as shown in Section B of214

the appendix. All these demonstrate the value of studying DNNs in feature distribution space.215

6 Experiments216

We start from using our proposed technique NNG to show that two overparameterized CNNs with217

same architecture and initialization method, though have different initializations at the beginning218

of training, learn the unique solution path during the whole training process, which could be ex-219

plained by our theory in Section 5.1. Then we give some empirical evidences for the convexity of220

overparameterized CNN by showing the uniqueness of its optimal solution and visualizing its the221

loss landscape in Section 6.2. All our empirical findings are consistent across a range of architectures222

and datasets, we only present the results on CIFAR-10 with VGG-16 below and postpone the results223

on other architectures and datasets to appendix. In appendix, we also provide results to show that224

6

0 50 100 150 200
number of epochs

0

2

4

6

8

10

in
cr

ea
se

d
va

lid
 e

rr
or

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(a)

0 50 100 150 200
number of epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

no
rm

al
iz

ed

2
di

ffe
re

nc
e

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(b)

1 3 5 8 11
′

0.0

0.2

0.4

0.6

0.8

no
rm

al
iz

ed

2
di

st
an

ce

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(c)

Figure 2: (a) The increased validation error of θ̃(1,2) compared with θ2 when grafted at layer `
and (b) the normalized `2 distance between the weights θ(`)

1 and θ(`)
2 . These values are plotted at

different training stages. (c) The mean `2 distance (Eqn. (6)) between feature function f (`′)(θ2;x)

and f (`′)(θ̃(1,2);x) for each `′ > `, where x enumerates the training data. θ̃(1,2) is grafted at layer `.

VGG is overparameterized enough, i.e., a good approximation for the corresponding continuous225

VGG, demonstrating the applicability of our results. We use `1,2 regularizer, and save intermediate226

checkpoints of NN parameters at time-step t ∈ {1, 2, 5, 8}
⋃
{10k : k ∈ N+} in the entire section.227

6.1 Uniqueness of Solution Path during Training228

We first demonstrate that the solution paths are the same over the whole training process if we view229

them in terms of feature distributions, although they seem chaotic and quite different if viewed from230

the trainable parameters. Firstly, two VGG-16 are trained from two different initializations using the231

same initializer. The same initializer is used to guarantee the nets are initialized with almost the same232

feature distribution. For each checkpoint pair of θ1 and θ2 saved at the same time-step, we graft θ1 to233

θ2 at each layer and plot the increased validation error of θ̃(1,2). For comparison, we also calculate234

the distance between the parameters in the checkpoints of θ1 and θ2. The details for calculating the235

distance is in Section D of appendix. The results are shown in Fig. 2.236

The low increased validation errors of θ̃(1,2) at all time-steps in Fig. 2(a) indicate that the feature237

distributions learned by θ1 and θ2 at different layers are equal to each other along the ’training238

trajectory’. At the same time, the normalized `2 distances between θ1 and θ2 in Fig. 2(b) show that239

the RMSE between two weight matrices after alignment and unit-variance normalization is above 0.6240

for all layers and time-steps, which implies that these two weight matrices are not equivalent under241

row/column exchange operation. A natural explanation is that the training algorithms (e.g., SGD)242

essentially work on feature distribution space instead of parameter space, and the evolution of the243

feature distributions during training follows some differential equation. Since the initializer gives244

almost the same initializations to the differential equation, the solution paths would be very similar245

during the whole process of solving this equation, i.e., the training process.246

Compared with existing metrics which directly compare the feature representations at each layer, our247

NNG technique could partly alleviate the effect of redundancy. A direct empirical investigation is248

shown in Fig. 2 (c), where the mean `2 distance between feature functions of nets θ̃(1,2) and θ2 at249

layer `′ is defined as:250

1

m(`′)

m(`′)∑
k=1

1
√
sk

√√√√ n∑
i=1

1

n
‖f̂ (`′)
k (θ̃(1,2);xi)− f̂

(`′)
k (θ2;xi)‖22, (6)

and sj =
∑W (`′)

i=1

∑H(`′)

j=1 v̂ar[
(
f̂

(`′)
k (θ2;X)

)
i,j

] while v̂ar stands for the estimated variance. For251

example, we could see that if we graft the sixth layer of θ1 to seventh layer of θ2 (line denoted as252

` = 6), the `2 distance between feature functions of θ̃(1,2) and that of θ2 in layer 7 is very large. But253

this error significantly decreases as it propagates to the output layer. Such phenomenon indicates254

that a large fraction of error introduced by grafting at layer ` is caused by redundancy, which could255

be largely cancelled out by, for example, the small weight and the truncation of activation function256

in each layer `′ > `. Moreover, we also show that successful graft is non-trivial and provide more257

interesting empirical findings about NNG in Appendix.258

7

0 40 80 120 160 200
number of epochs

2
10

20

30

40

50

in
cr

ea
se

d
va

lid
 e

rr
or =1

=2
=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(a)

0.0 0.5 1.00

1

2

3

4

5

lo
ss

overall
cross entropy
regularizer

0.0 0.5 1.00.0

0.5

1.0

1.5

2.0

2.5

(b)
Figure 3: (a) The increased validation error of θ̃(1,2) compared with θ2 over the training process, where
θ1 and θ2 are trained with different initialization methods. (b) The overall/cross entropy/regularizer
loss of θ̂γ = γθ1 + (1− γ)θ2 (left), θ̄γ (right).

6.2 The Evidence of Convexity259

We further design some experiments to support our claim that the landscape of overparameterized260

CNN is convex with respect to the distribution of feature functions at each layer. To be specific, we261

consider two network θ1 and θ2 with different initialization methods. In this section, we use two types262

of variance scaling initializer [15] with uniform (he_uniform) and normal (he_normal) distribution263

for weights in θ1 and θ2 respectively. Because θ1 and θ2 use different initialization methods, their264

initial feature distribution at each layer is quite different, the training journey of θ1 and θ2 then follow265

two different paths. We are interested in the following two questions: (1) Is the end points of the266

two paths are the same? (2) From the perspective of feature distribution, does linear interpolation267

between two points in these two paths lead to a convex loss curve? It will strongly support our claim268

of convexity of landscape if the answers to these two questions are ’yes’.269

Uniqueness of Optimal Solution To answer the first question, we make use of our NNG technique270

again to check whether two intermediate checkpoints of θ1 and θ2 with same time-step have similar271

feature distributions. To be specific, for saved checkpoints, we graft each layer ` of θ1 onto layer `+ 1272

of θ2 and the results are in Fig. 3(a). We can see that the increased valid error of θ̃(1,2) grafted at each273

layer is very high in the beginning and decreases quickly as training process goes on, implying that274

the feature distributions learned by θ1 and θ2 start from different points and converge to a same point.275

Loss Landscape Visualization We next consider to visualize the loss curve of linear interpolation276

between two points in feature distribution view. Given two NNs θ1 and θ2 with feature distributions277

denotes as p1 and p2, the intuitive idea of constructing a NN θ̄γ , which has feature distribution278

γp1 + (1− γ)p2, is to make sure the pre-activation set of θ̄γ is close to the mixture of that of θ1 and279

θ2 with ratio γ/(1− γ), where the pre-activation set of θ on training set is defined as280

V̂(`)
θ =

{
v

(`)
j = [ĝ`j(θ;x1), . . . , ĝ`j(θ;xN)] : j ∈ [m(`)]

}
.

