
Adaptive Gradient Quantization
for Data-Parallel SGD

Fartash Faghri1,2∗ Iman Tabrizian1,2∗ Ilia Markov3 Dan Alistarh3,4

Daniel M. Roy1,2 Ali Ramezani-Kebrya2

1University of Toronto 2Vector Institute 3IST Austria 4NeuralMagic

faghri@cs.toronto.edu iman.tabrizian@mail.utoronto.ca alir@vectorinstitute.ai

Abstract

Many communication-efficient variants of SGD use gradient quantization schemes.
These schemes are often heuristic and fixed over the course of training. We
empirically observe that the statistics of gradients of deep models change during
the training. Motivated by this observation, we introduce two adaptive quantization
schemes, ALQ and AMQ. In both schemes, processors update their compression
schemes in parallel by efficiently computing sufficient statistics of a parametric
distribution. We improve the validation accuracy by almost 2% on CIFAR-10 and
1% on ImageNet in challenging low-cost communication setups. Our adaptive
methods are also significantly more robust to the choice of hyperparameters.

1 Introduction

0 2 4 6 8
Iterations 1e4

0.8

0.9

1.0

1.1

Av
er

ag
e

Va
ria

nc
e

1e−3

Figure 1: Changes in the average variance of
normalized gradient coordinates in a ResNet-
32 model trained on CIFAR-10. Colors dis-
tinguish different runs with different seeds.
Learning rate is decayed by a factor of 10
twice at 40K and 60K iterations. The vari-
ance changes rapidly during the first epoch.
The next noticeable change happens after the
first learning rate drop and another one ap-
pears after the second drop.

Stochastic gradient descent (SGD) and its variants are cur-
rently the method of choice for training deep models. Yet,
large datasets cannot always be trained on a single com-
putational node due to memory and scalability limitations.
Data-parallel SGD is a remarkably scalable variant, in par-
ticular on multi-GPU systems [1–10]. However, despite its
many advantages, distribution introduces new challenges
for optimization algorithms. In particular, data-parallel
SGD has large communication cost due to the need to
transmit potentially huge gradient vectors. Ideally, we
want distributed optimization methods that match the per-
formance of SGD on a single hypothetical super machine,
while paying a negligible communication cost.

A common approach to reducing the communication cost
in data-parallel SGD is gradient compression and quan-
tization [4, 11–16]. In full-precision data-parallel SGD,
each processor broadcasts its locally computed stochastic
gradient vector at every iteration, whereas in quantized
data-parallel SGD, each processor compresses its stochas-
tic gradient before broadcasting. Current quantization
methods are either designed heuristically or fixed prior to training. Convergence rates in a stochastic
optimization problem are controlled by the trace of the gradient covariance matrix, which is referred

∗Equal contributions.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

as the gradient variance in this paper [17]. As Fig. 1 shows, no fixed method can be optimal through-
out the entire training because the distribution of gradients changes. A quantization method that is
optimal at the first iteration will not be optimal after only a single epoch.

In this paper, we propose two adaptive methods for quantizing the gradients in data-parallel SGD.
We study methods that are defined by a norm and a set of quantization levels. In Adaptive Level
Quantization (ALQ), we minimize the excess variance of quantization given an estimate of the
distribution of the gradients. In Adaptive Multiplier Quantization (AMQ), we minimize the same
objective as ALQ by modelling quantization levels as exponentially spaced levels. AMQ solves for
the optimal value of a single multiplier parametrizing the exponentially spaced levels.

1.1 Summary of contributions

• We propose two adaptive gradient quantization methods, ALQ and AMQ, in which processors
update their compression methods in parallel.

• We establish an upper bound on the excess variance for any arbitrary sequence of quantization
levels under general normalization that is tight in dimension, an upper bound on the expected
number of communication bits per iteration, and strong convergence guarantees on a number of
problems under standard assumptions. Our bounds hold for any adaptive method, including ALQ
and AMQ.

• We improve the validation accuracy by almost 2% on CIFAR-10 and 1% on ImageNet in challenging
low-cost communication setups. Our adaptive methods are significantly more robust to the choice
of hyperparameters.2

1.2 Related work

Adaptive quantization has been used for speech communication and storage [18]. In machine
learning, several biased and unbiased schemes have been proposed to compress networks and
gradients. Recently, lattice-based quantization has been studied for distributed mean estimation and
variance reduction [19]. In this work, we focus on unbiased and coordinate-wise schemes to compress
gradients.

