
Self-Distillation Amplifies Regularization
in Hilbert Space

Supplementary Appendix

Hossein Mobahi♣ Mehrdad Farajtabar§ Peter L. Bartlett♣‡

hmobahi@google.com farajtabar@google.com bartlett@eecs.berkeley.edu

♣ Google Research, Mountain View, CA, USA
§ DeepMind, Mountain View, CA, USA

‡ EECS Dept., University of California at Berkeley, Berkeley, CA, USA

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

A Solving the Variational Problem

In this section we derive the solution to the following variational problem,

f∗ � argmin
f∈F

1

K

�

k

�
f(xk)− yk

�2

+ c

�

X

�

X
u(x,x†)f(x)f(x†) dx dx† . (26)

Using Dirac delta function, we can rewrite the objective function as,

f∗ = argmin
f∈F

1

K

�

k

� �

X
f(x)δ(x− xk) dx− yk

�2
+ c

�

X

�

X
u(x,x†)f(x)f(x†) dx dx† . (27)

For brevity, name the objective functional J ,

J(f) � 1

K

�

k

� �

X
f(x)δ(x− xk) dx− yk

�2
+ c

�

X

�

X
u(x,x†)f(x)f(x†) dx dx† . (28)

If f∗ minimizes the J(f), it must be a stationary point of J . That is, J(f + �φ) = J(f), for any φ ∈ F as
� → 0. More precisely, it is necessary for f∗ to satisfy,

∀φ ∈ F ;
� d

d�
J(f∗ + �φ)

�
�=0

= 0 . (29)

We first construct J(f∗ + �φ),

J(f∗ + �φ) =
1

K

�

k

� �

X
[f∗ + �φ](x)δ(x− xk) dx− yk

�2 (30)

+ c

�

X

�

X
u(x,x†)[f∗ + �φ](x)[f∗ + �φ](x†) dx dx† , (31)

or equivalently,

J(f∗ + �φ) =
1

K

�

k

��

X

�
f∗(x) + �φ(x)

�
δ(x− xk) dx− yk

�2

(32)

+ c

�

X

�

X
u(x,x†)

�
f∗(x) + �φ(x)

� �
f∗(x†) + �φ(x†)

�
dx†

�
dx dx† . (33)

Thus,

d

d�
J(f∗ + �φ) (34)

=
1

K

�

k

2
��

X

�
f∗(x�) + �φ(x�)

�
δ(x� − xk) dx

� − yk
�� �

X
φ(x)δ(x− xk) dx

�
(35)

+ c

�

X

�

X
u(x,x†)

�
φ(x)

�
f∗(x†) + �φ(x†)

�
+ φ(x†)

�
f∗(x) + �φ(x)

� �
dx dx† . (36)

Setting � = 0,

� d

d�
J(f∗ + �φ)

�
�=0

=
1

K

�

k

2
� �

X
f∗(x�)δ(x� − xk) dx

� − yk
�� �

X
φ(x)δ(x− xk) dx

�
(37)

+ c

�

X

�

X
u(x,x†)

�
φ(x) f∗(x†) + φ(x†) f∗(x)

�
dx dx† . (38)

By the symmetry of u,

� d

d�
J(f∗ + �φ)

�
�=0

=
1

K

�

k

2
� �

X
f∗(x�)δ(x� − xk) dx

� − yk
�� �

X
φ(x)δ(x− xk) dx

�
(39)

+ 2c

�

X

�

X
u(x,x†)φ(x) f∗(x†) dx dx† . (40)

Factoring out φ,

� d

d�
J(f∗ + �φ)

�
�=0

=

�

X
2φ(x)

� 1

K

�

k

δ(x− xk)
� �

X
f∗(x�)δ(x� − xk) dx

� − yk
�

(41)

+ c

�

X
u(x,x†) f∗(x†) dx†

�
dx . (42)

2

In order for the above to be zero for ∀φ ∈ F , it is necessary that,

1

K

�

k

δ(x− xk)
� �

X
f∗(x�)δ(x� − xk) dx

� − yk
�
+ c

�

X
u(x,x†) f∗(x†) dx† = 0 , (43)

which further simplifies to,

1

K

�

k

δ(x− xk)
�
f∗(xk)− yk

�
+ c

�

X
u(x,x†) f∗(x†) dx† = 0 . (44)

We can equivalently express (44) by the following system of equations,




1
K

�
k δ(x− xk) rk + c

�
X u(x,x†) f∗(x†) dx† = 0

r1 = f∗(x1)− y1
...
rK = f∗(xK)− yK

. (45)

We first focus on solving the first equation in f∗,

1

K

�

k

δ(x− xk) rk + c

�

X
u(x,x†) f∗(x†) dx† = 0 ; (46)

later we can replace the resulted f∗ in other equations to obtain rk’s. Let g(x, t) be a function such that,
�

X
u(x,x†) g(x†, t) dx† = δ(x− t) . (47)