An optimization-based algorithm is designed to construct θ̄γ , i.e., Alg.2 in Appendix. We let θ1 and281

θ2 to be VGG-16 trained after 2 epochs using he_uniform and he_normal initializers, attaining 19%282

and 57% accuracy respectively, and plot the loss of θ̄γ when γ varies. The result is shown in Fig. 3283

(b). Compared with the non-convex loss curve of linear interpolation in weight space (left), the linear284

interpolation in feature distribution space (right) leads to a convex loss curve.285

7 Conclusions286

In this work, we presented an experimental technique NNG, which can be used to determine whether287

two NNs learn similar features. Extensive experimental results with NNG suggest that overparam-288

eterized CNN learns a fixed trajectory in feature distributions. We then proposed a framework to289

reformulate the loss w.r.t. the feature distribution at each layer, to explain the phenomenon. This290

reformulation explains convex loss landscape and fixed feature distribution trajectory for SGD. Be-291

cause of their better theoretical and empirical properties, we argue that NN loss landscapes should be292

characterized with respect to the feature distribution space rather than the parameter space.293

8

8 Broader Impact294

The authors feel that the broader impact seems not applicable to this work. The reason is that this is a295

research paper, which provides new insights to help people better understand deep neural networks296

and can motivate more efficient training algorithms in the future. But it is hard to say who may benefit297

and who may be put at disadvantage from this research.298

9

References299

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,300

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,301

M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,302

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-303

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on304

heterogeneous systems, 2015. Software available from tensorflow.org.305

[2] Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized neural networks,306

going beyond two layers. arXiv preprint arXiv:1811.04918, 2018.307

[3] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization. In308

International Conference on Machine Learning, 2019.309

[4] anonymous. Convex formulation of overparameterized deep neural networks. arXiv, 2019.310

[5] anonymous. Modeling from features: a mean-field framework for over-parameterized deep neural networks.311

In progress, 2020.312

[6] S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with an infinitely313

wide neural net. arXiv preprint arXiv:1904.11955, 2019.314

[7] S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generalization for315

overparameterized two-layer neural networks. In International Conference on Machine Learning, 2019.316

[8] R. Balestriero, R. Cosentino, B. Aazhang, and R. Baraniuk. The geometry of deep networks: Power317

diagram subdivision. In Advances in Neural Information Processing Systems, pages 15806–15815, 2019.318

[9] L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized models using319

optimal transport. In Advances in neural information processing systems, pages 3036–3046, 2018.320

[10] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in Neural321

Information Processing Systems, pages 2933–2943, 2019.322

[11] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surfaces of multilayer323

networks. In Artificial intelligence and statistics, pages 192–204, 2015.324

[12] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking the325

saddle point problem in high-dimensional non-convex optimization. In Advances in neural information326

processing systems, pages 2933–2941, 2014.327

[13] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural328

networks. In International Conference on Machine Learning, 2019.329

[14] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-parameterized330

neural networks. In International Conference on Learning Representation, 2019.331

[15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on332

imagenet classification. In 2015 IEEE International Conference on Computer Vision (ICCV), 2016.333

[16] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger. Snapshot ensembles: Train 1, get334

m for free. International Conference on Learning Representations, 2017.335

[17] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural336

networks. In Advances in neural information processing systems, pages 8571–8580, 2018.337

[18] K. Kawaguchi. Deep learning without poor local minima. In Advances in neural information processing338

systems, pages 586–594, 2016.339

[19] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations revisited.340

arXiv preprint arXiv:1905.00414, 2019.341

[20] R. Kuditipudi, X. Wang, H. Lee, Y. Zhang, Z. Li, W. Hu, R. Ge, and S. Arora. Explaining landscape342

connectivity of low-cost solutions for multilayer nets. In Advances in Neural Information Processing343

Systems, pages 14574–14583, 2019.344

[21] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets. In345

Advances in Neural Information Processing Systems, pages 6389–6399, 2018.346

[22] Y. Li and Y. Liang. Learning overparameterized neural networks via stochastic gradient descent on347

structured data. In Advances in Neural Information Processing Systems, 2018.348

[23] Y. Li, J. Yosinski, J. Clune, H. Lipson, and J. E. Hopcroft. Convergent learning: Do different neural349

networks learn the same representations? In FE@ NIPS, pages 196–212, 2015.350

[24] S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural networks.351

Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.352

10

[25] P.-M. Nguyen. Mean field limit of the learning dynamics of multilayer neural networks. arXiv preprint353

arXiv:1902.02880, 2019.354

[26] Q. Nguyen. On connected sublevel sets in deep learning. arXiv preprint arXiv:1901.07417, 2019.355

[27] Q. Nguyen, M. C. Mukkamala, and M. Hein. On the loss landscape of a class of deep neural networks356

with no bad local valleys. arXiv preprint arXiv:1809.10749, 2018.357

[28] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How does batch normalization help optimization? In358

Advances in Neural Information Processing Systems, pages 2483–2493, 2018.359

[29] F. Schilling. The effect of batch normalization on deep convolutional neural networks, 2016.360

[30] O. Shamir. Are resnets provably better than linear predictors? In Advances in neural information processing361

systems, pages 507–516, 2018.362

[31] L. Venturi, A. S. Bandeira, and J. Bruna. Spurious valleys in two-layer neural network optimization363

landscapes. arXiv preprint arXiv:1802.06384, 2018.364

[32] L. Wang, L. Hu, J. Gu, Z. Hu, Y. Wu, K. He, and J. Hopcroft. Towards understanding learning representa-365

tions: To what extent do different neural networks learn the same representation. In Advances in Neural366

