
Appendix
The Appendix contains proofs of results in the main paper ordered as they appear. Auxiliary results
needed for some of the proofs are stated in Appendix F.

A Proof of Proposition 1

The ‘if’ part of the theorem is due to Vaicenavicius et al. [44, Proposition 1]; we reproduce it for
completeness. Let σpgq, σpfq be the sub σ-algebras generated by g and f respectively. By definition
of f , we know that f is σpgq-measurable and, hence, σpfq Ď σpgq. We now have:

E rY | fpXqs “ E rE rY | gpXqs | fpXqs (by tower rule since σpfq Ď σpgq)
“ E rfpXq | fpXqs (by property (5))
“ fpXq.

The ‘only if’ part can be verified for g “ f . Since f is perfectly calibrated,

E rY | fpXq “ fpxqs “ fpxq,

almost surely PX .

B Proofs of results in Section 3

B.1 Proof of Theorem 1

Assume that one is given a predictor f that is pε, αq-approximately calibrated. Then the assertion
follows from the definition of pε, αq-approximate calibration since:

|E rY | fpXqs ´ fpXq| ď εpfpXqq ùñ E rY | fpXqs P CpfpXqq.

Now we show the proof in the other direction. If mC was injective, E rY | mCpfpXqqs “
E rY | fpXqs and thus if E rY | fpXqs P CpfpXqq (which happens with probability at least 1´α),
we would have E rY | mCpfpXqqs P CpfpXqq and so

|E rY | mCpfpXqqs ´mCpfpXq| ď sup
zPRangepfq

t|Cpzq|{2u “ ε.

This serves as an intuition for the proof in the general case, when mC need not be injective. Note
that,

|E rY | mCpfpXqqs ´mCpfpXqq| “ |E rY | mCpfpXqqs ´ E rmCpfpXqq | mCpfpXqqs|
p1q
“ |E rE rY | fpXqs | mCpfpXqqs ´ E rmCpfpXqq | mCpfpXqqs|
p2q
“ |E rE rY | fpXqs ´mCpfpXqq | mCpfpXqqs|
p3q

ď E r|E rY | fpXqs ´mCpfpXqq| | mCpfpXqqs , (20)

where we use the tower rule in (1) (since mC is a function of f ), linearity of expectation in (2) and
Jensen’s inequality in (3). To be clear, the outermost expectation above is over fpXq (conditioned
on mCpfpXqq). Consider the event

A : E rY | fpXqs P CpfpXqq.

On A, by definition we have:

|E rY | fpXqs ´mCpfpXqq| “
uCpfpXqq ´ lCpfpXqq

2
ď sup
zPRangepfq

ˆ

|Cpzq|

2

˙

“ ε.

By monotonicity property of conditional expectation, we also have that conditioned on A,

E r|E rY | fpXqs ´mCpfpXqq| | mCpfpXqqs ď E rε | mCpfpXqqs “ ε,
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with probability 1. Thus by the relationship proved in the series of equations ending in (20), we have
that conditioned on A, with probability 1,

|E rY | mCpfpXqqs ´mCpfpXqq| ď ε.

Since we are given that C is a p1´αq-CI with respect to f , PpAq ě 1´α. For any event B, it holds
that P pBq ě P pB|AqPpAq. Setting

B : |E rY | mCpfpXqqs ´mCpfpXqq| ď ε,

we obtain:

P p|E rY | mCpfpXqqs ´mCpfpXqq| ď εq ě 1´ α.

Thus, we conclude that mCpfp¨qq is pε, αq-approximately calibrated.

B.2 Proof of Corollary 1

Let tfnunPN be asymptotically calibrated sequence with the corresponding sequence of functions
tεnunPN that satisfy εnpfnpXn`1qq “ oP p1q. From Theorem 1, we can construct corresponding
functions Cn that are p1´ αq-CI with respect to fn and satisfy

|CnpfnpXn`1qq| “ 2εnpfnpXn`1qq “ oP p1q.

This concludes the proof.

B.3 Proof of Theorem 2

In the proof we write the test point as pXn`1, Yn`1q. Suppose pCn is a p1 ´ αq-CI with respect to
f for all distributions P . We show that pCn covers the label Yn`1 itself for distributions P such that
PfpXq is nonatomic (and thus discp pCnq would also cover the labels).

Let P be any distribution such that PfpXq is nonatomic. Fix a set ofm ě n`1 samples from the dis-
tribution P denoted as T “ tpApjq, BpjqqujPrms. Given T , consider a distribution Q corresponding
to the following sampling procedure for pX,Y q „ Q:

sample an index j uniformly at random from rms and set pX,Y q “ pApjq, Bpjqq.

The distribution function for Q is given by

m´1
m
ÿ

j“1

δpApjq,Bpjqq.

where δpa,bq denotes the points mass at pa, bq. Note thatQ is only defined conditional on T . Observe
the following facts about Q:

• supp(Qq “ tpApjq, BpjqqujPrms.

• Consider any px, yq P supppQq. Let px, yq “ pApjq, Bpjqq for some j P rms. Then

EQ rY | fpXq “ fpxqs “ EQ
”

Y | fpXq “ fpApjqq
ı

ξ1
“ EQ

”

Y | X “ Apjq
ı

ξ2
“ Bpjq “ y.