Such g is called the Green’s function of the linear operator L satisfying [Lf](x) =
�
X u(x,x†) f(x†) dx†. If

we multiply both sides of (47) by 1
K

�
k δ(t− xk)rk and then integrate w.r.t. t, we obtain,

�

X

� 1

K

�

k

rkδ(t− xk)

�

X
u(x,x†) g(x†, t) dx†

�
dt (48)

=

�

X

� 1

K

�

k

rkδ(t− xk)δ(x− t)
�
dt . (49)

Rearranging the left hand side leads to,
�

X
u(x,x†)

� 1

K

�

k

�

X
rkδ(t− xk)g(x

†, t) dt
�
dx† (50)

=

�

X

� 1

K

�

k

rkδ(t− xk)δ(x− t)
�
dt . (51)

Using the sifting property of the delta function this simplifies to,
�

X
u(x,x†)

� 1

K

�

k

rkg(x
†,xk)

�
dx† =

1

K

�

k

rkδ(x− xk) . (52)

We can now use the above identity to eliminate 1
K

�
k rkδ(x− xk) in (46) and thus obtain,

�

X
u(x,x†)

� 1

K

�

k

rkg(x
†,xk)

�
dx† + c

�

X
u(x,x†) f∗(x†) dx† = 0 , (53)

or equivalently �

X
u(x,x†)

� 1

K

�

k

rkg(x
†,xk) + c f∗(x†)

�
dx† = 0 . (54)

A sufficient (and also necessary, as u is assumed to have empty null space) for the above to hold is that,

f∗(x) = − 1

cK

�

k

rkg(x,xk) . (55)

We can now eliminate f∗ in the system of equations (45) and obtain a system that only depends on rk’s,




r1 = − 1
cK

�
k rkg(x1,xk)− y1

...
rK = − 1

cK

�
k rkg(xK ,xk)− yK

. (56)

3

This is a linear system in rk and can be expressed in vector/matrix form,

(cI +G)r = −cy . (57)

Thus,
r = −c (cI +G)−1y , (58)

and finally using the definition of f∗ in (55) we obtain,

f∗(x) = −1

c
gT
x r = gT

x (cI +G)−1y . (59)

4

B Equivalent Kernel Regression Problem

Given a positive definite kernel function g(. , .). Recall that the solution of regularized kernel regression after t
rounds of self-distillation has the form,

f∗
t (x) = gT

xG
tΠt

i=0(G+ ciI)
−1y0 . (60)

On the other hand, the solution to a standard kernel ridge regression on the same training data with a positive
definite kernel g† has the form,

f†(x) = g†
x

T
(G† + c0I)

−1y0 , (61)
for which there are standard generalization bounds. We claim f∗

t can be equivalently written in this standard
form by a proper choice of g† (as a function of g). As a result of that, we show the spectrum of the Gram matrix
G† relates to that of G via,

λ†
k = c0

1
Πt

i=0(λk+ci)

λt+1
k

− 1
. (62)

Our strategy for tackling this problem is inspired by the proof technique in Corollary 6.7 of [3]. Let P be the
data-dependent linear operator defined as,

[Ph](x) � 1

K

K�

k=1

h(xk)g(x,xk) . (63)

Let H denote the Reproducing Kernel Hilbert Space associated with g and � . , . �H be the dot product in H. It
is easy to verify that P is a positive definite operator in this space, i.e. it satisfies �h , Ph� > 0 for any h ∈ H
due to,

�h , Ph�H = �h ,
1

K

K�

k=1

h(xk)g(.,xk)� (64)

=
1

K

K�

k=1

h(xk) �h , g(.,xk)�� �� �
h(xk)

(65)

=
1

K

K�

k=1

h2(xk) > 0 , (66)

where we used �h , g(.,x)� = h(x) due to the reproducing property of H. Since P is positive definite, there
exist eigenfunctions φj and eigenvalues λj ≥ 0 that satisfy [Pφj](x) = λjφj(x). Plugging the definition of P
into this identity yields,

1

K

K�

k=1

φj(xk)g(x,xk) = λjφj(x) . (67)

In particular, evaluating the latter identity at the points x ∈ ∪K
p=1{xp} gives 1

K

�K
k=1 φj(xk)g(xp,xk) =

λjφj(xp) for p = 1, . . . ,K. Recalling that G is evaluation of 1
K
g(. , .) at pairs of points across ∪K

k=1{xk},
this identity be expressed equivalently as,

Gφj = λjφj . (68)
This implies φj is an eigenvector of G with corresponding eigenvalue of λj for any j that Gφj �= 0. Thus, by
sorting φj in non-increasing order of λj , and placing them for j = 1, . . . ,K into the matrix Φ and the diagonal
matrix Λ respectively, we obtain,

Φ = V , Λ = D . (69)
Since the eigenvectors of GtΠt

i=0(G+ ciI)
−1 are the same as those of G (adding a multiple of I or applying

matrix inversion do not change eigenvectors), and the eigenvectors of G as showed in (68) are Φ, we can write,