Alistarh et al. [20] proposed Quantized SGD (QSGD) focusing on the uniform quantization of
stochastic gradients normalized to have unit Euclidean norm. Their experiments illustrate a similar
quantization method, where gradients are normalized to have unit L∞ norm, achieves better perfor-
mance. We refer to this method as QSGDinf or Qinf in short. Wen et al. [15] proposed TernGrad,
which can be viewed as a special case of QSGDinf with three quantization levels.

Ramezani-Kebrya et al. [21] proposed nonuniform quantization levels (NUQSGD) and demonstrated
superior empirical results compared to QSGDinf. Horváth et al. [22] proposed natural compression
and dithering schemes, where the latter is a special case of logarithmic quantization.

There have been prior attempts at adaptive quantization methods. Zhang et al. [23] proposed ZipML,
which is an optimal quantization method if all points to be quantized are known a priori. To find
the optimal sequence of quantization levels, a dynamic program is solved whose computational and
memory cost is quadratic in the number of points to be quantized, which in the case of gradients
would correspond to their dimension. For this reason, ZipML is impractical for quantizing on the fly,
and is in fact used for (offline) dataset compression. They also proposed an approximation where
a subsampled set of points is used and proposed to scan the data once to find the subset. However,
as we show in this paper, this one-time scan is not enough as the distribution of stochastic gradients
changes during the training.

Zhang et al. [24] proposed LQ-Net, where weights and activations are quantized such that the inner
products can be computed efficiently with bitwise operations. Compared to LQ-Net, our methods do
not need additional memory for encoding vectors. Concurrent with our work, Fu et al. [25] proposed
to quantize activations and gradients by modelling them with Weibull distributions. In comparison,
our proposed methods accommodate general distributions. Further, our approach does not require
any assumptions on the upper bound of the gradients.

2Open source code: http://github.com/tabrizian/learning-to-quantize

2

http://github.com/tabrizian/learning-to-quantize

Input: Local data, parameter vector (local copy) wt, learning rate α, and set of update steps U
1 for t = 1 to T do
2 if t ∈ U then
3 for i = 1 to M do
4 Compute sufficient statistics and update quantization levels `;
5 for i = 1 to M do
6 Compute gi(wt), encode ci,t ← ENCODE`

(
gi(wt)

)
, and broadcast ci,t;

7 for j = 1 to M do
8 Receive ci,t from each processor i and decode ĝi(wt)← DECODE`

(
ci,t
)
;

9 Aggregate wt+1 ← PΩ

(
wt − α

M

∑M
i=1 ĝi(wt)

)
;

Algorithm 1: Adaptive data-parallel SGD. Loops are executed in parallel on each machine. At
certain steps, each processor computes sufficient statistics of a parametric distribution to estimate
distribution of normalized coordinates.

2 Preliminaries: data-parallel SGD

Consider the problem of training a model parametrized by a high-dimensional vector w ∈ Rd. Let
Ω ⊆ Rd denote a closed and compact set. Our goal is to minimize f : Ω → R. Assume we have
access to unbiased stochastic gradients of f , which is g, such that E[g(w)] = ∇f(w) for all w ∈ Ω.

The update rule for full-precision SGD is given by wt+1 = PΩ

(
wt − αg(wt)) where wt is the

current parameter vector, α is the learning rate, and PΩ is the Euclidean projection onto Ω. We
consider data-parallel SGD, which is a synchronous and distributed framework consisting of M
processors. Each processor receives gradients from all other processors and aggregates them. In
data-parallel SGD with compression, gradients are compressed by each processor before transmission
and decompressed before aggregation [20–23]. A stochastic compression method is unbiased if the
vector after decompression is in expectation the same as the original vector.

3 Adaptive quantization

In this section, we introduce novel adaptive compression methods that adapt during the training
(Algorithm 1). Let v ∈ Rd be a vector we seek to quantize and ri = |vi|/‖v‖ be its normalized
coordinates for i = 1, . . . , d.3 Let q`(r) : [0, 1]→ [0, 1] denote a random quantization function
applied to the normalized coordinate r using adaptable quantization levels, ` = [`0, . . . , `s+1]>,
where 0 = `0 < `1 < · · · < `s < `s+1 = 1. For r ∈ [0, 1], let τ(r) denote the index of a level such
that `τ(r) ≤ r < `τ(r)+1. Let ρ(r) = (r − `τ(r))/(`τ(r)+1 − `τ(r)) be the relative distance of r to
level τ(r) + 1. We define the random variable h(r) such that h(r) = `τ(r) with probability 1− ρ(r)
and h(r) = `τ(r)+1 with probability ρ(r).