Above ξ1 holds since PfpXq is nonatomic so that the fpXpiqq’s are unique almost surely.
Note that PfpXq is nonatomic only if PX itself is nonatomic. Thus the Apjq’s are unique
almost surely, and ξ2 follow. In other words, if pX,Y q „ Q, then we have

Y “ EQ rY | fpXqs . (21)
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Suppose the data distribution was Q, that is tpXi, YiquiPrn`1s „ Qn`1. Define the event that the CI
guarantee holds as

E1 : E rYn`1 | fpXn`1qs P pCnpfpXn`1qq, (22)
and the event that the PS guarantee holds as

E2 : Yn`1 P pCnpfpXn`1qq. (23)

Then due to (21), the events are exactly the same under Q:

E1
Q
” E2. (24)

In particular, this means

PQn`1pEQ rYn`1 | fpXn`1qs P pCnpfpXn`1qqq “ PQn`1pYn`1 P pCnpfpXn`1qqq. (25)

If pCn is a distribution-free CI, then PQn`1pE1q ě 1´ α and thus PQn`1pE2q ě 1´ α. This shows
that for Q, discp pCnq is a p1 ´ αq-PI. Note that Q corresponds to sampling with replacement from
a fixed set T where each element is drawn with respect to P . Although Q ‰ P , we expect that
as m Ñ 8 (while n is fixed), Q and P coincide. This would prove the result for general P . To
formalize this intuition, we describe a distribution which is close to Q but corresponds to sampling
without replacement from T instead.

For this, now suppose that tpXi, YiquiPrn`1s „ Rn`1 where Rn`1 corresponds to sampling without
replacement from T . Formally, to draw fromRn`1, we first draw a surjective mapping λ : rn`1s Ñ
rms as

λ „ Unif pn-sized ordered subsets of rmsq,

and set pXi, Yiq “ pA
pλpiqq, Bpλpiqqq for i P rn` 1s.

First we quantify precisely the intuition that as m Ñ 8, Qn`1 and Rn`1 are essentially identical.
Consider the event T :“ no index is repeated in Qn`1. Let PpT q “ τm for some m and note that
limmÑ8 τm “ 1. Now consider any probability event E over tpXi, YiquiPrn`1s (such as E1 or E2).
We have

PQn`1pEq “ PQn`1pE|T q ¨ PpT q ` PQn`1pE|T cq ¨ PpT cq
P rPQn`1pE|T q ¨ PpT q,PQn`1pE|T q ¨ PpT q ` PpT cqs.

Now observe that PQn`1pE|T q “ PRn`1pEq to conclude

PQn`1pEq P rPRn`1pEq ¨ PpT q,PRn`1pEq ¨ PpT q ` PpT cqs.
Since m ě n` 1, PpT q ‰ 0 so we can invert the above and substitute τm “ PpT q to get

PRn`1pEq P
“

τ´1
m pPQn`1pEq ´ p1´ τmqq, τ

´1
m PQn`1pEq

‰

. (26)

Consider E “ E2 defined in equation (23). We showed that PQn`1pE2q ě 1´ α. Thus from (26),

PRn`1pE2q ě τ´1
m p1´ α´ p1´ τmqq.

The above is with respect to Rn`1 which is conditional on a fixed draw T . However since the right
hand side is independent of T , we can also include the randomness in T to say:

PRn`1,T pE2q ě τ´1
m p1´ α´ p1´ τmqq. (27)

Observe that if we consider the marginal distribution over Rn`1 and T (that is we include the
randomness in T as above), tpXi, YiquiPrn`1s

iid
„ P . This is not true if we do not marginalize over

T , in particular since the pXi, Yiq’s are not independent (due to sampling without replacement).
Thus equation (27) can be restated as

PPn`1pE2q ě τ´1
m p1´ α´ p1´ τmqq,

Since m can be set to any number and limmÑ8 τm “ 1, we can indeed conclude

PPn`1pE2q ě 1´ α.

Recall that E2 is the event that Yn`1 P pCnpXn`1q; equivalently Yn`1 P disc pCnpXn`1q. Thus
discp pCnq provides a (1´ α)-PI for P such that PfpXq is nonatomic.
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B.4 Proof of Corollary 2

Let P be any distribution such that PfpXq is nonatomic. By Theorem 2, pCn must provide both a
prediction set and a confidence interval for P :

PpE rYn`1 | fpXn`1qs P pCnpfpXn`1qqq ě 1´ α,

and
PpYn`1 P pCnpfpXn`1qqq ě 1´ α.

Thus by a union bound

PPn`1ptYn`1,E rYn`1 | fpXn`1qsu Ď pCnpfpXn`1qqq ě 1´ 2α. (28)
Now consider a distribution P such that PfpXq is nonatomic and PpY “ 1 | Xq “ 0.5 a.s. PX so
that E rYn`1 | fpXqs “ 0.5 a.s. PfpXq. The inequality (28) is true for this P as well. If

tYn`1,E rYn`1 | fpXn`1qsu Ď pCnpfpXn`1qq,

then | pCnpXn`1q| ě |Yn`1 ´ E rYn`1 | fpXn`1qs| ě 0.5. Thus

PPn`1p| pCnpfpXn`1qq| ě 0.5q ě 1´ 2α.

Consequently we have

EPn`1 | pCnpfpXn`1qq| ě 0.5p1´ 2αq

“ 0.5´ α.

This concludes the proof.

B.5 Proof of Theorem 3

Suppose that tfnunPN is asymptotically calibrated and satisfies

lim sup
nÑ8

∣∣∣X pfnq∣∣∣ ą ℵ0,
that is, for every m P N, there exists n ě m such that X pfnq is an uncountable set. We will show a
contradiction using Corollary 2 for fn and a certain Cn to be defined shortly.

First, we verify the condition of Corollary 2 for fn if X pfnq is uncountable: we construct a distribu-
tion P such that PpfnpXqq is nonatomic. Let the range of fn acting on X be denoted as fnpX q, and

for z P fnpX q let the level set at value z be denoted as X pfnqz . Since the sets X pfnq are measurable,
we can define P pXq as follows:

P pfnpXqq “ UnifpfnpX qq; P pX | fnpXqq “ Unif
´

X pfnqfnpXq

¯

. (29)

P pXq along with any conditional probability function P pY | Xq constitutes a valid probability
distribution P . Further, from the construction, since X pfnq is uncountable, PfnpXq is guaranteed to
be nonatomic.

Next, since tfnunPN is asymptotically calibrated, by Corollary 1, one can construct a sequence of
functions tCnunPN such that each Cn is a p1´ αq-CI with respect to fn for any distribution Q, and

|CnpfnpXn`1qq| “ oQp1q.