GtΠt
i=0(G+ ciI)

−1 = ΦTΛtΠt
i=0(Λ+ ciI)

−1Φ . (70)

On the other hand, using the same vector notation and recalling that g is the evaluation of 1
K
g(. , xk) at

k = 1, . . . ,K, we can express (67) as φT
j gx = λjφj(x). Expressing this simultaneously for j = 1, . . . ,K

yields Φgx = Λφx, or equivalently
gx = ΦTΛφx , (71)

where φx � [φ1(x), . . . ,φK(x)]. Plugging (70) and (71) with into (60) gives,

f∗
t (x) = gT

xG
tΠt

i=0(G+ ciI)
−1y0 (72)

= φT
xΛΦΦTΛtΠt

i=0(Λ+ ciI)
−1Φy0 (73)

= φT
xΛ

t+1Πt
i=0(Λ+ ciI)

−1Φy0 . (74)

5

Suppose g† is a positive definite kernel and let [P †h](x) � 1
K

�K
k=1 h(xk)g

†(x,xi). We assume the operator
P † shares the same eigenfunction as those of P , but varies in its eigenvalues λ†

j ≥ 0, i.e. [P †φj](x) = λ†
jφj(x).

Thus, by a similar argument, the solution of (61) can be written as,

f†(x) = φT
xΛ

†(Λ† + c0I)
−1Φy0 , (75)

Thus in order to have f† = f∗
t , it is sufficient to have,

Λt+1Πt
i=0(Λ+ ciI)

−1 = Λ†(Λ† + c0I)
−1 . (76)

Since the matrices above are all diagonal, this can be expressed equivalently as,

λt+1
k

Πt
i=0(λk + ci)

=
λ†
k

λ†
k + c0

. (77)

Solving in λ†
k yields,

λ†
k = c0

1
Πt

i=0(λk+ci)

λt+1
k

− 1
. (78)

Note that this is a valid solution for λ†
k, i.e. it satisfies the requirement λ†

k ≥ 0. This is because ωk �
λt+1
k

Πt
i=0(λk+ci)

always satisfies6 0 < ωk < 1 and that the function λ†
k(ωk) � c0

1
1

ωk
−1

is well-defined (ωk �= 0)

and is increasing when 0 < ωk < 1.

6This is due to the conditions λk > 0 (recall we assume G is full-rank) and ci > 0.

6

C Proofs

Proposition 1 The variational problem (9) has a solution of the form,

f∗(x) = gT
x (cI +G)−1y . (79)

See Appendix A for a proof.

Proposition 2 The following identity holds,

1

K

�

k

�
f∗(xk)− yk

�2
=

1

K

�

k

(zk
c

c+ dk
)2 . (80)

Proof
1

K
(f∗(xk)− yk)

2 (81)

=
1

K

�
gT
xk

(cI +G)−1y − yk
�2 (82)

=
1

K

��G(cI +G)−1y − y
��2 (83)

=
1

K

��V TD(cI +D)−1V y − y
��2

, (84)

which after exploiting rotation invariance property of �.� and the fact that the matrix of eigenvectors V is a
rotation matrix, can be expressed as,

1

K
(f∗(xk)− yk)

2 (85)

=
1

K

��V TD(cI +D)−1V y − y
��2 (86)

=
1

K

��V V TD(cI +D)−1V y − V y
��2 (87)

=
1

K

��D(cI +D)−1z − z
��2 (88)

=
1

K

���
�
D(cI +D)−1 − I

�
z
���
2

(89)

=
1

K

�

k

(
dk

c+ dk
− 1)2z2k (90)

=
1

K

�

k

(zk
c

c+ dk
)2 , (91)

�

Proposition 3 For any t ≥ 0, if �zi� >
√
K � for i = 0, . . . , t, then,

�zt� ≥ at(κ)�z0� −
√
K � b(κ)

at(κ)− 1

a(κ)− 1
, (92)

where,

a(x) � (r0 − 1)2 + x(2r0 − 1)

(r0 − 1 + x)2
(93)

b(x) � r20x

(r0 − 1 + x)2
(94)

r0 � 1√
K �

�z0� , κ � dmax

dmin
. (95)

Proof We start from the identity we obtained in (17). By diving both sides of it by
√
K � we obtain,

1√
K �

zt = D(
αt

√
K �

�zt−1� −
√
K �

I +D)−1 1√
K �

zt−1 , (96)

where,
dmin ≤ αt ≤ dmax . (97)

7

Note that the matrix D(αt
√

K �

�zt−1�−
√
K �

I + D)−1 in the above identitiy is diagonal and its k’th entry can be
expressed as,

�
D(

αt

√
K �

�zt−1� −
√
K �

I +D)−1�[k, k] = dk
αt

√
K �

�zt−1�−
√
K �

+ dk
=

1
αt
dk

�zt−1�√
K �

−1
+ 1

. (98)