Figure 2: Random quantization of normal-
ized gradient.

We define the quantization of v as Q`(v) ,
[q`(v1), . . . , q`(vd)]

> where q`(vi) =
‖v‖ · sign(vi) · h(ri) and h = {h(ri)}i=1,...,d are inde-
pendent random variables. The encoding, ENCODE(v),
of a stochastic gradient is the combined encoding of
‖v‖ using a standard floating point encoding along with
an optimal encoding of h(ri) and binary encoding of
sign(vi) for each coordinate i. The decoding, DECODE,
recovers the norm, h(ri), and the sign. Additional details
of the encoding method are described in Appendix D.

We define the variance of vector quantization to be the trace of the covariance matrix,

Eh[‖Q`(v)− v‖22] = ‖v‖2
d∑
i=1

σ2(ri), (1)

where σ2(r) = E[(q`(r)− r)2] is the variance of quantization for a single coordinate that is given by

σ2(r) = (`τ(r)+1 − r)(r − `τ(r)). (2)

3In this section, we use ‖ · ‖ to denote a general Lq norm with q ≥ 1 for simplicity.

3

Let v be a random vector corresponding to a stochastic gradient and h capture the randomness of
quantization for this random vector as defined above. We define two minimization problems, expected
variance and expected normalized variance minimization:

min
`∈L

Ev,h

[
‖Q`(v)− v‖22

]
and min

`∈L
Ev,h

[
‖Q`(v)− v‖22/‖v‖2

]
,

where L = {` : `j ≤ `j+1, ∀ j, `0 = 0, `s+1 = 1} denotes the set of feasible solutions. We first
focus on the problem of minimizing the expected normalized variance and then extend our methods to
minimize the expected variance in Section 3.4. Let F (r) denote the marginal cumulative distribution
function (CDF) of a normalized coordinate r. Assuming normalized coordinates ri are i.i.d. given
‖v‖, the expected normalized variance minimization can be written as

min
`∈L

Ψ(`), where Ψ(`) ,
s∑
j=0

∫ `j+1

`j

σ2(r) dF (r). (3)

The following theorem suggests that solving (3) is challenging in general; however, the sub-problem
of optimizing a single level given other levels can be solved efficiently in closed form. Proofs are
provided in Appendix B.

Theorem 1 (Expected normalized variance minimization). Problem (3) is nonconvex in general.
However, the optimal solution to minimize one level given other levels, min`i Ψ(`), is given by
`∗i = β(`i−1, `i+1), where

β(a, c) = F−1

(
F (c)−

∫ c

a

r − a
c− a

dF (r)

)
. (4)

3.1 ALQ: Adapting individual levels using coordinate descent

Using the single level update rule in Eq. (4) we iteratively adapt individual levels to minimize the
expected normalized variance in (3). We denote quantization levels at iteration t by `(t) starting from
t = 0. The update rule is

`j(t+ 1) = β(`j−1(t), `j+1(t)) ∀j = 1, . . . , s . (5)

Performing the update rule above sequentially over coordinates j is a form of coordinate descent
(CD) that is guaranteed to converge to a local minima. CD is particularly interesting because it does
not involve any projection step to the feasible set L. In practice, we initialize the levels with either
uniform levels [20] or exponentially spaced levels proposed in [21]. We observe that starting from
either initialization CD converges in small number of steps (less than 10).