Thus there exists a constant m such that for n ě m and any distribution Q,
EQn`1 |CnpfnpXn`1qq| ă 0.5´ α. (30)

However, since lim sup
nÑ8

|X pfnq| ą ℵ0, there exists an n ě m such that X pfnq is uncountable. Hence

the requirements of Corollary 2 are satisfied by pCn and fn: namely pCn is a p1´ αq-CI with respect
to f for all distributions P , and there exists a P such that PfnpXq is nonatomic. Thus Corollary 2
yields that we can construct a distribution Q such that

EQn`1 |CnpfnpXn`1qq| ě 0.5´ α,

which is a contradiction to (30). Hence our hypothesis that lim sup
nÑ8

|X pfnq| ą ℵ0 must be false,

concluding the proof.
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C Proofs of results in Section 4 (other than Section 4.4)

C.1 Proof of Theorem 4

Let EBpxq be the event that pBpX1q, . . . ,BpXnqq “ pBpx1q, . . . ,Bpxnqq. On the event EBpxq,
within each region Xb, the number of point from the calibration set is known and the Yi’s in each bin
represent independent Bernoulli random variables that share the same mean πb “ E rY | X P Xbs.
Consider any fixed region Xb, b P rBs. Using Theorem 10, we obtain that:

P

¨

˝|πb ´ pπb| ą

d

2pVb lnp3B{αq

Nb
`

3 lnp3B{αq

Nb

ˇ

ˇ

ˇ
EBpxq

˛

‚ď α{B.

Applying union bound across all regions of the sample-space partition, we get that:

P

¨

˝@b P rBs : |πb ´ pπb| ď

d

2pVb lnp3B{αq

Nb
`

3 lnp3B{αq

Nb

ˇ

ˇ

ˇ
EBpxq

˛

‚ě 1´ α.

Because this is true for any EBpxq, we can marginalize to obtain the assertion of the theorem in
unconditional form.

C.2 Proof of Corollary 4

We show a calibration guarantee by using Theorem 1. Consider the scoring function as B with
Z “ rBs. Then by Theorem 4, C : rBs Ñ I given by

Cpbq “

»

–

pπb ´

¨

˝

d

2pVb lnp3B{αq

Nb
`

3 lnp3B{αq

Nb

˛

‚, pπb `

d

2pVb lnp3B{αq

Nb
`

3 lnp3B{αq

Nb

fi

fl , b P rBs,

provides a p1´ αq-CI with respect to B. Let b‹ “ minbPrBsNb. To apply Theorem 4, we define

ε “ sup
bPrBs

|Cpbq| {2 “

d

2pVb‹ lnp3B{αq

Nb‹
`

3 lnp3B{αq

Nb‹
,

and the mid-point function mC for C is given by mCpbq “ pπb. Applying Theorem 1 gives the first
part of the result.

Next, suppose some bin b has PpBpXq “ bq “ 0. Then, a test point Xn`1 almost surely does not
belong to the bin, and the bin can be ignored for our calibration guarantee. Thus without loss of
generality, suppose every b P rBs satisfies

PpBpXq “ bq ą 0.

Let minbPrBs PpBpXq “ bq “ τ ą 0. Then for a fixed number of samples n, any particular bin b,
and any constant α P p0, 1q we have by Hoeffding’s inequality with probability 1´ α{B

Nb ě nτ ´

c

n lnpB{αq

2
.

Taking a union bound, we have with probability 1´ α, simultaneously for every b P rBs,

Nb ě nτ ´

c

n lnpB{αq

2
“ Ωpnq,

and in particular Nb‹ “ Ωpnq where b‹ “ arg minbPrBsNb. Thus by the first part of this corollary,
fn is εn calibrated where εn “ Op

?
n´1q “ op1q. This concludes the proof.
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C.3 Proof of Theorem 5

Denote |D2
cal| “ n. Let pj “ PpgpXq P Ijq be the true probability that a random point falls into

partition Xj . Assume c is such that we can use Lemma 11 to guarantee that with probability at least
1´α{2, uniform mass binning scheme is 2-well-balanced. Hence, with probability at least 1´α{2:

1

2B
ď pj ď

2

B
, @j P rBs. (31)

Moreover, by Hoeffding’s inequality we get that for any fixed region of sample-space partition, with
probability at least 1´ α{2B, for a fixed j P rBs,

Nj ě npj ´

c

n lnp2B{αq

2
. (32)

Hence, by union bound across applied accross all regions and using (31), we get that with probability
at least 1´ α{2:

Nb‹ ě
n

2B
´

c

n lnp2B{αq

2
,

where the first term dominates asymptotically (for fixed B). Hence, we get that with probability at
least 1 ´ α, Nb‹ “ Ω pn{Bq. By invoking the result of Corollary 4 and observing that pVb ď 1, we
conclude that uniform mass binning is pε, αq approximately calibrated with ε “ Op

a

B lnpB{αq{nq
as desired. This also leads to asymptotic calibration by Corollary 4.

C.4 Proof of Theorem 6

The proof is based on the result for an empirical-Bernstein confidence sequences for bounded
observations [15]. We condition on the event E8Bpxq defined as pBpX1q,BpX1q, . . . q “

pBpx1q,Bpx2q, . . . q, that is the random variables denoting which partition the infinite stream of
samples fall in (thus allowing our bound to hold for every possible value of n). On E8Bpxq, the label
values within each partition of the sample-space partition represent independent Bernoulli random
variable that share the same mean πb “ E rY | X P Xbs , b P rBs. Consequently, the bound obtained
can be marginalized over E8Bpxq to obtain the assertion of the theorem in unconditional form. Now
we show the bound that applies conditionally on E8Bpxq.

Consider any fixed region of the sample-space partition Xb and corresponding points
 `

Xb
i , Y

b
i

˘(Nb

i“1
. Then St “

´

řt
i“1 Y

b
i

¯

´ tπb is a sub-exponential process with variance process:

pV `t “

t
ÿ

i“1

´

Y bi ´ Y
b

i´1

¯2

.