Thus, as long as �zt−1� >
√
K� we can get the following upper and lower bounds,

1
dmax
dmin

�zt−1�√
K �

−1
+ 1

≤
�
D(

αt

√
K �

�zt−1� −
√
K �

I +D)−1�[k, k] ≤ 1
dmin
dmax

�zt−1�√
K �

−1
+ 1

. (99)

Putting the above fact beside recurrence relation of zt in (96), we can bound 1√
K �

�zt� as,

1
κ

rt−1−1
+ 1

rt−1 ≤ rt ≤ 1
1
κ

rt−1−1
+ 1

rt−1 , (100)

where we used short hand notation,

κ � dmax

dmin
(101)

rt � 1√
K �

�zt� . (102)

Note that κ is the condition number of the matrix G and by definition satisfies κ ≥ 1. To further simplify the
bounds, we use the inequality7,

1
1
κ

rt−1−1
+ 1

rt−1 ≤ rt−1

(r0 − 1)2 + 1
κ
(2r0 − 1)

(r0 − 1 + 1
κ
)2

− r20
1
κ

(r0 − 1 + 1
κ
)2

, (103)

and8,
1

κ
rt−1−1

+ 1
rt−1 ≥ rt−1

(r0 − 1)2 + κ(2r0 − 1)

(r0 − 1 + κ)2
− r20κ

(r0 − 1 + κ)2
. (104)

For brevity, we introduce,

a(x) � (r0 − 1)2 + x(2r0 − 1)

(r0 − 1 + x)2
(105)

b(x) � r20x

(r0 − 1 + x)2
. (106)

Therefore, the bounds can be expressed more concisely as,

a(κ) rt−1 − b(κ) ≤ rt ≤ a(
1

κ
) rt−1 − b(

1

κ
) . (107)

Now since both rt−1 � 1√
K �

�zt−1� and a(κ) or a(1
κ
) are non-negative, we can solve the recurrence9 and

obtain,

at(κ)r0 − b(κ)
at(κ)− 1

a(κ)− 1
≤ rt ≤ at(

1

κ
)r0 − b(

1

κ
)
at(1

κ
)− 1

a(1
κ
)− 1

. (108)

7This follows from concavity of x
1
κ

x−1
+1

in x as long as x − 1 ≥ 0 (can be verified by observing that the

second derivative of the function is negative when x− 1 ≥ 0 because κ > 1 by definition). For any function
f(x) that is concave on the interval [x, x], any line tangent to f forms an upper bound on f(x) over [x, x]. In
particular, we use the tangent at the end point x to construct our bound. In our setting, this point which happens
to be r0. The latter is because rt is a decreasing sequence (see beginning of Section 3.2) and thus its largest
values is at t = 0.

8Similar to the earlier footnote, this follows from convexity of x
κ

x−1
+1

in x as long as x− 1 ≥ 0 since κ > 1

by definition. For any function f(x) that is convex on the interval [x, x], any line tangent to f forms an lower
bound on f(x) over [x, x]. In particular, we use the tangent at the end point x to construct our bound, which as
the earlier footnote, translate into r0.

9More compactly, the problem can be stated as α†rt−1−b ≤ rt ≤ αrt−1−b, where α > 0 and α† > 0. Let’s
focus on rt ≤ αrt−1 − b, as the other case follows by similar argument. Start from the base case r1 ≤ αr0 − b.
Since α > 0, we can multiply both sides by that and then add −b to both sides: αr1 − b ≤ α2r0 − b(α+ 1).
On the other hand, looking at the recurrence rt ≤ αrt−1 − b at t = 2 yields r2 ≤ αr1 − b. Combining
the two inequalities gives r2 ≤ α2r0 − b(α + 1). By repeating this argument we obtain the general case
rt ≤ αtr0 − b(

�t−1
j=0 α

j).

8

�

Proposition 4 Starting from �y0� >
√
K �, meaningful (non-collapsing solution) self-distillation is possible at

least for t rounds,

t �
�y0�√
K �

− 1

κ
. (109)

Proof Recall that the assumption �zt� >
√
K � translates into rt > 1. We now obtain a sufficient condition

for rt > 1 by requiring a lower bound on rt to be greater than one. For that purpose, we utilize the lower bound
we established in (108),

rt � at(κ)r0 − b(κ)
at(κ)− 1

a(κ)− 1
. (110)

Setting the above to value 1 implies,

rt = 1 ⇒ t =
log

� 1−a(κ)+b(κ)
b(κ)+r0(1−a(κ))

�

log
�
a(κ)

� =

log
� 1+κ−1

r20

1+κ−1
r0

�

log
�
1− (κ−1

r0
+ 1

r0
)(κ−1

r0
)

(1+κ−1
r0

)2

� . (111)

Observe that,

log
� 1+κ−1

r20

1+κ−1
r0

�

log
�
1− (κ−1

r0
+ 1

r0
)(κ−1

r0
)

(1+κ−1
r0

)2

� ≥ r0 − 1

κ
, (112)

Thus,

t ≥ r0 − 1

κ
=

�z0�√
K �

− 1

κ
=

�z0�√
K �

− 1

κ
=

�y0�√
K �

− 1

κ
. (113)

�

Theorem 5 Suppose �y0� >
√
K � and t ≤ �y0�

κ
√

K �
− 1

κ
. Then for any pair of diagonals of D, namely dj and

dk, with the condition that dk > dj , the following inequality holds.