3.2 Gradient descent

Computing ∇Ψ using Leibniz’s rule [26], the gradient descent (GD) algorithm to solve (3) is based
on the following update rule:

`j(t+ 1) = PL

(
`j(t)− η(t)

∂Ψ(`(t))

∂`j

)
∂Ψ(`(t))

∂`j
=

∫ `j(t)

`j−1(t)

(r − `j−1(t)) dF (r)−
∫ `j+1(t)

`j(t)

(`j+1(t)− r) dF (r)

(6)

for t = 0, 1, . . . and j = 1, . . . , s. Note that the projection step in Eq. (6) is itself a convex
optimization problem. We propose a projection-free modification of GD update rule to systematically
ensure ` ∈ L. Let δj(t) = min{`j(t) − `j−1(t), `j+1(t) − `j(t)} denote the minimum distance
between two neighbouring levels at iteration t for j = 1, . . . , s. If the change in level j is bounded
by δj(t)/2, it is guaranteed that ` ∈ L. We propose to replace Eq. (6) with the following update rule:

`j(t+ 1) = `j(t)− sign

(
∂Ψ(`(t))

∂`j

)
min

{
η(t)

∣∣∣∣∂Ψ(`(t))

∂`j

∣∣∣∣ , δj(t)2

}
. (7)

4

3.3 AMQ: Exponentially spaced levels

We now focus on ` = [−1,−p, . . . ,−ps, ps, . . . , p, 1]>, i.e., exponentially spaced levels with sym-
metry. We can update p efficiently by gradient descent using the first order derivative

1

2

dΨ(p)

dp
=

∫ ps

0

2sp2s−1 dF (r) +

s−1∑
j=0

∫ pj

pj+1

(
(jpj−1 + (j + 1)pj)r − (2j + 1)p2j

)
dF (r). (8)

3.4 Expected variance minimization

In this section, we consider the problem of minimizing the expected variance of quantization:

min
`∈L

Ev,h

[
‖Q`(v)− v‖22

]
. (9)

To solve the expected variance minimization problem, suppose that we observeN stochastic gradients
{v1, . . . ,vN}. Let Fn(r) and pn(r) denote the CDF and PDF of normalized coordinate conditioned
on observing ‖vn‖, respectively. By taking into account randomness in ‖v‖ and using the law of
total expectation, an approximation of the expected variance in (9) is given by

E[‖Qs(v)− v‖22] ≈ 1

N

N∑
n=1

‖vn‖2
s∑
j=0

∫ `j+1

`j

σ2(r) dFn(r). (10)

The optimal levels to minimize Eq. (10) are a solution to the following problem:

`∗ = arg min
`∈L

N∑
n=1

‖vn‖2
s∑
j=0

∫ `j+1

`j

σ2(r) dFn(r) = arg min
`∈L

s∑
j=0

∫ `j+1

`j

σ2(r) dF (r),

where `∗ = [`∗1, . . . , `
∗
s]
> and F (r) =

∑N
n=1 γnFn(r) is the weighted sum of the conditional CDFs

with γn = ‖vn‖2/
∑N
n=1 ‖vn‖2. Note that we can accommodate both normal and truncated normal

distributions by substituting associated expressions into pn(r) and Fn(r). Exact update rules and
analysis of computational complexity of ALQ, GD, and AMQ are discussed in Appendix C.

4 Theoretical guarantees

One can alternatively design quantization levels to minimize the worst-case variance. However,
compared to an optimal scheme, this worst-case scheme increases the expected variance by Ω(d),
which is prohibitive in deep networks. We quantify the gap in Appendix E. Proofs are in appendices.

A stochastic gradient has a second-moment upper bound B when E[‖g(w)‖22] ≤ B for all w ∈ Ω.
Similarly, it has a variance upper bound σ2 when E[‖g(w)−∇f(w)‖22] ≤ σ2 for all w ∈ Ω.

We consider a general adaptively quantized SGD (AQSGD) algorithm, described in Algorithm 1,
where compression schemes are updated over the course of training.4 Many convergence results in
stochastic optimization rely on a variance bound. We establish such a variance bound for our adaptive
methods. Further, we verify that these optimization results can be made to rely only on the average
variance. In the following, we provide theoretical guarantees for AQSGD algorithm, obtain variance
and code-length bounds, and convergence guarantees for convex, nonconvex, and momentum-based
variants of AQSGD.

The analysis of nonadaptive methods in [20–23] can be considered as special cases of our theorems
with fixed levels over the course of training. A naive adoption of available convergence guarantees
results in having worst-case variance bounds over the course of training. In this paper, we show that
an average variance bound can be applied on a number of problems. Under general normalization,
we first obtain variance upper bound for arbitrary levels, in particular, for those obtained adaptively.
Theorem 2 (Variance bound). Let v ∈ Rd and q ≥ 1. The quantization of v under Lq normalization
satisfies E[Q`(v)] = v. Furthermore, we have

E[‖Q`(v)− v‖22] ≤ εQ‖v‖22, (11)

4Our results hold for any adaptive method, including ALQ and AMQ.