Howard et al. [14, Proposition 2] implies that St is also a sub-gamma process with variance process
pVt and the same scale c “ 1. Since the theorem holds for any sub-exponential uniform boundary, we
choose one based on analytical convenience. Recall definition of the polynomial stitching function

Sαpvq :“
b

k21vlpvq ` k
2
2c

2l2pvq ` k2clpvq, where

$

&

%

lpvq :“ lnhplnηpv{mqq ` lnpl0{αq,

k1 :“ pη1{4 ` η´1{4q{
?

2,

k2 :“ p
?
η ` 1q{

?
2.

where l0 “ 1 for the scalar case. Note that for c ą 0 it holds that Sαpvq ď k1
a

vlpvq ` 2ck2lpvq.

From Howard et al. [15, Theorem 1], it follows that upvq “ Sαpv _ mq is a sub-gamma uniform
boundary with scale c and crossing probability α. Applying Theorem 9 with hpkq Ð pk ` 1qsζpsq
where ζp¨q is Riemann zeta function and parameters η Ð e, s Ð 1.4, c Ð 1, m Ð 1 and α Ð
α{p2Bq, yields that k2 ď 1.88, k1 ď 1.46 and lpvq “ 1.4 ¨ ln ln pevq ` lnp2ζp1.4qB{αq. Since
Theorem 9 provides a bound that holds uniformly across time t, then it provides a guarantee for
t “ Nb, in particular. Hence, with probability at least 1´ α{B,

|πb ´ pπb| ď
1.46

c

pV `b ¨ 1.4 ¨ ln ln
´

e
´

pV `b _ 1
¯¯

` lnp6.3B{αq

Nb
`

5.27 ¨ ln ln
´

e
´

pV `b _ 1
¯¯

` 3.76 lnp6.3B{αq

Nb
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ď

7

c

pV `b ¨ ln ln
´

e
´

pV `b _ 1
¯¯

` 5.3 lnp6.3B{αq

Nb
.

using that
?
x` y ď

?
x `

?
y and ln lnpexq ď

?
x ln ln ex for x ě 1. Finally, we apply a union

bound to get a guarantee that holds simultaneously for all regions of the sample-space partition.

D Calibration under covariate shift (including proofs of results in
Section 4.4)

The results from Section 4.4 are proved in Appendix D.1 (Theorem 7) and D.3 (Proposition 2). To
show Theorem 7, we first propose and analyze a slightly different estimator than (39) that is unbiased
for πpwqb , but needs additional oracle access to the parameters tmbubPrBs defined as

mb “ PPX
pX P Xbq { P rPX

pX P Xbq.

mb denotes the ‘relative mass’ of region Xb. (For simplicity, we assume that P
rP pX P Xbq ą 0 for

every b since otherwise the test-point almost surely does not belong to Xb and estimation in that bin
is not relevant for a calibration guarantee.) We then show that mb can be estimated using w, which
would lead to the proposed estimator qπpwqb . First, we establish the following relationship between
E

rP rY | X P Xbs and EP rY | X P Xbs.
Proposition 3. Under the covariate shift assumption, for any b P rBs

E
rP rY | X P Xbs “ mb ¨ EP rwpXqY | X P Xbs .

Proof. Observe that

d rP pX | X P Xbq
dP pX | X P Xbq

“
d rP pXq

dP pXq
¨
PP pX P Xbq
P

rP pX P Xbq
“ wpXq ¨mb.

Thus we have,

E
rP rY | X P Xbs

p1q
“ E

rP

“

E
rP rY | Xs | X P Xb

‰

p2q
“ E

rP rEP rY | Xs | X P Xbs

p3q
“ EP

«

d rP pX | X P Xbq
dP pX | X P Xbq

¨ EP rY | Xs | X P Xb

ff

p4q
“ mb ¨ EP rwpXqEP rY | Xs | X P Xbs
p5q
“ mb ¨ EP rEP rwpXqY | Xs | X P Xbs
p6q
“ mb ¨ EP rwpXqY | X P Xbs ,

where in (1) we use the tower rule, in (2) we use the covariate shift assumption, (3) can be seen by
using the integral form of the expectation, (4) uses the observation at the beginning of the proof, (5)
uses that wpXq is a function of X and finally, (6) uses the tower rule.

Let Nb denote the number of calibration points from the source domain that belong to bin b. Given
Proposition 3, a natural estimator for E

rP rY | X P Xbs is given by:

pπ
pwq
b :“

1

Nb

ÿ

i:BpXiq“b

mbwpXiqYi. (33)

Estimation properties of pπpwqb are given by the following theorem.
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Theorem 8. Assume that supx wpxq “ U ă 8. For any α P p0, 1q, with probability at least 1´ α,∣∣∣pπpwqb ´ E
rP rY | X P Xbs

∣∣∣ ďc

2 pV
pwq
b lnp3B{αq

Nb
`

3mbU lnp3B{αq
Nb

, simultaneously for all b P rBs,

where pV
pwq
b “ 1

Nb

ř

i:BpXiq“b
pmbwpXiqYi ´ pπ

pwq
b q2.

The proof is given in Appendix D.2. Next, we discuss a way of estimating mb using likelihood ratio
w instead of relying on oracle access. Observe that

d rP pX | X P Xbq
dP pX | X P Xbq

“
d rP pXq

dP pXq
¨
PP pX P Xbq
P

rP pX P Xbq
“ wpXq ¨mb.

Thus we have,

EP rwpXq | X P Xbs “ m´1
b EP

«

d rP pX | X P Xbq
dP pX | X P Xbq

| X P Xb

ff

“ m´1
b , (34)

which suggests a possible estimator for mb given by

pmb “

˜

ř

i:BpXiq“b
wpXiq

Nb

¸´1

, b P rBs. (35)

On substituting this estimate for mb in (33), we get a new estimator
ř

i:BpXiq“b
wpXiqYi

ř

i:BpXiq“b
wpXiq

,

which is exactly qπ
pwq
b . With this observation, we now prove Theorem 7.