Information Processing Systems, pages 9584–9593, 2018.367

11

368

Supplemental Material: How to Characterize The Landscape of369

Overparameterized Convolutional Neural Networks370

371

This appendix can be divided into four parts. To be precise,372

1. Section A gives the detailed proof for Theorem 1;373

2. Section B gives high-level proof of the claim that SGD will converge to the stationary point374

of our proposed convex formulation.375

3. Section C shows omitted algorithms and calculation methods in the paper, including (1)376

algorithm of neural network grafting (2) algorithm to construct NN with mixture features of377

two networks.378

4. Section D presents experimental configuration of this paper;379

5. Section E provides more experimental evidences of the uniqueness of solution path, feature380

redundancy and the uniqueness of optimal solution.381

6. Section F provides evidence to show that standard VGG is overparamterized enough. To be382

specific, we show that the feature distribution learned by standard VGG, have no difference383

though the entire training process with respect to the one learned by a larger VGG, which384

has same architecture except has twice number of channels/hidden notes at each layer.385

7. Section G presents some additional interesting results found by our proposed NNG in386

comparing the feature distributions of NN at different cases, including: 1) comparing feature387

distributions learned in different layer `1 and `2; 2) comparison of feature distribution388

learned with two different datasets; 3) one of θ1 and θ2 is not fully trained. These results389

not only show that our proposed NNG metric could differentiate the case when two feature390

distributions for comparison is different, but also provide some very interesting empirical391

phenomena we find by using our NNG technique.392

A Proof for Theorem 1393

We first present the new formulation of Problem (4) after reprameterizing it according to Eqn.(5)394

below:395

min
w̃,p,ũ

1

N

N∑
i=1

φ (f(xi), yi) + R̃(w̃, p, ũ), (7)

s.t. 1)

∫
h(`−1)(v

(`−1)
i) ∗ w̃(v(`), v(`−1))dv(`−1) = v

(`)
i p(`)(v(`)), 2 ≤ ` ≤ L, i ∈ [N];

2)
∑

v(0)∈V(0)

v
(0)
i ∗ w̃(v(1), v(0)) = v

(1)
i p(1)(v(1)), i ∈ [N];

3)

∫
p(`)(v(`))dv(`) = 1 and p(`)(v(`)) ≥ 0,

where the reformualted f(xi) and R̃(w̃, p, ũ) take forms of396

f(xi) =

∫
h(L)(v

(L)
i)ũ(v(L))dv(L), R̃(w̃, p, ũ) =

L∑
`=1

λ(`)R̃(`)(w̃, p) + λuR̃(u)(ũ, p),

with R̃(1)(w̃, p) =
∑

v(0)∈V(0)

r2

(∫
r1

(
w̃(v(1), v(0))

)
dv(1)

)
/p(0)(v(0)),

12

R̃(`)(w̃, p) =

∫
r2

(∫
r1

(
w̃(v(`), v(`−1))

)
dv(`)

)
/p(`−1)(v(`−1))dv(`−1), ` ≥ 2,

R̃(u)(ũ, p) =

∫
r(u)

(
ũ(v(L))

)
/p(L)(v(L))dv(L).

To prove Theorem 1, we need to prove that problem (7) is convex. First, we need the following397

lemma.398

Lemma 1. x2

y is convex on (x, y) ∈ [0,+∞)× (0,+∞).399

The lemma above can be verified by the definition of convex function directly. Now we turn to give400

the detailed proof of Theorem 1.401

Proof. Firstly, it is easy to verify that all the constraints 1) to 3) are convex w.r.t. w̃, ũ and p.402

For the objective function, we have that the loss φ is convex w.r.t. ũ. Therefore, we only need to403

prove the regularizer R̃(w̃, p, ũ) =
∑L
`=1 λ

(`)R̃(`)(w̃, p) + λuR̃(u)(ũ, p) is convex w.r.t. w̃, ũ and p.404

Below, we will prove each item in R̃ is convex. We fist denote405

Ψ̃(`)(w̃, p; v(`−1)) =

∫
r1

(
w̃(v(`), v(`−1))

)
dv(`),

then:406

(1) For the item R̃(1)(w̃, p), recall that407

R̃(1)(w̃, p) =
∑

v(0)∈V(0)

r2

(
Ψ̃(1)(w̃, p; v(0))

)
/p(0)(v(0))

Since we pick r1(w) = ‖vec(w)‖1 in this paper, we can have that Ψ̃(`) is non-negative and convex.408

Moreover, we notice that p(0) is constant and r2(w) = w2 in this paper, it is easy to know that409

R̃(1)(w̃, p) is convex.410

(2) When ` ≥ 2, R̃(`)(w̃, p) takes the form of411

R̃(`)(w̃, p) =

∫ r2

(
Ψ̃(`)(w̃, p; v(`−1))

)
p(`−1)(v(`−1))

dv(`−1).

We denote412

I(w̃, p) =
r2

(
Ψ̃(`)(w̃, p; v(`−1))

)
p(`−1)(v(`−1))

,

and let pγ = γp1 + (1 − γ)p2 and w̃γ = γw̃1 + (1 − γ)w̃2 for any p1, p2, w̃1, w̃2 and γ ∈ [0, 1].413

Then, we have414

I(w̃γ , pγ) =
r2

(
Ψ̃(`)(w̃γ , pγ ; v(`−1))

)
p

(`−1)
γ (v(`−1))

≤
r2

(
γΨ̃(`)(w̃1, p1; v(`−1)) + (1− γ)Ψ̃(`)(w̃2, p2; v(`−1))

)
p

(`−1)
γ (v(`−1))

≤γ
r2

(
Ψ̃(`)(w̃1, p1; v(`−1)))

)
p

(`−1)
1 (v(`−1))

+ (1− γ)
r2

(
Ψ̃(`)(w̃2, p2; v(`−1)))

)
p

(`−1)
2 (v(`−1))

=γI(w̃1, p1) + (1− γ)I(w̃2, p2). (8)

The first inequality in (8) holds since Ψ̃ is convex and the the second one comes from Lemma 1. Thus415

I(w̃, p) is a convex function of (w̃, p) and therefore R̃(`)(w̃, p) is convex.416

13

(3) We denote ũγ = γũ1 + (1− γ)ũ2, pγ = γp1 + (1− γ)p2 for any ũ1, ũ2, p1, p2 and γ ∈ [0, 1]417

and recall that418

R̃(u)(ũ, p) =

∫
r(u)

(
ũ(v(L))

)
/p(L)(v(L))dv(L).

Hence, we have419

R̃(u)(ũγ , pγ) =

∫ (
‖ũγ(v(L))‖

)2
p

(L)
γ (v(L))

dv(L)

≤
∫ (

γ‖ũ1(v(L))‖+ (1− γ)‖ũ2(v(L))‖
)2

p
(L)
γ (v(L))

dv(L)

≤
∫
γ
‖ũ1(v(L))‖2

p
(L)
1 (v(L))

+ (1− γ)
‖ũ2(v(L))‖2

p
(L)
2 (v(L))

dv(L)

=γR̃(u)(ũ1, p1) + (1− γ)R̃(u)(ũ2, p2).