5

where εQ =
(`j∗+1/`j∗−1)2

4(`j∗+1/`j∗) + inf0<p<1Kp`1
(2−p)d

2−p
min{q,2} with j∗ = arg max1≤j≤s `j+1/`j and

Kp =
(

1
2−p
)(

1−p
2−p
)(1−p)

.

Theorem 2 implies that if g(w) is a stochastic gradient with a second-moment bound η, thenQ`(g(w))
is a stochastic gradient with a variance upper bound εQη. Note that, as long as the maximum ratio
of two consecutive levels does not change, the variance upper bound decreases with the number of
quantization levels. In addition, our bound matches the known Ω(

√
d) lower bound in [27].

Theorem 3 (Code-length bound). Let v ∈ Rd and q ≥ 1. The expectation E[|ENCODE(v)|] of the
number of communication bits needed to transmit Q`(v) under Lq normalization is bounded by

E[|ENCODE(v)|] ≤ b+ n`1,d + d(H(L) + 1) ≤ b+ n`1,d + d(log2(s+ 2) + 1), (12)

where b is a constant, n`1,d = min{`1−q + d1−1/q

`1
, d}, H(L) is the entropy of L in bits, and L is a

random variable with the probability mass function given by

Pr(`j) =

∫ `j

`j−1

r − `j−1

`j − `j−1
dF (r) +

∫ `j+1

`j

`j+1 − r
`j+1 − `j

dF (r)

for j = 1, . . . , s. In addition, we have

Pr(`0 = 0) =

∫ `1

0

1− r
`1

dF (r) and Pr(`s+1 = 1) =

∫ 1

`s

r − `s
1− `s

dF (r).

Theorem 3 provides a bound on the expected number of communication bits to encode the quantized
stochastic gradients. As expected, the upper bound in (12) increases monotonically with d and s.

We can combine variance and code-length upper bounds and obtain convergence guarantees for
AQSGD when applied to various learning problems where we have convergence guarantees for
full-precision SGD under standard assumptions.

Let {`1, . . . , `K} denote the set of quantization levels that AQSGD experiences on the optimization
trajectory. Suppose that `k is used for Tk iterations with

∑K
k=1 Tk = T . For each particular `k,

we can obtain corresponding variance bound εQ,k by substituting `k into (11). Then the average
variance upper bound is given by εQ =

∑K
k=1 TkεQ,k/T . For each particular `k, we can obtain

corresponding expected code-length bound NQ,k by substituting random variable Lk into (12). The
average expected code-length bound is given by NQ =

∑K
k=1 TkNQ,k/T .

On convex problems, convergence guarantees can be established along the lines of [17, Theorems 6.1].
Theorem 4 (AQSGD for nonsmooth convex optimization). Let f : Ω→ R denote a convex function
and let R2 , supw∈Ω ‖w − w0‖22. Let B̂ = (1 + εQ)B and f∗ = infw∈Ω f(w). Suppose that
AQSGD is executed for T iterations with a learning rate α = RM/(B̂

√
T) on M processors, each

with access to independent stochastic gradients of f with a second-moment bound B, such that
quantization levels are updated K times where `k with variance bound εQ,k and code-length bound

NQ,k is used for Tk iterations. Then AQSGD satisfies E
[
f
(

1
T

∑T
t=0 wt

)]
− f∗ ≤ RB̂/(M

√
T).

In addition, AQSGD requires at most NQ communication bits per iteration in expectation.

In Appendix H and Appendix I, we obtain convergence guarantees on nonconvex problems and
for momentum-based variants of AQSGD under standard assumptions, respectively. Theoretical
guarantees for levels with symmetry are established in Appendix J.

5 Experimental evaluation

In this section, we showcase the effectiveness of our adaptive quantization methods in speeding up
training deep models. We compare our methods to the following baselines: single-GPU SGD (SGD),
full-precision multi-GPU SGD (SuperSGD), uniform levels under L∞ normalization (QSGDinf) [20],
ternary levels under L∞ normalization (TRN) [15], and exponential levels under L2 normalization
with exponential factor p = 0.5 (NUQSGD) [21, 22]. We present results for the following variations of

6

Table 1: Validation accuracy on CIFAR-10 and ImageNet using 3 bits (except for SuperSGD and TRN) with 4
GPUs.