Bt−1[k, k]

Bt−1[j, j]
≥




�y0�√
K �

− 1 + dmin
dj

�y0�√
K �

− 1 + dmin
dk




t

. (114)

Proof We start with the definition of At from (13) and proceed as,

At[k, k]

At[j, j]
=

1 + ct
dj

1 + ct
dk

. (115)

Since the derivative of the r.h.s. above w.r.t. ct is non-negative as long as dk ≥ dj , it is non-decreasing in ct.
Therefore, we can get a lower bound on r.h.s. using a lower bound on ct (denoted by ct),

At[k, k]

At[j, j]
≥

1 +
ct
dj

1 +
ct
dk

. (116)

Also, since the assumption t ≤ �y0�
κ
√
K �

− 1
κ

guarantees non-collapse conditions ct > 0 and �zt� >
√
K �, we

can apply (16) and have the following lower bound on ct

ct ≥ dmin

√
K �

�zt� −
√
K �

. (117)

Since the r.h.s. (117) is decreasing in �zt�, the smallest value for the r.h.s. is attained by the largest value of
�zt�. However, as �zt� is decreasing in t (see beginning of Section 3.2), its largest value is attained at t = 0.
Putting these together we obtain,

ct ≥ dmin

√
K �

�z0� −
√
K �

. (118)

Using the r.h.s. of the above as ct and applying it to (116) yields,

At[k, k]

At[j, j]
≥

�z0�√
K �

− 1 + dmin
dj

�z0�√
K �

− 1 + dmin
dk

. (119)

9

Notice that both sides of the inequality are positive; At based on its definition in (13) and r.h.s. by the fact that
�z0� ≥

√
K �. Therefore, we can instantiate the above inequality at each distillation step i, for i = 0, . . . , t− 1,

and multiply them to obtain,

Πt−1
i=0

Ai[k, k]

Ai[j, j]
≥

� �z0�√
K �

− 1 + dmin
dj

�z0�√
K �

− 1 + dmin
dk

�t
. (120)

or equivalently,

Bt−1[k, k]

Bt−1[j, j]
≥

� �z0�√
K �

− 1 + dmin
dj

�z0�√
K �

− 1 + dmin
dk

�t
. (121)

�

Theorem 6 Suppose �y0� >
√
K �. Then the sparsity index SBt−1 (where t = �y0�

κ
√
K �

− 1
κ

is number of
guaranteed self-distillation steps before solution collapse) “decreases” in �, i.e. lower � yields higher sparsity.

Furthermore at the limit � → 0, the sparsity index has the form,

lim
�→0

SBt−1 = e
dmin

κ
mink∈{1,2,...,K−1}(

1
dk

− 1
dk+1

)
. (122)

Proof We first show that the sparsity index is decreasing in �. We start from the definition of the sparsity index
SBt−1 in (24) which we repeat below,

SBt−1 = min
k∈{1,2,...,K−1}




�y0�√
K �

− 1 + dmin
dk

�y0�√
K �

− 1 + dmin
dk+1




�y0�
κ

√
K �

− 1
κ

. (123)

For brevity, we define base and exponent as,

b �
m+ dmin

dk

m+ dmin
dk+1

(124)

p � m

κ
(125)

m � �y0�√
K �

− 1 , (126)

so that,
SBt−1(�) = bp . (127)

The derivative is thus,

d

d�
SBt−1 (128)

=
dSBt−1

dm

dm

d�
(129)

=
�
bp
�p bm

b
+ pm log(b)

�� �dm
d�

�
(130)

= bp
�p bm

b
+ pm log(b)

� �
− 1

2�
(m+ 1)

�
(131)

= bp
� p

m+ dmin
dk

− p

m+ dmin
ak+1

+
1

κ
log(b)

� �
− 1

2�
(m+ 1)

�
(132)

=
bp

κ

� m

m+ dmin
dk

− m

m+ dmin
ak+1

+ log(b)
� �

− 1

2�
(m+ 1)

�
(133)

=
bp

κ

� 1

1 + dmin
mdk

− 1

1 + dmin
mak+1

+ log(b)
� �

− 1

2�
(m+ 1)

�
(134)

=
bp

κ

� 1

1 + dmin
mdk

− 1

1 + dmin
mak+1

+ log(
1 + dmin

mdk

1 + dmin
mdk+1

)
� �

− 1

2�
(m+ 1)

�
(135)

=
bp

κ

� 1

1 + dmin
mdk

+ log(1 +
dmin

mdk
) − 1

1 + dmin
mak+1

− log(1 +
dmin

mdk+1
)
� �

− 1

2�
(m+ 1)

