
A Implementation Details465

A.1 Speech separation experiments466

For our conditional TasNet, we used the original configure from TasNet [19] with N = 256, L =467

20, B = 256, H = 512, P = 3, X = 8, R = 4. More specifically, TasNet contains three parts: (1) a468

linear 1-D convolutional encoder that encapsulates the input mixture waveform into an adaptive 2-D469

front-end representation, (2) a separator that estimates a fixed number of masking matrices, and (3)470

a linear 1-D transposed convolutional decoder that converts the masked 2-D representations back471

to waveforms. We use the same encoder and decoder design as in [19], referring to the Enc and472

Dec in Figure 2(a) respectively. For separator, we set the channel number of the last 1 × 1 Conv473

as one, making it outputs single speech ŝi at each step. And we move the last 1 × 1 Conv into474

the Dec part. For the Fusion and LSTM, E ∈ RDE×TE

is concatenated with the conditional state475

from the previous step Enc(ŝi−1) ∈ RDE×TE

at the feature’s dimension. Then, a single layer of476

LSTM(2DE 7→DH) is carried out to mapping the fused feature into DH dimension at each frame.477

Also, we noticed the update of the base model could further improve the performance like the478

same tendency in [20, 22]. In this paper, we mainly focus on the relative performance over the479

original TasNet. For separation-related tasks, all the speeches are re-sampled to 8 kHz to make a fair480

comparison with other works.481

For the training loss calculation, the negative SI-SNR metric is widely used in [46, 19, 20, 22, 25]482

and achieves satisfying performance. However, the SI-SNR will lead the predicted sources as a scaled483

signal compared with the ground-truth, making it totally mismatch in inference phase. To address this484

problem, we change the training loss from negative SI-SNR to negative SDR, forcing the prediction485

of speech signals as similar as possible with the ground-truth.486

For the training strategy, we set the initial learning rate of 1 × 10−3, which is multiplying by 0.9487

every 8 epochs. In practice, we find the original ground-truth signals used as condition result in488

faster training speed, but a decrease in generalization ability. Therefore, to make the separation more489

robust, we add Gaussian noise with a standard deviation of 0.25 on these ground-truth source vectors490

(waveforms) during training.491

A.2 Multi-speaker speech recognition experiments492

We basically use the open source package ESPnet [41] for the implementation of our ASR model. In493

the conditional Transformer-based CTC ASR model, there is a total of 16 Transformer layers, 8 before494

and 8 after the conditional chain LSTM. For the baseline Transformer-based CTC with PIT, there is a495

total of 12 Transformer layers in the acoustic model. The configuration of each Transformer layer is496

as follows: the dimension of attention is datt = 256, the dimension of feed-forward is dff = 2048,497

number of heads is dhead = 4. Before feeding the input to the Transformers, the log mel-filterbank498

features are encoded by two CNN blocks. The CNN layers have a kernel size of 3× 3 and the number499

of feature maps is 64 in the first block and 128 in the second block.500

A.3 Multi-speaker joint speech separation and recognition501

In the joint training experiments, we first pre-train two models for both separation and ASR tasks.502

The parameters of conditional TasNet are the same as our previous setup. For the pre-trained ASR,503

we train a single speaker Transformer-based CTC ASR model on the WSJ training set, which is a504

clean close-mic read speech corpus with about 80h. When jointly finetuning these two parts, we use505

the separated wave of TasNet as the input of ASR model and feedback the predicted CTC alignments506

of ASR into TasNet as an additional condition. Figure 4 shows an overview of our joint model.507

Besides, we also introduce two extra teacher-forcing hyperparameters to control the optimization508

part of the joint model, which are sswav and ssctc. The parameter sswav is the probability of feeding509

separated wave to ASR, while ssctc is the probability of inputting predicted CTC alignments as the510

condition. When aiming to optimize TasNet with multiple conditions, we fixed the parameters of511

ASR and set sswav = 0 and ssctc = 1, which means we only feed ground-truth wave to ASR and512

use the generated CTC alignments to guide the separation learning. When joint training both part to513
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Figure 4: Conditional Chain Model for multi-speaker joint speech separation and recognition.

improve the performance of ASR, we set sswav = 0.5 and ssctc = 0.3. All experiments only have514

access to the predicted wave and CTC alignments during inference.515

B Training strategy with teacher-forcing and ordering516
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Figure 5: The procedure of selecting and sorting the target sequences using a greedy algorithm in our
proposed methods. At each step i, the ground-truth sequence s∗i is selected from all the available
references. In this example, the final order θ is s2 → s3 → s1 → s4.