Quantization Method ResNet-110 on
CIFAR-10

ResNet-32 on
CIFAR-10

ResNet-18 on
ImageNet

Bucket Size 16384 8192 8192

SuperSGD 93.86% ± 0.08 92.26% ± 0.04 68.93% ± 0.05
NUQSGD [21, 22] 84.60% ± 0.04 83.73% ± 0.08 33.36% ± 0.07

QSGDinf [20] 91.52% ± 0.07 89.95% ± 0.02 66.35% ± 0.04
TRN [15] 90.72% ± 0.06 89.65% ± 0.05 62.76% ± 0.06

ALQ 93.24% ± 0.06 91.30% ± 0.07 67.72% ± 0.07
ALQ-N 93.14% ± 0.05 91.96% ± 0.04 65.64% ± 0.07
AMQ 92.82% ± 0.04 91.10% ± 0.05 64.82% ± 0.05

AMQ-N 92.88% ± 0.02 91.03% ± 0.08 66.75% ± 0.05

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

1.0

0.4

0.6

2.0

Lo
ss

SuperSGD
ALQ
AMQ
Qinf
TRN

(a) ResNet-32 on CIFAR-10

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

1.0

0.4

0.6

2.0

Lo
ss

(b) ResNet-110 on CIFAR-10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Iteration 1e5

1.0

2.0

4.0

Lo
ss

(c) ResNet-18 on ImageNet

Figure 3: Validation loss on CIFAR-10 and ImageNet. All methods use 3 bits except for SuperSGD and
TRN. Bucket size for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on
ImageNet is 8192.

our proposed methods: ALQ and AMQ (with norm adjustments in Section 3.4), and their normalized
variations ALQ-N and AMQ-N (Sections 3.1 and 3.3). We present full training results on ImageNet
in Appendix K along with additional experimental details.

We compare methods in terms of the number of training iterations that is independent of a particular
distributed setup. In Table 1, we present results for training ResNet-32 and ResNet-110 [28] on
CIFAR-10 [29], and ResNet-18 on ImageNet [30]. We simulate training with 4-GPUs on a single
GPU by quantizing and dequantizing the gradient from 4 mini-batches in each training iteration.
These simulations allow us to compare the performance of quantization methods to the hypothetical
full-precision SuperSGD.

All quantization methods studied in this section share two hyper-parameters: the number of bits (log2
of number of quantization levels) and a bucket size. A common trick used in normalized quantization
is to encode and decode a high-dimensional vector in buckets such that each coordinate is normalized
by the norm of its corresponding bucket instead of the norm of the entire vector [20]. The bucket
size controls the tradeoff between extra communication cost and loss of precision. With a small
bucket size, there are more bucket norms to be communicated, while with a large bucket size, we lose
numerical precision as a result of dividing each coordinate by a large number. In Section 5.1, we
provide an empirical study of the hyperparameters.

Matching the accuracy of SuperSGD. Using only 3 bits (8 levels), our adaptive methods match the
performance of SuperSGD on CIFAR-10 and close the gap on ImageNet (bold in Table 1). Our most
flexible method, ALQ, achieves the best overall performance on ImageNet and the gap on CIFAR-10
with ALQ-N is less than 0.3%. There is at least 1.4% gap between our best performing method and
previous work in training each model. To the best of our knowledge, matching the validation loss of
SuperSGD has not been achieved in any previous work using only 3 bits. Fig. 3 shows the test loss
and Fig. 4 shows the average gradient variance where the average is taken over gradient coordinates.
Our adaptive methods successfully achieve lower variance during training.

Comparison on the trajectory of SGD. Fig. 5 shows the average variance on the optimization
trajectory of single-GPU without quantization. This graph provides a more fair comparison of the

7

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−9

10−8

10−7

10−6

10−5

Av
er

ag
e

Va
ria

nc
e

SuperSGD
ALQ
AMQ
Qinf
SGD
TRN

(a) ResNet-32 on CIFAR-10

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−9

10−8

10−7

10−6

10−5

Av
er

ag
e

Va
ria

nc
e

(b) ResNet-110 on CIFAR-10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Iteration 1e5

10−7

10−6

Av
er

ag
e

Va
ria

nc
e

(c) ResNet-18 on ImageNet

Figure 4: Variance on CIFAR-10 and ImageNet. All methods use 3 bits except for SuperSGD and TRN. Bucket
size for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on ImageNet is
8192.