�
.(136)

10

We now focus on the first parentheses. Define the function e(x) � 1
x
+ log(x). Thus we can write the contents

in the first parentheses more compactly,

1

1 + dmin
mdk

+ log(1 +
dmin

mdk
) − 1

1 + dmin
mak+1

− log(1 +
dmin

mdk+1
) (137)

= e(1 +
dmin

mdk
)− e(1 +

dmin

mdk+1
) . (138)

However, e�(x) = x−1
x2 , thus when x > 1 the function e�(x) is positive. Consequently, when x > 1 e(x) is

increasing. In fact, since both dmin
mdk

and dmin
mdk

are positive, the arguments of e satsify the condition of being

greater that 1 and thus e is increasing. On the other hand, since dk+1 > dk it follows that 1+ dmin
mdk

> 1+ dmin
mdk+1

,

and thus by leveraging the fact that e is increasing we obtain e(1+ dmin
mdk

) > e(1+ dmin
mdk+1

). Finally by plugging
the definition of e we obtain,

1

1 + dmin
mdk

+ log(1 +
dmin

mdk
) >

1

1 + dmin
mak+1

+ log(1 +
dmin

mdk+1
) . (139)

It is now easy to determine the sign of d
d�
S as shown below,

d

d�
SBt−1 (140)

=
bp

κ����
positive

� 1

1 + dmin
mdk

+ log(1 +
dmin

mdk
) − 1

1 + dmin
mak+1

− log(1 +
dmin

mdk+1
)

� �� �
positive

� �
− 1

2�
(m+ 1)

� �� �
negative

�
.(141)

By showing that d
d�
SBt−1 < 0 we just proved SBt−1 is decreasing in �.

We now focus on the limit case � → 0. First note due to the identity m = �y0�√
K �

− 1 we have the following
identity,

lim
�→0

min
k∈{1,2,...,K−1}




�y0�√
K �

− 1 + dmin
dk

�y0�√
K �

− 1 + dmin
dk+1




�y0�
κ

√
K �

− 1
κ

(142)

= lim
m→∞

min
k∈{1,2,...,K−1}

�
m+ dmin

dk

m+ dmin
dk+1

� 1
κ
m

. (143)

Further, since pointwise minimum of continuous functions is also a continuous function, we can move the limit
inside the minimum,

lim
m→∞

min
k∈{1,2,...,K−1}

�
m+ dmin

dk

m+ dmin
dk+1

� 1
κ
m

(144)

= min
k∈{1,2,...,K−1}

lim
m→∞

�
m+ dmin

dk

m+ dmin
dk+1

� 1
κ
m

(145)

= min
k∈{1,2,...,K−1}

e

dmin
dk

− dmin
dk+1

κ (146)

= min
k∈{1,2,...,K−1}

e
dmin

κ
(1
dk

− 1
dk+1

)
(147)

= e
dmin

κ
mink∈{1,2,...,K−1}(

1
dk

− 1
dk+1

)
, (148)

where in (146) we used the identity limx→∞ f(x)g(x) = elimx→∞
�
f(x)−1

� �
g(x)

�
and in (148) we used the

fact that e
dmin

κ
x is monotonically increasing in x (because dmin

κ
> 0).

�

11

D More on Experiments

D.1 Setup Details

We used Adam optimizer with learning rates of 0.001 and 0.0001 for CIFAR-10 and CIFAR-100, respectively.
They are trained up to 64000 steps with batch size equal to 16 and 64 for CIFAR-10 and CIFAR-100, respectively.
In all the experiments, we slightly regularize the training by weight decay regularization added to the fitting loss
with its coefficient set to 0.0001 and 0.00005 for CIFAR-10 and CIFAR-100, respectively. Training and test is
performed on the standard (50000 train-10000 test) split of the CIFAR dataset. Most of the experiments are
conducted using Resnet-50 [12] and CIFAR-10 and CIFAR-100 datasets [18]. However, we briefly validate our
results on VGG-16 [30] too.

D.2 �2 Loss on Neural Network Predictions

Figure 4 shows the full results on CIFAR-10 and Resnet-50. The train and test accuracies have already been
discussed in the main paper and are copied here to facilitate comparison. However, in this subsection, we
demonstrated the loss of the trained model at all steps with respect to the original ground truth data too. This
may help establish an intuition on how self-distillation is regularizing the training on the original data. Looking
at the train loss we can see it first drops as the regularization is amplified and then increases while the model
under-fits. This, again, suggests that the mechanism that self-distillation employs for regularization is different
from early stopping. For CIFAR-100 the results in Figure 5 show a similar trend.