The last inequality comes from Lemma 1 and therefore R̃(u)(ũ, p) is a convex function of (ũ, p)420

The proof is complete.421

B Convergence Analysis422

We would like to study the relationship of the convex reformulation and gradient descent in the423

original parameter space for continuous DNN. We consider the constrained formulation of continuous424

DNN in (4) and its convex relaxation in (5), with the reparameterization of (w, u) by (w̃, ũ).425

In the continuous DNN formulation (4), the network is parameterized with respect to (w, p, u).426

However, the typical optimization using SGD or GD modify the network parameters (w, u) but does427

not modify p directly. It can be easily seen that changing (w, u) modifies p accordingly.428

When the continuous NN converges, then it reaches a point (w∗, p∗, u∗) which is stationary with429

respect to the neural network parameters. That is, if we modify (w∗, u∗), the objective value does430

not decrease (however, we are not allowed to modify the distribution p∗ directly because it is not an431

explicit part of the DNN parameters, but rather it is an hidden parameter induced by the constraints).432

Nevertheless the following result shows that under suitable conditions, this point is also stationary433

with respect to the distributional parameter p∗. That is, if we vary (w∗, p∗, u∗) arbitarily, as long as434

the new parameters satisfy the constraints, then the objective value does not decrease.435

Since the same claim holds for the reparameterization (w̃∗, p∗, ũ∗) in (5). This result shows that436

when the continuous DNN converges, it converges to a solution of the convex reformulation, and this437

establishes a connection between the standard DNN optimization method using SGD, and our convex438

reformulation.439

Theorem 2. Consider an arbitrary point (w∗, p∗, u∗) of the constrained formulation of continuous440

NN in (4), such that varying the DNN network parameters (w∗, u∗) cannot decrease the objective441

function. Assume that p(`)
∗ (v) 6= 0 for all v and `, then (w̃∗, p∗, ũ∗) is a stationary point of the convex442

reformulation reparameterized by (5).443

Proof. (High-level Sketch) We present a highlevel proof that is easier to understand. A more rigorous444

treatment requires heavy notations in differential equations and functional analysis, which we shall445

avoid in this version.446

The key argument is to show that all varations of (w̃∗, p∗, ũ∗) that satisfy the constraints can be447

achieved by varying (w∗, u∗) of the continuous DNN parameters, which is commonly used in gradient448

descent optimization algorithms.449

Let the objective function be Q̃(w̃, p, ũ) = Q(w, p, u).450

To simplify notations, we denote the DNN weights on the `-th layer w(v(`), v(`−1)), and the reparam-451

eterized weight w̃(v(`), v(`−1)) by w(`) and w̃(`).452

14

Note that we have453

〈∇ũQ̃(w̃∗, p∗, ũ∗),∆ũ〉 = 0

for all ∆ũ, since Q(w∗, p∗, u∗) is a stationary point with respect to network parameter u and p∗ > 0.454

Here the inner product is with respect to integration over v(L).455

Since the constraints at layer ` involve the weight w̃(`) and density p(`), therefore to prove the desired456

result, we only need to show that for each `:457

〈∇w̃`Q̃(w̃∗, p∗, ũ∗),∆w̃
(`)
∗ 〉+ 〈∇p(`)Q̃(w̃∗, p∗, ũ∗),∆p

(`)
∗ 〉 = 0, (9)

under the infinitesimal transformation (with other layers fixed):458

w̃
(`)
∗ → w̃

(`)
∗ + ε∆w̃

(`)
∗ , p∗ → p

(`)
∗ + ε∆p

(`)
∗ ,

when ε→ 0, with the constraint459 ∫
h(`−1)(v

(`−1)
i)∆w̃

(`)
∗ (v(`), v(`−1)) dv(`) = v(`)∆p

(`)
∗ (v(`)).

Here inner product with respect to ∆w̃
(`)
∗ is integration with respect to (v(`), v(`−1)), and inner460

product with respect to ∆p
(`)
∗ is is integration with respect to v(`).461

Since the constraint is linear, we can decompose the subspace into two subspaces. Case 1 is462

∆p
(`)
∗ (v(`)) = 0, and Case 2 is ∆p

(`)
∗ (v(`)) 6= 0 but

∫
∆p

(`)
∗ (v(`))dv(`) = 0 and463

∆w̃
(`)
∗ (v(`), v(`−1)) = w̃∗(v

(`), v(`−1))∆p
(`)
∗ (v(`))/p

(`)
∗ (v(`)). (10)

It is easy to check that the constraints are satisfied in Case 2.464

Now to show (9), we only need to show it under these two subspaces, as detailed below.465

Case 1: In this case, we can let466

∆w
(`)
∗ (v(`), v(`−1)) = ∆w̃

(`)
∗ (v(`), v(`−1))

1

p`−1(v(`−1))p(`)(v(`))
,

and consider a change of network parameter467

w
(`)
∗ → w

(`)
∗ + ∆w

(`)
∗ .

This change of parameter does not change u∗ and p∗ in the resulting neural network. Since468

Q(w∗, p∗, u∗) is stationary in w∗, it follows that469

〈∇
w

(`)
∗
Q(w∗, p∗, u∗),∆w

(`)
∗ 〉 = 0,

which implies (9).470

Case 2: In this case, we consider a change of DNN parameter w(`), which leads to471

w
(`)
∗ (v(`), v(`−1))→ w

(`)
+ (v

(`)
+ , v(`−1)) = w

(`)
∗ (v

(`)
+ , v(`−1)) + εg`(v

(`))ω(v(`−1)),

where variable v+ is induced by472

v
(`)
+ = v(`) + ε · g`(v(`)),

where we simply pick an arbitrary vector function ω(v) so that473 ∫
h(`−1)(v

(`−1)
i)ωi(v

(`−1))p(`−1)(v(`−1))dv(`−1) = 1.

With the above transformation, we have the constraint:474 ∫
h(`−1)(v

(`−1)
i)∗w+(v

(`)
+ , v(`−1))p

(`)
+ (v

(`)
+)p(`−1)(v(`−1))dv(`−1) = p

(`)
+ (v

(`)
+)[v

(`)
+]i, ` ≥ 2, i ∈ [N].