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−9

10−8

10−7

10−6

10−5

Av
er

ag
e

Va
ria

nc
e

SuperSGD
ALQ
AMQ
Qinf
SGD
TRN

(a) ResNet-32 on CIFAR-10

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−9

10−8

10−7

10−6

10−5

Av
er

ag
e

Va
ria

nc
e

(b) ResNet-110 on CIFAR-10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training Iteration 1e5

10−7

10−6

Av
er

ag
e

Va
ria

nc
e

(c) ResNet-18 on ImageNet

Figure 5: Variance (no train) on CIFAR-10 and ImageNet. All methods use 3 bits except for SuperSGD and
TRN. Bucket size for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on
ImageNet is 8192.

quantization error of different methods decoupled from their impact on the optimization trajectory.
ALQ effectively finds an improved set of levels that reduce the variance in quantization. ALQ matches
the variance of SuperSGD on Resnet-110 (Fig. 5b). In Figs. 5b and 5c, the variance of QSGDinf is
as high as TRN in the first half of training. This shows that extra levels (8 uniform levels) do not
perform better unless designed carefully. As expected, the variance of SuperSGD is always smaller
than the variance of SGD by a constant factor of the number of GPUs.

Negligible computational overhead. Our adaptive methods have similar per-step computation and
communication cost compared to previous methods. On ImageNet, we save at least 60 hours from 95
hours of training and add only an additional cost of at most 10 minutes in total to adapt quantization.
For bucket sizes 8192 and 16384 and 3–8 bits used in our experiments, the per-step cost relative to
SuperSGD (32-bits) is 21–25% for ResNet-18 on ImageNet and 32–36% for ResNet-50. That is the
same as the cost of NUQSGD and QSGDinf without additional coding or pruning with the same
number of bits and bucket sizes. The cost of the additional update specific to ALQ is 0.4–0.5% of
the total training time. In Appendix K.3, we provide tables with detailed timing results for varying
bucket sizes and bits.

5.1 Hyperparameter studies

Fig. 6 shows quantization levels for each method at the end of training ResNet-32 on CIFAR-10. The
quantization levels for our adaptive methods are more concentrated near zero. In Figs. 7a and 7b, we
study the impact of the bucket size and number of bits on the best validation accuracy achieved by
quantization methods.

Adaptive levels are the best quantization methods across all values of bucket size and number
of bits. ALQ and ALQ-N are the best performing methods across all values of bucket size and
number of bits. The good performance of ALQ-N is unexpected as it suggests quantization for
vectors with different norms can be shared. In practice, ALQ-N is easier to implement and faster
to update compared to ALQ. We observe a similar relation between AMQ and AMQ-N methods.
Adaptive multiplier methods show inferior performance to adaptive level methods as the bucket size
significantly grows (above 104) or shrinks (below 100) as well as for very few bits (2). Note that
there exists a known generalization gap between SGD and SuperSGD in ResNet-110 that can be
closed by extensive hyperparameter tuning [31]. Our adaptive methods reduce this gap with standard
hyperparameters.

8

−1.0 −0.5 0.0 0.5 1.0
Level value

0

1

2

3

4

5

6

7

Le
ve

l i
nd

ex

ALQ
AMQ
ALQ-N
AMQ-N
Qinf
TRN
NUQ,p=0.5

Figure 6: Quantization levels at
the end of training ResNet-32 on
CIFAR-10.

10 100 1000 10000
Bucket Size

75

80

85

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

ALQ
AMQ
ALQ-N
AMQ-N
Qinf
TRN
NUQ,p=0.5

(a) Bucket Size (bits=3)

2 3 4 5 6 7
bits

70

75

80

85

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

ALQ
AMQ
ALQ-N
AMQ-N
Qinf
TRN
NUQ,p=0.5

(b) Bits (bucket size=16384)

Figure 7: Effect of bucket size and number of bits on validation accuracy
when training ResNet-8 on CIFAR-10

Table 2: Validation accuracy of ResNet32 on CIFAR-10 using 3 quantization bits (except for SuperSGD and
TRN) and bucket size 16384.