D.1 Proof of Theorem 7

Let us define rb :“ 1{mb and

prb “

ř

i:BpXiq“b
wpXiq

Nb
. (36)

Step 1 (Uniform lower bound for Nb). Since the regions of the sample-space partition were
constructed using uniform-mass binning, the guarantee of Theorem 5 holds. Precisely, we have that
with probability at least 1´ α{3, simultaneously for every b P rBs,

Nb ě
n

2B
´

c

n lnp6B{αq

2
.

Step 2 (Approximating rb). Observe that the estimator (36) is an average of Nb random vari-
ables bounded by the interval r0, U s. Let EBpxq be the event that pBpX1q, . . . ,BpXnqq “

pBpx1q, . . . ,Bpxnqq. On the event EBpxq, within each region Xb, the number of point from the
calibration set is known and the Yi’s in each bin represent independent Bernoulli random variables
that share the same mean E rwpXq | X P Xbs. Consider any fixed region Xb, b P rBs. By Hoeffd-
ing’s inequality, it holds that

P

˜

|rb ´ prb| ą

d

U2 lnp6B{αq

2Nb

ˇ

ˇ

ˇ
EBpxq

¸

ď α{p3Bq.

Applying union bound across all regions of the sample-space partition, we get that:

P

˜

Db P rBs : |rb ´ prb| ą

d

U2 lnp6B{αq

2Nb

ˇ

ˇ

ˇ
EBpxq

¸

ď α{3.

Because this is true for anyEBpxq, we can marginalize to obtain that with probability at least 1´α{3,

@b P rBs, |rb ´ prb| ď

d

U2 lnp6B{αq

2Nb
. (37)
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Step 3 (Going from rb to mb). Define r‹ “ minbPrBs E rwpXq | X P Xbs. Suppose @b P rBs,
|rb ´ prb| ď ε and ε ă r‹{2. Then, we have with probability at least 1´ α{3:

|mb ´ pmb| “
∣∣∣∣ 1

rb
´

1

prb

∣∣∣∣ “ ∣∣∣∣rb ´ prb
rb ¨ prb

∣∣∣∣ ď ε

r2b |1´ ε{rb|
ď

2ε

r2b
“ 2m2

bε, @b P rBs. (38)

We now set ε “
b

U2 lnp6B{αq
2Nb

as specified in equation (37) and verify that ε ă r‹{2.

• First, from step 1, with probability at least 1´α{3,Nb‹ “ Ωpn{Bq and thusNb “ Ωpn{Bq
for every b P rBs.

• By the condition in the theorem statement, for every b P rBs,

ε “

d

U2 lnp6B{αq

2Nb
“ O

˜

c

U2B lnp6B{αq

n

¸

“ O

¨

˚

˝

g

f

f

e

U2B lnp6B{αq
´

U2B lnp6B{αq
L2

¯

˛

‹

‚

“ O pLq .

Finally recall that L ď r‹. Thus we can pick c in the theorem statement to be large enough
such that ε ă L{2 ď r‹{2.

Thus for ε “
b

U2 lnp6B{αq
2Nb

, by a union bound over the event in (37) and step 1, the conditions for
(38) are satisfied with probability at least 1´ 2α{3. Hence we have for some large enough constant
c ą 0,

|mb ´ pmb| ď cm2
b ¨

c

U2B lnp6B{αq

2n
ď c ¨

U

L2

c

B lnp6B{αq

2n
.

The final inequality holds by observing that mb ď 1{L which follows from relationship (34) and the
assumption that infx wpxq ě L.

Step 4 (Computing the final deviation inequality for qπ
pwq
b ). Recall the definitions of the two

estimators:
pπ
pwq
b :“

1

Nb

ÿ

i:BpXiq“b

mbwpXiqYi,

and
qπ
pwq
b :“

1

Nb

ÿ

i:BpXiq“b

pmbwpXiqYi,

which differ by replacing mb by its estimator pmb defined in (35). By triangle inequality,

|qπb ´ E rY | X P Xbs| ď
∣∣∣qπpwqb ´ pπ

pwq
b

∣∣∣` ∣∣∣pπpwqb ´ E rY | X P Xbs
∣∣∣ .

Theorem 8 bounds the term
∣∣∣pπpwqb ´ E rY | X P Xbs

∣∣∣ with high probability. In the proof of Theo-
rem 8, we can replace the empirical Bernstein’s inequality by Hoeffding’s inequality to obtain with
probability at least 1´ α{3,∣∣∣pπpwqb ´ E rY | X P Xbs

∣∣∣ ď
d

U2 lnp6B{αq

2Nb
ď

ˆ

U

L

˙2
d

lnp6B{αq

2Nb
,

simultaneously for all b P rBs (the last inequality follows since L ď 1 ď U ). To bound∣∣∣pπpwqb ´ qπ
pwq
b

∣∣∣, first note that:

∣∣∣pπpwqb ´ qπ
pwq
b

∣∣∣ “
∣∣∣∣∣∣ 1

Nb

ÿ

i:BpXiq“b

ppmb ´mbqwpXiqYi

∣∣∣∣∣∣
ď U ¨

∣∣∣∣∣∣ 1

Nb

ÿ

i:BpXiq“b

ppmb ´mbq

∣∣∣∣∣∣
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“ U ¨ |pmb ´mb| .

Then we use the results from steps 1 and 3 to conclude that with probability at least 1´ 2α{3,∣∣∣qπpwqb ´ pπ
pwq
b

∣∣∣ ď c ¨

ˆ

U

L

˙2
c

B lnp6B{αq

2n
, and Nb ě n{B ´

c

n lnp6B{αq

2
.

simultaneously for all b P rBs. Thus by union bound, we get that it holds with probability at least
1´ α,

|qπb ´ E rY | X P Xbs| ď c ¨

ˆ

U

L

˙2
c

B lnp6B{αq

2n
,

simultaneously for all b P rBs and large enough absolute constant c ą 0. This concludes the proof.