15

The corresponding change of distribution is from p(`)(v), to p(`)
+ (v+), which is equivalent to the475

distribution of p(`)(v) under the change of variable v → v+, corresponding to the DNN resulted from476

a change of network parameter w(`)
∗ → w

(`)
+ .477

Using the Fokker-Planck equation, we have478

p
(`)
+ (v) = p

(`)
∗ (v)− ε∇(p

(`)
∗ (v)g`(v)) + o(ε),

and let479

∆p
(`)
∗ (v) = p

(`)
+ (v)− p(`)

∗ (v) = −ε∇(p
(`)
∗ (v)g`(v)) + o(ε).

It follows that we can keep w̃(`+1) unchanged by setting480

w
(`+1)
∗ (v(`+1), v(`))→ w

(`+1)
∗ (v(`+1), v(`))

p(`)(v(`))

p
(`)
+ (v(`))

.

Note also that481 ∫
h(`−1)(v

(`−1)
i)∗w∗(v(`)

+ , v(`−1))p
(`)
+ (v

(`)
+)p(`−1)(v(`−1))dv(`−1) = p

(`)
+ (v

(`)
+)[v

(`)
+]i, ` ≥ 2, i ∈ [N].

Therefore482 ∫
h(`−1)(v

(`−1)
i) ∗∆w̃′∗(v

(`)
+ , v(`−1)) = 0,

where483

∆w̃′∗(v
(`)
+ , v(`−1)) = [w+(v

(`)
+ , v(`−1))− w∗(v(`)

+ , v(`−1))]p
(`)
+ (v

(`)
+)p(`−1)(v(`−1)).

Now case 1 implies that484

〈∇w̃Q̃(w̃∗, p∗, ũ∗),∆w̃
′
∗〉 = 0. (11)

Note that the stationarity of the DNN network with respect to a change of the network parameter w(`)
∗485

implies that as ε→ 0:486

〈∇wQ(w∗, p∗, u∗),∆w∗〉+ 〈∇p(`)Q(w∗, p∗, u∗),∆p
(`)
∗ 〉 = o(ε),

and ∆w∗ = w+ − w∗. This equation in the convex reformulation is equivalent to487

〈∇w̃(`)Q̃(w̃∗, p∗, ũ∗), [w̃
(`)
+ − w̃

(`)
∗]〉+ 〈∇p(`)Q(w̃∗, p∗, ũ∗),∆p

(`)
∗ 〉 = 0.

By substracting (11), we obtain488

〈∇w̃(`)Q̃(w̃∗, p∗, ũ∗),∆w̃
(`)
∗ 〉+ 〈∇p(`)Q(w̃∗, p∗, ũ∗),∆p

(`)
∗ 〉 = 0,

where ∆w̃∗ is given by (10). This implies (9). It follows by letting ε→ 0 that for Case 2, (9) holds489

for all490

∆p
(`)
∗ (v) = −∇(p

(`)
∗ (v)g`(v)).

Since g`(v) is arbitrary, it is easy to verify that this implies that (9) holds for Case 2 with all possible491

∆p
(`)
∗ (v) such that492 ∫

∆p
(`)
∗ (v)dv = 0.

This proves the desired result.493

C Missing Algorithms in Main Text494

C.1 Neural Network Graft495

Here we present the detailed steps of our technique neural network grafting (NNG) in Algorithm 1.496

It takes two neural network θ1 and θ2 as input and output a grafted neural network θ(1,2). In order497

to keep the notations simple to demonstrate our idea, we assume θ1 and θ2 have the same number498

of layers and the graft algorithm is to compare the feature distributions of layer ` in θ1 and θ2, i.e.499

graft layer ` in θ1 onto layer `+ 1 in θ2. It should be emphasized that Algorithm 1 can be applied to500

the case where θ1 and θ2 have different numbers of hidden nodes, i.e., m(`)
1 6= m

(`)
2 in each layer,501

which is used in Section F, and the case where θ1 and θ2 have different numbers of hidden layers.502

Moreover, NNG can also even be used to compare different layers, for example, compare layer `1503

in θ1 and layer `2 in θ2 by grafting layer `1 in θ1 onto layer `2 + 1 in θ2. We don’t explicitly write504

down the algorithm of those cases and the details can be found in Section D (comparing layer with505

different hidden nodes) and Section G.1 (comparing different layers).506

16

Algorithm 1 Neural Network Graft at layer `

Input: Dataset {(xi, yi)}Ni=1 and two networks θ1 and θ2 with θi = (θ
(1)
i , . . . , θ

(L)
i ;ui), i = 1, 2.

Allocate a grafted network θ̃(1,2), whose front ` layers’ hidden size is same with that of front `

layers in θ1 (i.e. m(`′)
(1,2) = m

(`′)
1 for `′ ∈ [`]), and back L− ` hidden layers’ size is same with

that of back L− ` layers in θ2 (i.e. m(`′)
(1,2) = m

(`′)
2 for `+ 1 ≤ `′ ≤ L).

Copy weights from θ1 and θ2 to θ̃(1,2), i.e., θ̃(1,2) = (θ
(1)
1 , · · · , θ(`)

1 , θ̃
(`+1)
(1,2) , θ

(`+2)
2 , · · · , θ(L)

2 , u2).

Train θ̃(`+1)
(1,2) by solving the following problem

min
θ̃
(`+1)

(1,2)

N∑
i=1

m(`+1)∑
k=1

‖ĝ(`+1)
k (θ̃(1,2);xi)− ĝ

(`+1)
k (θ2;xi)‖22. (12)

Return: The grafted network θ̃(1,2) for evaluation

C.2 Feature Distribution Fusion507

Here we present Algorithm 2, the detailed optimization-based algorithm to construct a new neural508

network θ̄γ from two nets θ1 and θ2. The feature distribution of θ̄γ can be approximately equal to509

γp1 + (1− γ)p2, where p1 and p2 are the feature distributions of θ1 and θ2, respectively.510

Algorithm 2 Feature Distribution Fusion

Input: Training set {(xi, yi)}Ni=1 and the sets V̂(`)
i of two CNNs with ` ∈ [L] and i = 1, 2.

for ` = 1, . . . , L do
Construct a set V̂(`)

γ by sampling γm(`) and (1−γ)m(`) points from V̂(`)
1 and V̂(`)

2 , respectively.

Train w̄(`)
γ in the `-th layer of VGG θ̄γ by minimizing:

L(w̄(`)
γ) =

1

m(`)N

N∑
i=1

∑
v
(`)
j ∈V̂

(`)
γ

‖ĝ(`)
j (θ̄γ ;xi)− v(`)

j,i ‖
2
2 + λ(`)R̂(`)(w̄(`)

γ). (13)

end for
Train the output layer by solving:

min
ū

1

N

N∑
i=1

φ(f̂(θ̄γ ;xi), yi) + λ(u)R̂u(ū).