Method 16 GPUs 32 GPUs

SuperSGD 92.17% ± 0.08 92.19% ± 0.04
NUQSGD 85.82% ± 0.03 86.36% ± 0.01
QSGDinf 89.61% ± 0.03 89.81% ± 0.05

TRN 88.68% ± 0.10 90.22% ± 0.05

ALQ 91.91% ± 0.06 91.89% ± 0.07
ALQ-N 92.07% ± 0.04 91.83% ± 0.03
AMQ 91.58% ± 0.05 91.38% ± 0.06

AMQ-N 91.41% ± 0.08 91.40% ± 0.02

Bucket size significantly impacts non-adaptive methods. For bucket size 100 and 3 bits, NUQSGD
performs nearly as good as adaptive methods but quickly loses accuracy as the bucket size grows
or shrinks. QSGDinf stays competitive for a wider range of bucket sizes but still loses accuracy
faster than other methods. This shows the impact of bucketing as an understudied trick in evaluating
quantization methods.

Adaptive methods successfully scale to large number of GPUs. Table 2 shows the result of
training CIFAR-10 on ResNet-32 using 16 and 32 GPUs. Note that with 32 GPUs, TRN is achieving
almost the accuracy of SuperSGD with only 3 quantization levels, which is expected because TRN is
unbiased and the variance of aggregated gradients decreases linearly with the number of GPUs.

6 Conclusions

To reduce communication costs of data-parallel SGD, we introduce two adaptively quantized methods,
ALQ and AMQ, to learn and adapt gradient quantization method on the fly. In addition to quantization
method, in both methods, processors learn and adapt their coding methods in parallel by efficiently
computing sufficient statistics of a parametric distribution. We establish tight upper bounds on the
excessive variance for any arbitrary sequence of quantization levels under general normalization
and on the expected number of communication bits per iteration. Under standard assumptions,
we establish a number of convergence guarantees for our adaptive methods. We demonstrate the
superiority of ALQ and AMQ over nonadaptive methods empirically on deep models and large
datasets.

Broader impact

This work provides additional understanding of statistical behaviour of deep machine learning models.
We aim to train deep models using popular SGD algorithm as fast as possible without compromising
learning outcome. As the amount of data gathered through web and a plethora of sensors deployed
everywhere (e.g., IoT applications) is drastically increasing, the design of efficient machine learning
algorithms that are capable of processing large-scale data in a reasonable time can improve everyone’s
quality of life. Our compression schemes can be used in Federated Learning settings, where a deep

9

model is trained on data distributed among multiple owners without exposing that data. Developing
privacy-preserving learning algorithms is an integral part of responsible and ethical AI. However, the
long-term impacts of our schemes may depend on how machine learning is used in society.

Acknowledgement

The authors would like to thank Blair Bilodeau, David Fleet, Mufan Li, and Jeffrey Negrea for
helpful discussions. FF was supported by OGS Scholarship. DA and IM were supported the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 805223 ScaleML). DMR was supported by an NSERC Discovery
Grant. ARK was supported by NSERC Postdoctoral Fellowship. Resources used in preparing this
research were provided, in part, by the Province of Ontario, the Government of Canada through
CIFAR, and companies sponsoring the Vector Institute.5

References
[1] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient descent. In

Proc. Advances in Neural Information Processing Systems (NIPS), 2010.

[2] R. Bekkerman, M. Bilenko, and J. Langford. Scaling up machine learning: Parallel and
distributed approaches. Cambridge University Press, 2011.

[3] B. Recht, C. Ré, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Proc. Advances in Neural Information Processing Systems (NIPS), 2011.

[4] J. Dean, G. Corrado, R. Monga K. Chen, M. Devin, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, Q. V. Le, and A. Y. Ng. Large scale distributed deep networks. In Proc. Advances in
Neural Information Processing Systems (NIPS), 2012.

[5] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and A. Ng. Deep learning with COTS
HPC systems. In Proc. International Conference on Machine Learning (ICML), 2013.

[6] T. Chilimbi, Y. Suzue J. Apacible, and K. Kalyanaraman. Project adam: Building an efficient
and scalable deep learning training system. In Proc. USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[7] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,
and B.-Y. Su. Scaling distributed machine learning with the parameter server. In Proc. USENIX
Symposium on Operating Systems Design and Implementation (OSDI), 2014.

[8] J. C. Duchi, S. Chaturapruek, and C. