
Learning to Approximate a Bregman Divergence

Ali Siahkamari1 Xide Xia2 Venkatesh Saligrama1 David Castañón1 Brian Kulis1,2

1 Department of Electrical and Computer Engineering
2 Department of Computer Science

Boston University
Boston, MA, 02215

{siaa, xidexia, srv, dac, bkulis}@bu.edu

Abstract

Bregman divergences generalize measures such as the squared Euclidean distance
and the KL divergence, and arise throughout many areas of machine learning.
In this paper, we focus on the problem of approximating an arbitrary Bregman
divergence from supervision, and we provide a well-principled approach to ana-
lyzing such approximations. We develop a formulation and algorithm for learning
arbitrary Bregman divergences based on approximating their underlying convex
generating function via a piecewise linear function. We provide theoretical ap-
proximation bounds using our parameterization and show that the generalization
error Op(m−1/2) for metric learning using our framework matches the known
generalization error in the strictly less general Mahalanobis metric learning setting.
We further demonstrate empirically that our method performs well in comparison to
existing metric learning methods, particularly for clustering and ranking problems.

1 Introduction

Bregman divergences arise frequently in machine learning. They play an important role in clus-
tering [3] and optimization [7], and specific Bregman divergences such as the KL divergence and
squared Euclidean distance are fundamental in many areas. Many learning problems require di-
vergences other than Euclidean distances—for instance, when requiring a divergence between two
distributions—and Bregman divergences are natural in such settings. The goal of this paper is to
provide a well-principled framework for learning an arbitrary Bregman divergence from supervision.
Such Bregman divergences can then be utilized in downstream tasks such as clustering, similarity
search, and ranking.

A Bregman divergence [7] Dφ : X × X → R+ is parametrized by a strictly convex function
φ : X → R such that the divergence of x1 from x2 is defined as the approximation error of the
linear approximation of φ(x1) from x2, i.e. Dφ(x1,x2) = φ(x1) − φ(x2) − ∇φ(x2)T (x1 −
x2). A significant challenge when attempting to learn an arbitrary Bregman divergences is how to
appropriately parameterize the class of convex functions; in our work, we choose to parameterize
φ via piecewise linear functions of the form h(x) = maxk∈[K] a

T
k x + bk, where [K] denotes the

set {1, . . . ,K} (see the left plot of Figure 1 for an example). As we discuss later, such max-affine
functions can be shown to approximate arbitrary convex functions via precise bounds. Furthermore
we prove that the gradient of these functions can approximate the gradient of the convex function that
they are approximating, making it a suitable choice for approximating arbitrary Bregman divergences.

The key application of our results is a generalization of the Mahalanobis metric learning problem
to non-linear metrics. Metric learning is the task of learning a distance metric from supervised
data such that the learned metric is tailored to a given task. The training data for a metric learning
algorithm is typically either relative comparisons (A is more similar to B than to C) [19, 24, 26] or
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