Return: The trained network θ̄γ .

D Experimental Configuration511

In this section, we present the experimental settings and implementation details. We use same512

regularization parameter λ for all layers, i.e., λ(1) = · · · = λ(L) = λ(u) = λ.513

Training θ1 and θ2 We denote θ1 and θ2 to be two standard VGG-16 without batch normalization,514

since batch normalization can change the structure of the networks. The hidden sizes of the last515

two fully-connected layers are both 4096. All models are implemented using Tensorflow [1] and516

we follow the same data augmentation as [16]. Models are trained using stochastic gradient descent517

with momentum 0.9. We fix all of the hyperparameters summarized in Table 1 and only tune the518

initial learning rate and the regularization parameter. Since training neural network with large519

regularization parameter is difficult to converge using the standard initial learning rate 0.01, we vary520

17

it in {1e − 2, 5e − 3, 2e − 3, 1e − 3} and select the largest one that could produce robust training521

results (actually it could attain lowest validation error for that).

Table 1: Hyper-parameters used for training VGG-16

Hyper-parameter Value
Batch size 64
Epochs to anneal lr 60
Anneal rate 0.2
Warm-up epochs 1

522

Training θ̃(1,2) grafted at adjacent layers To compare the feature functions learned at layer ` of θ1523

and θ2, we need to train a grafted network θ̃(1,2) connecting two adjacent layers, i.e., layer ` of θ1524

and layer `+ 1 of θ2. The detailed training process is as follows: we first train two networks θ1 and525

θ2 using previous configurations and then we train the weight matrix and bias between grafted layer `526

and `+ 1 of the network θ̃(1,2) using our proposed Algorithm 1 and copy all other parameters from527

θ1 and θ2. We use Adam Optimizer with initial learning rate 1e− 3 to optimize the objective Eqn (2).528

The data augmentation is same with as that in training θ1 and θ2 and number of epochs for training is529

10 for CIFAR-10 and 20 for CIFAR-100.530

Training θ̃(1,2) grafted at non-adjacent layers To determine whether feature function distributions531

of θ1 and θ2 (θ1 and θ2 have the same structure) at two different layers are similar or not, we need532

to train a network grafted at non-adjacent layer. The training process is similar to that of grafting533

at adjacent layers. We provide detailed implementations here. Suppose we wish to calculate the534

similarity of feature distributions at layer `1 and `2 in two nets θ1 and θ2 respectively (that is to535

determine whether the last L − `2 layers in θ2 could be grafted on the first `1 layers in θ1), we536

minimize the feature matching loss w.r.t. parameters w(1,2):537

1

N

N∑
i=1

‖Po ◦ f̂ (`1)(θ1;xi) ∗ w(1,2) − f̂ (`2+1)(θ2;xi)‖22,

where N is the number of training samples, o is the number of max-pooling operator in layers538

`′ ∈ [`1 + 1, `2], f̂ (`)(θ;x) and ĝ(`)(θ;x) are pre-activation and post-activation feature map in539

RW (`)×H(`)×m(`)

.540

Calculating the distance between the parameters of θ1 and θ2 We first assume that the alignment541

permutation q(`), whose j-th component q(`)
j represent that neuron j in layer ` of network θ1 is542

aligned to neuron q(`)
j ∈ [m(`)] in layer ` of network θ2, is defined at each layer. We then could use543

the following statistic to measure the difference of θ1 and θ2 in the parameter matrix space at layer `:544

m(`)∑
i=1

m(`−1)∑
j=1

‖(w(`)
2)

q
(`)
i ,q

(`−1)
j

− (w
(`)
1)i,j‖22/

(
(‖w(`)

1 ‖22 + ‖w(`)
2 ‖22)/2

)
, (14)

where ‖x‖2 is the `2 norm of tensor x’s flattened vector, w(`)
1 , w

(`)
2 are weights at layer `, (w

(`)
k)i,j is545

a scalar for fully-connected layers and is a flattened 9-dim vector for VGG-16. Here we consider546

a heuristics algorithm to determine q(`) from the input layer to the last hidden layer. For the input547

layer ` = 0, the permutation is an identity map, i.e., q(0)
j = j, using the nature of image. Now if the548

alignment permutation at layer `− 1, i.e., q(`−1), is determined, the alignment permutation at layer `549

could be calculated by minimize the objective550

min
q(`)

m(`)∑
i=1

m(`−1)∑
j=1

‖(w(`)
2)

q
(`)
i ,q

(`−1)
j

− (w
(`)
1)i,j‖22, (15)

it should be noted that such optimization problem could be written as be a standard problem of551

minimum weighted bipartite matching, i.e., minimizing the following objective552

min
q(`)

m(`)∑
i=1

d
j,q

(`)
j

(16)

18

0 50 100 150 200
number of epochs

0

2

4

6

8

10

in
cr

ea
se

d
va

lid
 e

rr
or

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(a)

0 50 100 150 200
number of epochs

0

2

4

6

8

10

in
cr

ea
se

d
va

lid
 e

rr
or

=1
=2
=3

=4
=5
=6

=7
=8
=9

=10
=11
=12

=13
=14
=15

(b)

0 50 100 150 200
number of epochs

0

2

4

6

8

10

in
cr

ea
se

d
va

lid
 e

rr
or

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(c)

Figure 4: The increased validation error of θ̃(1,2) compared with θ2 over the training process. The
configuration of θ1 and θ2 for each subplot could be found in Table 2

1 3 5 8 11
′

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed

2
di

st
an

ce

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(a)

1 3 5 8 11 14
′

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed

2
di

st
an

ce

=1
=2
=3

=4
=5
=6

=7
=8
=9

=10
=11
=12

=13
=14
=15

(b)

1 3 5 8 11
′

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed

2
di

st
an

ce

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(c)

Figure 5: The mean `2 distance (Eqn. (6)) between feature function f (`′)(θ2;x) and f (`′)(θ̃(1,2);x)

for each `′ > `, where x enumerates the training data. θ̃(1,2) is grafted at layer `. The configuration
of θ1 and θ2 for each subplot could be found in Table 2

0 50 100 150 200
number of epochs

4
10

20

30

40

in
cr

ea
se

d
va

lid
 e

rr
or

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(a)

0 50 100 150 200
number of epochs

3

20

40

60

in
cr

ea
se

d
va

lid
 e

rr
or

=1
=2
=3

=4
=5
=6

=7
=8
=9

=10
=11
=12

=13
=14
=15

(b)

Figure 6: The increased validation error of θ̃(1,2) compared with θ2 over the training process. θ1 and
θ2 are (a) VGG-16 trained on CIFAR-100 and (b) VGG-19 trained on CIFAR-10.