D.2 Proof of Theorem 8

Consider the event EBpxq defined as pBpX1q, . . . ,BpXnqq “ pBpx1q, . . . ,Bpxnqq. Condi-

tioned on EBpxq, since supx wpxq ď U , we get that pπ
pwq
b is an average of independent non-

negative random variables mbwpXiqYi that are bounded by mbU and share the same mean
mb EP rwpXqY | X P Xbs “ E

rP rY | X P Xbs (by Proposition 3).Using Theorem 10 for a fixed
b P rBs, we obtain:

P

¨

˝

∣∣∣pπpwqb ´ E
rP rY | X P Xbs

∣∣∣ ą
d

2pVb lnp3B{αq

Nb
`

3mbU lnp3B{αq

Nb

ˇ

ˇ

ˇ
EBpxq

˛

‚ď α{B.

Applying a union bound over all b P rBs, we get:

P

¨

˝@b P rBs :
∣∣∣pπpwqb ´ E

rP rY | X P Xbs
∣∣∣ ď

d

2pVb lnp3B{αq

Nb
`

3mbU lnp3B{αq

Nb

ˇ

ˇ

ˇ
EBpxq

˛

‚ě 1´ α.

Because this is true for any EBpxq, we can marginalize to obtain the assertion of the theorem in
unconditional form.

D.3 Proof of Proposition 2

Fix any α P p0, 1q. For any k P N observe that by triangle inequality,∣∣∣qπp pwkq

b ´ E
rP rY | X P Xbs

∣∣∣ ď ∣∣∣qπpwqb ´ E
rP rY | X P Xbs

∣∣∣` ∣∣∣qπpwqb ´ qπ
p pwkq

b

∣∣∣ .
Consider any ε ą 0. Note that by Theorem 7, there exists sufficiently large n such that the first
term is larger than ε{2 with probability at most α{2 simultaneously for all b P rBs. Hence, it
suffices to show that there exists a large enough k such that the probability of the second term
exceeding ε{2 is at most α{2 simultaneously for all b P rBs. While analyzing the second term,
we treat n as a constant while leveraging the consistency of pwk as k Ñ 8. For simplicity, denote
∆k “ supx |wpxq ´ pwkpxq|. Then for any b P rBs:∣∣∣qπpwqb ´ qπ

p pwkq

b

∣∣∣ “ ∣∣∣∣∣
ř

i:BpXiq“b
wpXiqYi

ř

i:BpXiq“b
wpXiq

´

ř

i:BpXiq“b
pwkpXiqYi

ř

i:BpXiq“b
pwkpXiq

∣∣∣∣∣
p1q
ď

∣∣∣∣∣
ř

i:BpXiq“b
wpXiqYi

ř

i:BpXiq“b
wpXiq

´

ř

i:BpXiq“b
pwkpXiqYi

ř

i:BpXiq“b
wpXiq

∣∣∣∣∣
`

∣∣∣∣∣
ř

i:BpXiq“b
pwkpXiqYi

ř

i:BpXiq“b
wpXiq

´

ř

i:BpXiq“b
pwkpXiqYi

ř

i:BpXiq“b
pwkpXiq

∣∣∣∣∣
p2q
ď n ¨∆k ¨

∣∣∣∣∣ 1
ř

i:BpXiq“b
wpXiq

∣∣∣∣∣
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`

∣∣∣∣∣ 1
ř

i:BpXiq“b
wpXiq

´
1

ř

i:BpXiq“b
pwkpXiq

∣∣∣∣∣
∣∣∣∣∣∣

ÿ

i:BpXiq“b

pwkpXiqYi

∣∣∣∣∣∣
p3q
ď

n

L
¨∆k `

ˆ

n ¨∆k

pL´∆kqL

˙

¨ ppU `∆kq ¨ nq ,

where (1) is due to the triangle inequality, (2) is due to the facts that the number of points in any
bin is at most n and that absolute difference between pw and w is at most ∆k, (3) combines the
aforementioned reasons in (2) and the assumptions: L ď infx wpxq ď supx wpxq ď U . Since
∆k

P
Ñ 0, clearly there exists a large enough k such that:

P
´
∣∣∣qπpwqb ´ qπ

p pwkq

b

∣∣∣ ě ε{2
¯

ď α{2.

Thus we conclude that qπp pwkq

b is asymptotically calibrated at level α.

D.4 Preliminary simulations

This section is structured as follows. We first describe the overall procedure for calibration under
covariate shift. The finite-sample calibration guarantee of Theorem 7 holds for oracle w whereas in
our experiments we will estimate w; to assess the loss in calibration due to this approximation, we
introduce some standard techniques used in literature. The preliminary experiments are performed
with simulated data which are described after this. Finally, we propose a modified estimator rπp pwqb of
E

rP rY | X P Xbs which appears natural but has poor performance in practice.

Procedure. We describe how to construct approximately calibrated predictions practically. This
involves approximating the importance weights w and the relatives mass terms tmbubPrBs. The
summarized calibration procedure consists of the following steps:

1. Split the calibration set into two parts and use the first to perform uniform mass binning
2. Given unlabeled examples from both source and target domain, estimate pw. The uncon-

strained Least-Squares Importance Fitting (uLSIF) procedure [17] is used for this.
3. Compute for every b P rBs, the estimator as per (17), replacing w with pw:

qπ
p pwq
b :“

ř

i:BpXiq“b
pwpXiqYi

ř

i:BpXiq“b
pwpXiq

. (39)

4. On a new test point from the target distribution, output the calibrated estimate qπp pwqBpXn`1q
.

Assessment through reliability diagrams and ECE. Given a test set (from the target distribu-
tion) of size m: tpX 1i, Y

1
i quiPrms and a function g : X Ñ r0, 1s that outputs approximately cal-

ibrated probabilities, we consider the reliability diagram to estimate its calibration properties. A
reliability diagram is constructed using splitting the unit interval r0, 1s into non-overlapping inter-
vals tIbubPrB1s for some B1 as

Ii “

„

i´ 1

B1
,
i

B1

˙

, i “ 1, . . . , B1 ´ 1 and IB1 “

„

B1 ´ 1

B1
, 1



.