� � � � � �

����

�����

�����

�����

�����

�����

��
�
��
�
�
�
�
��
�
�

� � � � � �

����

����

����

����

����

����

����

����

����

��
�
��
��
�
�
�
��

�
�

� � � � � �

����

�����

�����

�����

�����

�����

�����

�
�
�
�
��
�
��
�
�
�

� � � � � �

����

�����

�����

�����

�����

�����

�����

�
�
�
��
��
�
��
�
�
�

Figure 4: Self distillation results with �2 loss of neural network predictions for Resnet-50 and
CIFAR-10

� � � � �

����

�����

�����

�����

�����

�����

�����

�����

�����

��
�
��
�
�
�
�
��
�
�

� � � � �

����

����

����

����

����

����

����

����

��
�
��
��
�
�
�
��

�
�

� � � � �

����

������

������

������

������

������

������

������

�
�
�
�
��
�
��
�
�
�

� � � � �

����

������

������

������

������

������

������

������

�
�
�
��
��
�
��
�
�
�

Figure 5: Self distillation results with �2 loss of neural network predictions for Resnet-50 and
CIFAR-100

D.3 Self-distillation on Hard Labels

One might wonder how self-distillation would perform if we replace the neural network (soft) predictions with
hard labels. In other words, the teacher’s predictions are turned into one-hot-vector via argmax and they are
treated like a dataset with augmented labels. Of-course, since the model is already over-parameterized and
trained close to interpolation regime only a small fraction of labels will change. Figures 6 and 7 show the results
of self distillation using cross entropy loss on labels predicted by the teacher model. Surprisingly, self-distillation
improves the performance here too. This observation may be related to learning under noisy dataset and calls for
more future work on this interesting case.

12

� � � � � �� ��

����

�����

�����

�����

�����

�����

�����

�����

��
�
��
�
�
�
�
��
�
�

� � � � � �� ��

����

����

����

����

����

����

����

����

����

��
�
��
��
�
�
�
��

�
�

Figure 6: Self distillation results with cross entropy loss on hard labels for Resnet-50 and CIFAR-10

� � � � � �

����

�����

�����

�����

�����

�����

�����

��
�
��
�
�
�
�
��
�
�

� � � � � �

����

����

����

����

����

����

��
�
��
��
�
�
�
��

�
�

Figure 7: Self distillation results with cross entropy loss on hard labels for Resnet-50 and CIFAR-100

D.4 Self-Distillation versus Early Stopping.

By looking at the fall of the training accuracy over self-distillation round, one may wonder if early stopping (in
the sense of choosing a larger error tolerance � for training) would lead to similar test performance. However, in
Section 3.4 we discussed that self-distillation and early stopping have different regularization effects. Here we
try to verify that. Specifically, we record the training loss value at the end of each self-distillation round. We
then train a batch of models from scratch until each batch converges to one of the recorded loss values. If the
regularization induced by early stopping was the same as self-distillation, then we should have seen similar test
performance between a self-distilled model that achieves a specific loss value on the original training labels, and
a model that stops training as soon as it reaches the same level of error. However, Figure 8 verifies that these two
have different regularization effects.

� � � � � �

����

�����

�����

�����

�����

�����

�����

��
�
��
�
�
�
�
��
�
�

�������������� �����������������

� � � � � �

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
�
��
�
�
�
�
��
�
�

�������������� �����������������

Figure 8: Self-distillation compared to early stopping for Resnet50 and CIFAR-10 using �2 and cross
entropy loss, respectively.

Self-Distillation on Other Networks. Figure 9 shows the performance of �2 distillation on CIFAR-100
using VGG network. This result aims to show that the theory and empirical findings are not dependent to a
specific structure and apply to architectures beyond Resnet.

13

� � � � � � �

����

����

����

����

����

����

��
�
��
�
�
�
�
��
�
�

� � � � � � �

����

����

����

����

����

����

��
�
��
��
�
�
�
��

�
�

Figure 9: Self-distillation with �2 loss using VGG16 Network on CIFAR-100.

E Mathematica Code To Reproduce Illustrative Example

x = (Table[i, {i, −5, 5}]/5 + 1)/2;
y = Sin[x*2*Pi] +
RandomVariate[NormalDistribution[0, 0.5], Length[x]]

ListPlot[y]

(* UNCOMMENT IF YOU WISH TO USE EXACT SAME RANDOM SAMPLES IN THE PAPER *)
(* y = {0.38476636465198066‘,
1.2333967683416893‘, 1.33232242218057‘,
0.6920159488889518‘, −0.29756145531871736‘, −0.24189291901377769‘, \

−0.7964485769175675‘, −0.9616480167034174‘, −0.49672509509916934‘, \
−0.3469066003991437‘, 0.5589512650600734‘}; *)

(******** PLOT GREEN’S FUNCTION g0(X,T) FOR OPERATOR d^4/dx^4 ********)

g0 = 1/6*Max[{(T − X)^3, 0}] − 1/6*T*(1 − X)*(T^2 − 2*X + X^2);
ContourPlot[g0, {X, 0, 1}, {T, 0, 1}]
Plot3D[g0, {X, 0, 1}, {T, 0, 1}]

(***** COMPUTE g AND G *****)