, where di,j =
∑m(`−1)

k=1 ‖(w(`)
2)

i,q
(`−1)
k

− (w
(`)
1)j,k‖22. This optimization problem could be solved in553

O((m(`))
3
) using Hungarian Algorithm.554

E Additional Experiments on Other Datasets, Architectures, and555

Regularizer556

In this section, we show that our empirical findings found by our NNG technique is consistent across557

different datasets, architectures and regularizers, and provide more explanations. We consider three558

type of configurations, which is listed in the following Table 2.559

Table 2: Configurations for Additional Experiments

Index Dataset Architecture Regularizer
a CIFAR-100 VGG-16 `1,2
b CIFAR-10 VGG-19 `1,2
c CIFAR-100 VGG-16 `2

19

0 25 50 75 100 125 150 175 200
number of epochs

0

2
3
4

6

8

10

in
cr

ea
se

d
va

lid
 e

rr
or

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(a)

0 25 50 75 100 125 150 175 200
number of epochs

2

0
1
2

4

6

in
cr

ea
se

d
va

lid
 e

rr
or

=1
=2

=3
=4

=5
=6

=7
=8

=9
=10

=11
=12

(b)

Figure 7: The increased validation error of θ̃(1,2) compared with θ2 over the training process, where
(a) θ1 is standard VGG-16 and θ2 has twice number of hidden nodes/channels compared with θ1 (b)
θ2 is standard VGG-16 and θ1 has twice number of hidden nodes/channels compared with θ2. Both
of the networks are trained using `1,2 regularizer on CIFAR-10 dataset.

In the following, we demonstrate that our findings on 1) uniqueness of solution path; 2) the evidence of560

feature redundancy; 3) evidence of convexity found by NNG are consistent across these configurations.561

The training settings for θ1, θ2, the intermediate saved checkpoints, and training settings for θ̃(1,2)562

are the same with respect to that in main text.563

Uniqueness of Solution Path. We first show that the feature distributions learned by θ1 and θ2564

trained from two different initializations are similar though the entire training process. Fig.4 plots the565

increased validation error of θ̃1,2 compared with θ2 as training goes on. It is observed that the error is566

bouned in the low-error region, indicating that θ1 and θ2 learn similar feature distribution during the567

entire training process in all of these configurations.568

Evidence of Feature Redundancy. In the main text, we claim that a large amount of error, the `2569

difference between features of θ̃1,2 and that of θ2 in layer `+ 1 introduced by grafting at layer ` is570

caused by redundancy, which have little effect on the feature function in subsequent layers. We show571

such phenomenon could also be found in the configurations above. As illustrated in Fig.5, the mean572

`2 distance between f̂ (`′)(θ̃(1,2);x) and f̂ (`′)(θ2;x) decreases as layer `′ increase.573

Convergence to Same Point Similar to the settings in the main text, we use our NNG technique to574

check whether the feature distributions learned in two nets θ1 and θ2 intilizied with two different575

methods (i.e., heuniform and henormal) converge to the same distribution as the training process576

goes on. The configurations of θ1 and θ2 are chosen from (a) and (b) in Table 2, i.e., θ1 and θ2577

are VGG-16 trained on CIFAR-100, or θ1 and θ2 are VGG-19 trained on CIFAR0-10. For saved578

checkpoints, we graft each layer ` of θ1 onto layer `+ 1 of θ2 and the results are presented in Fig.6.579

We can see that the increased valid error of θ̃(1,2) grafted at each layer is very high in the beginning580

(since θ1 and θ2 are initialized with two quite different feature distributions) and decreases quickly as581

training process goes on, and finally almost all the curves finally bounded in low-error region. This582

implies that the feature distributions learned by θ1 and θ2 start from different points and converge to583

a same point.584

F VGG is Over-parameterized Enough in Feature Distribution View585

In this section, we conduct experiments to show that VGG-16 are overparameterized enough. To586

be precise, we verify this point by showing that the feature representations learned by VGG-16 are587

stable, in a sense that, the learned feature representations would be quite similar if we increase the588

numbers of channels/hidden nodes in each layer of VGG-16 by 2 times.589

We first train two networks θ1 and θ2 on CIFAR-10, where one of θ1 and θ2 is a standard VGG-16590

and the other is VGG-16 with twice number of hidden nodes/channels compared with the standard591

one. We compare the feature distributions learned in them during the training process by grafting the592

checkpoints of θ1 and θ2 saved at the same time-step together, just as we did in the experiments for593

showing the uniqueness of same solution path in the main text. The results are shown in Fig.7. We594

20

could see that the increased validation of θ̃(1,2) compared with θ2 is accumulated in low-error region595

for all layers and time-steps, which verifies our claim empirically.596

G Additional Findings597

G.1 Feature Distributions Comparison between Different Layers598

We next use our proposed NNG metric to compare the similarity of feature function distributions599

between different layers, i.e., layer `1 of θ1 and layer `2 of θ2. Here θ1 and θ2 are neural network600

trained from two different initializations with same `1,2 regularizer on same dataset, θ̃(1,2) is the601

network grafted at two non-adjacent layers. To specific, we use the feature representations at layer `1602

in θ1 to be the input for the feature representations at layer `2 + 1 in θ2 and train the weights and603

bias parameters using a `2 regression loss, see Section D for details. The increased validation error604

of θ̃(1,2) compared with θ2 is reported in Fig.8. From Fig. 8a), we can see that for the fully trained605

VGG-16 on CIFAR10, the feature representations in the layers near the input are relatively different606

from each other, while those learned in the layers near the output are similar with each other. We607

can also observe that the feature representations learned in the six layers near the input are quite608

different from those learned in the subsequent layers, since when two of them are grafted together,609

the validation error increases significantly by at least 20%. To the best of our knowledge, we are the610

first to find this property of DNNs in feature learning.611

Another observation is the measured similarity between different layers using our NNG metric is612

different for small and large regularization parameters. Since the results and core conclusions are613

similar for CIFAR-10 and CIFAR-100, we just provide analysis for CIFAR-10 below. To be precise,614

Fig. 8b) shows that for large regularization parameter λ = 10, the back seven layers near output are615

almost the same, while when it comes to small regularization parameter λ = 1 only five layers near616

the output are similar.617

2 4 6 8 10
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

1=1
1=2
1=3
1=4
1=5
1=6
1=7
1=8
1=9
1=10
1=11
1=12

(a) CIFAR-10, λ = 1

2 4 6 8 10
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

1=1
1=2
1=3
1=4
1=5
1=6
1=7
1=8
1=9
1=10
1=11
1=12

(b) CIFAR-10, λ = 10

2 4 6 8 10
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

1=1
1=2
1=3
1=4
1=5
1=6
1=7
1=8
1=9
1=10
1=11
1=12

(c) CIFAR-100, λ = 1

2 4 6 8 10
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

1=1
1=2
1=3
1=4
1=5
1=6
1=7
1=8
1=9
1=10
1=11
1=12

(d) CIFAR-100, λ = 4

Figure 8: The increased validation error of θ̃(1,2) compared with θ2, where θ1 and θ2 are trained
VGG-16 using same `1,2 regularizer parameter but different initialization. For each curve denote
as `1, we plots the increased validation error when we directly graft the first `1 layers in θ1 on the
`2 + 1-th layer in θ2, which demonstrate whether the feature functions at layer `1 in θ1 is similar to
that at layer `2 in θ2. The shadowed regions represent the 95% confidence interval.