Let B1 : r0, 1s Ñ rB1s denote the binning function that corresponds to this binning. We then
compute the following quantities for each bin b P rB1s:

FPpIbq “

ř

i:B1pX1iq“b
Y 1i

|ti : B1pX 1iq “ bu|
(fraction of positives in a bin),

MPpIbq “

ř

i:B1pX1iq“b
gpX 1iq

|ti : B1pX 1iq “ bu|
(mean predicted probability in a bin).

If g is perfectly calibrated, the reliability diagram is diagonal. Define the proportion of points that
fall into various bins as:

ppb “
|ti : B1pX 1iq “ bu|

m
, b P rB1s.
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Figure 2: In Figure 2a uncalibrated Random Forest (ECE « 0.023) is compared with calibration that
does not take the covariate shift into account (ECE « 0.047). In Figure 2b uncalibrated Random
Forest is compared with calibration that takes the covariate shift into account (ECE « 0.017).

Then ECE (or `1-ECE) is defined as:

ECEpgq “
ÿ

bPrB1s

ppb ¨ |MPpIbq ´ FPpIbq| .

ECE can also be defined in the `p sense and for multiclass problems but we limit our attention to the
`1-ECE for binary problems.

Simulations with synthetic data. We illustrate the performance of our proposed estimator (17)
using the following simulated example, for which we can explicitly control the covariate shift. Con-
sider the following data generation pipeline: for the source domain each component of the feature
vector is drawn from Betapα, βq where α “ β “ 1, which corresponds to uniform draws from the
unit cube. For the target distribution each component can be drawn independently from Betapα1, β1q.
If the dimension is d, the true likelihood ratio is given as

wpxq “
d rPXpxq

dPXpxq
“

Bdpα;βq

Bdpα1;β1q

d
ź

i“1

pxpiqq
α1´1p1´ xpiqq

β1´1

pxpiqqα´1p1´ xpiqqβ´1
,

where xpiq are the coordinates of feature vector x. We set d “ 3 and α1 “ 2, β1 “ 1 so that
wpxq “ 8 ¨ xp1qxp2qxp3q. The labels for both source and target distributions are assigned according
to:

PpY “ 1 | X “ xq “
1

2

´

1` sin
´

ω
´

x2p1q ` x
2
p2q ` x

2
p3q

¯¯¯

,

for ω “ 20. As the underlying classifier we use a Random Forest with 100 trees (from sklearn).
14700 data points were used to train the underlying Random Forest classifier, 2000 data points from
both source and target were used for the estimation of importance weights. The parameters σ and
λ for uLSIF were tuned by leave-one-out cross-validation: we considered 25 equally spaced values
on a log-scale in range p10´2, 102q for σ and 100 equally spaced values on a log-scale in range
p10´3, 103q for λ. Uniform mass binning was performed with 10 bins and 1940 data points from
the source domain were used to estimate the quantiles. 7840 source data points were used for the
calibration and finally, 28000 data points from the target domain were used for evaluation purposes.
We note that this simulation is a ‘proof-of-concept’; the sample sizes we used are not necessarily
optimal can presumably be improved.

We compare the unweighted estimator (12) which corresponds to weighing points in each bin equally
as we would do if there was no covariate shift, and the estimator (17) that uses an estimate of w to
account for covariate shift. The reliability diagrams are presented in Figure 2, with the ECE reported
in the caption. For the ECE estimation and reliability diagrams, we used B1 “ 10.
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Figure 3: Calibration of Random Forest with mb estimated as per equation (35) (ECE « 0.05).

Alternative estimator for mb. Estimator (35) is one way of estimating mb using the w values,
that leads to (17). However, there exists another natural estimator which we propose and show
some preliminary empirical results for. Suppose we have access to additional unlabeled data from
the source and target domains (tXs

i uiPrnss, and tXt
i uiPrnts respectively). From the definition of

mb “ PPX
pX P Xbq{P rPX

pX P Xbq, a natural estimator is,

pmb “

1
ns
|ti P rnss : BpXs

i q “ bu|
1
nt
|ti P rnts : BpXt

i q “ bu|
, b P rBs. (40)

In this case, the estimator (33) reduces to:

rπ
p pwq
b “

pmb

Nb

ÿ

i:BpXiq“b

pwpXiqYi.

We show experimental results with this estimation procedure. We used 8500 data points from the
source domain and 8000 points from the target domain to compute (40). The reliability diagram
and ECE with this estimator is reported in Figure 3. On our simulated dataset, we observe that the
estimators rπ

p pwq
b perform significantly worse than the estimators qπ

p pwq
b . While this is only a single

experimental setup, we outline some drawbacks of this estimation method that may lead to poor
performance in general.

1. rπ
p pwq
b requires access to additional unlabeled data from the source and target domains with-

out leading to increase in performance.

2. The denominator of pmb could be badly behaved if the number of points from the target
domain in bin b are small. We could perform uniform-mass binning on the target domain
to avoid this, but in this case Nb may be small which would lead to the estimator rπp pwqb
performing poorly.

Our overall recommendation through these preliminary experiments is to use the estimator pπp pwqb as
proposed in Section 4.4 instead of rπp pwqb .

E Venn prediction

Venn prediction [24, 45–47] is a calibration framework that provides distribution-free guarantees,
which are different from the ones in Definitions 1 and 2. For a multiclass problem with L la-
bels, Venn prediction produces L predictions, one of which is guaranteed to be perfectly calibrated
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(although it is impossible to know which one). These are called multiprobabilistic predictors, for-
mally defined as a collection of predictions pf1, f2, . . . fLq where each fi P tX Ñ ∆L´1u (here
∆L´1 is the boundary of the `1 ball in the non-negative orthant of RL, corresponding to all pos-
sible distributions over t1, 2, . . . , Lu). Vovk and Petej [45] defined two calibration guarantees for
multiprobabilistic predictors, the first being oracle calibration.
Definition 4 (Oracle calibration). pf1, f2, . . . fLq is oracle calibrated if there exists an oracle selector
S such that fS is perfectly calibrated.