G = Table[
g0 /. X −> ((i/5 + 1)/2) /. T −> ((j/5 + 1)/2), {i, −5, 5}, {j, −5,
5}];

g = Transpose[{Table[g0 /. T −> ((j/5 + 1)/2), {j, −5, 5}]}];

(***** PLOT GROUND−TRUTH FUNCTION (ORANGE) AND OVERFIT FUNCTION \
(BLUE) *****)
FNoReg = (Transpose[g].Inverse[

G + 0.0000000001*IdentityMatrix[Length[x]]].Transpose[{y}])[[1,
1]];

pts = Table[{x[[i]], y[[i]]}, {i, 1, Length[x]}];
Show[{ListPlot[pts], Plot[{FNoReg, Sin[X*2*Pi]}, {X, 0, 1}]}]

(***** PARAMETERS *****)
MaxIter = 10;
eps = 0.045;

(***** SUBROUTINES *****)
Loss[G_, yin_, c_] := Module[

{t = (G.Inverse[c*IdentityMatrix[Length[yin]] + G] −
IdentityMatrix[Length[x]]).yin},

Total[Flatten[t]^2]/Length[yin]
];

FindRootsC[f_, c_] := Module[
{Sol = Quiet[Solve[f == 0, c]], Sel},
Sel = Select[
c /. Sol, (Abs[Im[#]] < 0.00000001) && # > 0.00000001 &]

14

];

(***** MAIN *****)

(* Initialization *)
y0 = Transpose[{y}];
ycur = y0;
B = IdentityMatrix[Length[x]];
FunctionSequence = {};
ASequence = {};
BSequence = {};

(* Self−Distllation Loop *)
For[i = 1;, i < MaxIter, i++,
Print["Iteration ", i];
Print["Norm[y]=", Norm[ycur]];
L = Loss[G, ycur, c];
RootsC = FindRootsC[L − eps, c];
Switch [Length[RootsC], 0, (Print["No Root"]; Break[];), 1,
Print["Found Unique Root c=", RootsC[[1]]];];
(* Now that root is unique *)
RootC = RootsC[[1]];
Print["Achieved Loss Value ", Loss[G, ycur, RootC]];
U = G.Inverse[G + RootC*IdentityMatrix[Length[ycur]]];
A = DiagonalMatrix[Eigenvalues[U]];
f = (Transpose[g].Inverse[

G + RootC*IdentityMatrix[Length[ycur]]].ycur)[[1, 1]];
B = B.A;
ycur = U.ycur;

FunctionSequence = Append[FunctionSequence, f];
ASequence = Append[ASequence, Diagonal[A]];
BSequence = Append[BSequence, Diagonal[B]];
]

If[i == MaxIter, Print["Max Iterations Reached!"]]

Plot[FunctionSequence, {X, 0, 1}]
BarChart[ASequence, ChartStyle −> "DarkRainbow", AspectRatio −> 0.2,
ImageSize −> Full]
BarChart[BSequence, ChartStyle −> "DarkRainbow", AspectRatio −> 0.2,
ImageSize −> Full]

15

F Python Implementation

Implementing self-distillation is quite straight forward provided with merely a customized loss that replaces
the ground-truth labels with teacher predictions. Here, we provide a Tensorflow implementation of the self-
distillation loss function:

1 def self_distillation_loss (labels , logits , model , reg_coef ,
2 teacher=None , data=None):
3 if teacher is None:
4 main_loss = tf.reduce_mean (tf.squared_difference (
5 labels , tf.nn.softmax(logits)))
6 else:
7 main_loss = tf.reduce_mean (tf.squared_difference (
8 tf.nn.softmax(teacher(data)), tf.nn.softmax(logits)))
9 reg_loss = reg_coef*tf.add_n ([tf.nn.l2_loss(w) for w

10 in model.trainable_weights])
11 total_loss = main_loss + reg_loss
12 return total_loss

The following snippet also demonstrates how one can use the above loss function to train a neural network using
self-distillation.

1 def self_distillation_train (model , train_dataset , optimizer ,
2 reg_coef , epochs , teacher=None):
3 for epoch in range(epochs):
4 for iter , (x_batch_train ,
5 y_batch_train) in enumerate(train_dataset):
6 with tf.GradientTape () as tape:
7 logits = model(x_batch_train , training=True)
8 loss_value =
9 self_distillation_loss (y_batch_train , logits , model ,

10 reg_coef , teacher , x_batch_train)
11 grads = tape.gradient(loss_value , model.trainable_weights)
12 optimizer.apply_gradients (
13 zip(grads , model.trainable_weights))
14 return model
15
16 teacher = None
17 reg_coef =1e-4
18 epochs =30
19 for step in range(distillation_steps):
20 model = get_resnet_model ()
21 optimizer = keras.optimizers.Adam(learning_rate =learning_rate)
22 model = self_distillation_train (
23 model , train_dataset , optimizer , reg_coef , epochs , teacher)
24 teacher = model

16