In Eq. 3, the neural network accepts the hidden state of the previous sequence that is estimated at the517

previous iteration. However, the estimation error at the previous iteration hurts the performance at518

the next iteration. To reduce the error, we use the teacher-forcing [43] technique, which boosts the519

performance by exploiting ground-truth reference. During training, Eq. 3 is replaced with as follows:520

Hi = CondChain(Ei, s
∗
i−1), (5)

Here, s∗i−1 is a ground-truth sequence of index i− 1. The teach-forcing technique is commonly used521

in conventional seq2seq methods. However, target sequence in seq2seq is determined and has an522

immutable order, so the previous approaches also generate the sequence through a fixed order, either523

from the beginning to the end, or the reverse order. But for many seq2MSeq problems, the multiple524

reference sequences are unordered. There arises a problem about how to select the s∗i from the S to525

process the next iteration, which is also how to determine the best order θ of target sequences.526

One most straightforward method is to use the permutation invariant training (PIT) strategy to traverse527

all the permutations and select the optimal one to update the parameters. However, with the teacher-528

forcing technique attending each step of the output, we must go through the whole feedforward529

process for each permutation, which takes too much computational complexity. To alleviate this530
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problem, we examine one simple greedy search strategy. As shown in Figure 5, for each output531

iteration i, the optimal target index is selected by minimizing the difference (distance) with ŝi among532

a set of the remaining target set, and the selected ground-truth sequence s∗i is fed into the next533

decoding iteration. With this greedy strategy, the repetitive computation only occurs at the calculation534

of distance, and there is no need to re-run the feedforward process. In addition, the total number of535

repetitive computation is
∑
i = N(N + 1)/2, compared with the N ! in PIT based strategy.536

C Analysis on Speech Recognition Outputs537

Our method is trained in a greedy fashion, which does not address the label permutation problem from538

the formulation as other methods do, such as permutation invariant training (PIT) or deep clustering539

(DPCL), etc. We further look into the speech recognition results in terms of the order following which540

our model generates the hypotheses. In Table 5, we show the confusion matrix of the prediction541

order and the text length ranking for the two-speaker scenario. We observe that the order is somehow542

correlated to the length of the text. In 88% of evaluation samples, the generation order is consistent543

with the length ranking. By considering two texts sequences that may have very close lengths or544

some words are much simpler than the others, we loosen the constraint for the length ranking. If we545

simply accept those cases where the reference text of the first hypothesis is shorter than the second,546

but within a range, the pattern is more obvious. For example, the result is shown in Table 6 when the547

range is 5. In 99% evaluation samples, the generation order is consistent with the length ranking. In548

the three-speaker scenario, we find a similar pattern: the first hypothesis is significantly longer than549

the other two, 98% when the range is 5. We also have the same conclusion on the Transformer-based550

CTC ASR system trained with PIT in two speaker scenario. It is a Parallel-mapping framework551

without such conditional dependency. However, we found that the output of each head is highly552

dependent on the lengths. In our model, 87% of output from one head is longer than that from the553

other. If we further consider the range of 5, the ratio becomes 99%. Perhaps this can be the heuristic554

information to address the label permutation problem.555

Table 5: Confusion matrix between the hy-
pothesis (Hyp.) generation order and the order
of reference (Ref.) text length in 2-speaker
case.

Hyp.
Ref. long short

1st output 2627 373
2nd output 373 2627

Table 6: Confusion matrix between the hy-
pothesis (Hyp.) generation order and the order
of reference (Ref.) text length in 2-speaker
case with loosing range 5.

Hyp.
Ref. long short

1st output 2965 35
2nd output 35 2965

556

D Implementation for iterative speech denoising557

Former experiments on multi-speaker speech separation and recognition show the effectiveness of our558

conditional chain to disentangle the input mixture signals into several components. For our proposed559

tasks above, actually, there is a mutually exclusive relationship between the outputs. However, the560

seq2Mseq tasks also cover some instances that the output sequences get a positive correlation. In this561

section, we manage to verify the ability to model this positive correlation, besides the proposed tasks562

shown in Section 5.563

In the speech domain, the problem of a positive correlation between multiple outputs is also reflected564

in some problems. In this section, we take the speech denoising task as an example to verify the565

effectiveness of our conditional chain model in the case of positive correlation between iterative steps.566

The iterative estimation of some signals is an effective technique in speech processing, which could567

be used in speech enhancement [10], i-vector estimation [23], speech separation [17]. Similar to this568

technique for speech denoising, we implement our conditional chain model with two iteration in the569

chain to denoise the noisy input speech. This formulation is very similar to the iterative re-estimation570

of the clean signal. That is to say that our conditional chain method is trained with two identical571

references as objects, i.e., s1 = s2 = s. And the output of the second step is conditioned on the572

estimation from the first step, similar to the structure shown in Figure 2(a).573
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To evaluate this, we conduct the speech denoising task based on a recently published dataset from the574

DNS-Challenge 2020 [27], which consists of 60,000 no-reverberant noisy clips in training and 300 in575

evaluation set.

Table 7: The SDR performance on no-reverberant testset in DNS-challenge 2020.

Methods SDR SDRi
Official baseline[45] 13.4 4.2
Our implementation for [45] 14.6 5.5
TasNet 17.3 8.2
Conditional TasNet (1st step) 17.8 8.7
Conditional TasNet (2nd step) 18.0 8.9

576

Here, we compare the results with the official baseline model [45] and our implemented baseline577

based on TasNet. And, we also report the performance of our conditional chain model with the same578

architecture and hyper-parameters with the base TasNet model.579

From the results in Table 7, we could see that, with the iterative estimation of the clean speech signal580

in our conditional chain model, the performance gets obvious improvement over the same base model581

(TasNet). And, the estimation of the second step is better than the first step. These results show that582

our conditional chain learns to refine the condition from former steps, which further proves that our583

model has good adaptability and generalization performance when learning the relationship between584

multiple output sequences.585
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