Venn predictors satisfy oracle calibration [45, Theorem 1] with S “ Y . In the binary case, this
means that when Y “ 1, f1pXq is perfectly calibrated but we do not have any guarantee on f0pXq;
on the other hand if Y “ 0, f0pXq is perfectly calibrated but we know nothing about f1pXq. Since
Y is unknown, oracle calibration seems to us to primarily serve as theoretical guidance, but does
not give a clear prescription on what to output and what theoretical guarantee that output satisfies.
In practice, it seems reasonable to suspect that if f0pXq and f1pXq are close, then their average
should be approximately calibrated in the sense of Definition 1, but to the best of our knowledge,
such results have not been shown formally (other aggregate functions apart from average are also
suggested (without formal guarantees) by Vovk and Petej [45, Section 4]). For instance, it may
be tempting to think that oracle calibration of a multiprobabilistic predictor leads to approximate
calibration in the following way. Consider the prediction function

fpXq “
min fipXq `max fipXq

2
,

and the radius of the interval rmin fipXq,max fipXqs:

εpXq “
max fipXq ´min fipXq

2
.

Since Venn predictors satisfy oracle calibration, one might conjecture that f is pε, αq approximately
calibration (per Definition 1) for the given function ε and for any α P p0, 1q. We examined this claim
but were unable to prove such a guarantee formally. In fact, it seems that no general calibration
guarantee should be possible with the size of the calibration interval being OpεpXqq; we evidence
this through the following construction.

Consider a setup, with no covariates and only label values Y , and a single bin that contains all points
(in the Venn prediction language: a taxonomy under which all points are equivalent). For a test-point
Yn`1 and any predictor f , note that E rYn`1 | f s is simply equal to E rYn`1s since any information
used to construct f is independent of Yn`1. To ensure calibration, we may look for a guarantee of
the following form for some δ:

|E rYn`1 | f s ´ f | “ |E rYn`1s ´ f | ď δ.

In essence, f is an estimator for the parameter E rY s with a corresponding deviation bound of
δ. Without distributional assumptions, we only expect to estimate such a parameter with error at
best δ “ Op1{

?
nq for a fixed constant probability of failure. On the other hand, the Venn pre-

diction interval rmin fi,max fis often has radius Op1{nq. Thus for valid approximate calibration,
we would need to provide a larger interval than rmin fi,max fis, even though one of the fi’s is
perfectly calibrated. Given this example, our conjecture is that it might be possible to show that
there always exists an fipXq that is

`

n´0.5polylog p1{αqq, α
˘

calibrated. Without knowing which
fipXq to pick, perhaps one can show that an aggregate point in the interval rmin fi,max fis is
ppmax fi ´ min fiq ` n´0.5polylog p1{αq , αq approximately calibrated. In Section 4, we showed
such a result for histogram binning (which can be interpreted as a Venn predictor). It would be
interesting to study if such results can be shown for general Venn predictors.

Another guarantee for multiprobabilistic predictors is calibration in the large.
Definition 5 (Calibration in the large). pf1, f2, . . . fLq is calibrated in the large if the following is
satisfied: E rY s P rEmin fipXq,Emax fipXqs.

Vovk and Petej [45, Theorem 2] show that Venn predictors satisfy calibration in the large. Due to
the expectation signs and the coverage of the marginal probability E rY s, calibration in the large
does not lead to a clear interpretable guarantee for uncertainty quantification, but rather a minimum
requirement that serves as a guiding principle.
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F Auxiliary results

F.1 Concentration inequalities

Theorem 9 (Howard et al. [15], Theorem 4). Suppose Zt P ra, bs a.s. for all t. Let p pZtq be any
ra, bs-valued predictable sequence, and let u be any sub-exponential uniform boundary with crossing
probability α for scale c “ b´ a. Then:

P

¨

˚

˚

˝

@t ě 1 :
∣∣Zt ´ µt∣∣ ă u

ˆ

řt
i“1

´

Zi ´ pZi

¯2
˙

t

˛

‹

‹

‚

ě 1´ 2α.

Theorem 10 (Partial statement of Audibert et al. [2], Theorem 1). Let X1, . . . , Xn be i.i.d. random
variables bounded in r0, ss, for some s ą 0. Let µ “ E rX1s be their common expected value.
Consider the empirical mean Xn and variance Vn defined respectively by

Xn “

řn
i“1Xi

n
, and Vn “

řn
i“1pXi ´Xnq

2

n
.

Then for any δ P p0, 1q, with probability at least 1´ δ,

∣∣Xn ´ µ
∣∣ ďc

2Vn logp3{δq

n
`

3s logp3{δq

n
.

F.2 Uniform-mass binning

Kumar et al. [21] defined well-balanced binning and showed that uniform mass-binning is well-
balanced.
Definition 6 (Well-balanced binning). A binning scheme B of size B is β-well-balanced pβ ě 1q
for some classifier g if

1

βB
ď P pgpXq P Ibq ď

β

B
,

simultaneously for all b P rBs.

To perform uniform-mass binning labeled examples are required at the stage of training the base
classifier gp¨q. We denote this data as D1

cal. Procedures based on uniform-mass binning are well-
balanced if

∣∣D1
cal

∣∣ is sufficiently large.

Lemma 11 (Kumar et al. [21], Lemma 4.3). For a universal constant c ą 0, if
∣∣D1

cal

∣∣ ě cB lnpB{αq,
then with probability at least 1´ α, the uniform mass binning scheme B is 2-well-balanced.

The calibration guarantees in Section 4 depend on the minimum number of training points Nb‹
in any bin. Uniform mass-binning guarantees that Nb‹ “ Ωpn{Bq. This is used in the proof of
Theorem 5.
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