21

2 4 6 8 10 12
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

(a) λ = 1

2 4 6 8 10 12
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

(b) λ = 2

2 4 6 8 10 12
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

(c) λ = 4

2 4 6 8 10 12
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

(d) λ = 8

2 4 6 8 10 12
2

0
5

10

20

30

40

50

60

70

in
cr

ea
se

d
va

lid
 e

rr
or

 (%
)

(e) λ = 10

Figure 9: The increased validation error of θ̃(1,2) compared with θ2, where θ1 and θ2 are trained
VGG-16 using same `1,2 regularizer parameter but different initialization. For each curve denote as
`1 (we omit the legend of `1 here and it is same to that in Fig 8), we plots the increased validation
error when we directly graft the first `1 layers in θ1 on the `2 + 1-th layer in θ2, which demonstrate
whether the feature functions at layer `1 in θ1 is similar to that at layer `2 in θ2.

The above observation indicates that: 1) our proposed NNG metric can differentiate the similarity618

and difference effectively; 2) larger regularization parameter will promote more layers near the final619

output of a neural network to learn similar feature representations.620

To better demonstrate 2), we further analyze the results about how these curves change when λ varies621

from 1 to 10, the results are shown in Fig 9. We could draw two observations of curves’ changes622

if we choose 5% as the threshold to differentiate similar or not. One is that the front several layers623

are similar with their adjacent layers when λ is small, when λ becomes larger, these adjacent layers624

become different. The other is more layers near the output become similar when λ becomes larger.625

G.2 Feature Distributions Learned on Different Datasets626

2 4 6 8 10
grafted layer

0
5

10

20

40

60

80

in
cr

ea
se

d
va

lid
at

io
n

er
ro

r (
%

)

c10-c100
c100-c10

Figure 10: The increased validation error of θ̃(1,2) compared with θ2, where θ1 and θ2 are trained
VGG-16 `1,2 regularizer with parameter λ = 1 but different initialization and different dataset. θ1

and θ2 are trained with CIFAR-10 and CIFAR-100 respectively for curve ’c10-c100’ and are trained
with CIFAR-100 and CIFAR-10 respectively for the curve ’c100-c10’

In the section, we investigate the similarity of feature representations learned on different datasets. To627

be specific, we train two networks θ1 and θ2 on CIFAR-10 and CIFAR-100, respectively and compare628

the feature representations learned by them using our NNG technique. The increased validation error629

of θ̃(1,2) compared with θ2 is shown in Fig.10, from which we can draw the following conclusions:630

1. Our proposed NNG metric can clearly identify whether two feature learned from different631

dataset are similar or not. We can see that the feature representations learned from different632

datasets are quite similar in the layers near the input layer while have a large gap in the633

layers near the final output.634

22

2. We could see that the performance of grafted network θ̃(1,2) comprised of the near-input635

layers of the network trained CIFAR-10 and the near-output layers of the network on CIFAR-636

100 is significant worse than the one comprised the near-input layers of the network on637

CIFAR-100 and the near-output layers on CIFAR-10, this could be contributed to two factors:638

1) CIFAR-100 task is more difficult than CIFAR-10 task; 2) the feature representation learned639

on CIFAR-100 are more diverse.640

2 4 6 8 10
grafted layer

11.514.1
20.5
25.4

43.1

65.5

va
lid

at
io

n
er

ro
r

e=1
e=2
e=5
e=8
e=20
e=60

(a) CIAFR-10, θ1 not fully trained

2 4 6 8 10
grafted layer

11.514.1
20.5
25.4

43.1

65.5

va
lid

at
io

n
er

ro
r

e=1
e=2
e=5
e=8
e=20
e=60

(b) CIAFR-10, θ2 not fully trained

2 4 6 8 10
grafted layer

31.533.6
39.3
43.9

56.1

78.8

94.7

va
lid

at
io

n
er

ro
r

e=5
e=10
e=20
e=40
e=60
e=120
e=180

(c) CIAFR-100, θ1 not fully trained

2 4 6 8 10
grafted layer

31.533.6
39.3
43.9

56.1

78.8

94.7

va
lid

at
io

n
er

ro
r

e=5
e=10
e=20
e=40
e=60
e=120
e=180

(d) CIAFR-100, θ2 not fully trained

Figure 11: Increased validation performance of θ̃(1,2) compared with θ2. The shadowed regions
represent the 95% confidence interval. For each subplot, e = [u] represents θk is the model after u
training epochs and the other network is the converged model. The dotted line is the validation error
of corresponding θk after u training epochs.

G.3 Feature Distributions Learned at Different Stages641

In this section, we consider the case where one of θ1 and θ2 is not fully trained. Fig 11 shows that:642

1) our proposed metric is identifiable to the case when one of θ1 and θ2 has not trained to optimal;643

2) the performance gap between the grafted NN and the original NN quickly decreases to zero for644

the previous few layers and slowly decreases for the last few layers. This indicates that the feature645

functions in the previous few layers converge much faster than that of the last few layers.646

23

	Introduction
	Related Work
	Characterization of DNNs' Landscape
	Overparameterized Deep Learning Theory

	Basics
	Neural Network Grafting
	Landscape Characterization
	Continuous CNN
	Reformulate Continuous CNNs

	Experiments
	Uniqueness of Solution Path during Training
	The Evidence of Convexity

	Conclusions
	Broader Impact
	Proof for Theorem 1
	Convergence Analysis
	Missing Algorithms in Main Text
	Neural Network Graft
	Feature Distribution Fusion

	Experimental Configuration
	Additional Experiments on Other Datasets, Architectures, and Regularizer
	VGG is Over-parameterized Enough in Feature Distribution View
	Additional Findings
	Feature Distributions Comparison between Different Layers
	Feature Distributions Learned on Different Datasets
	Feature Distributions Learned at Different Stages

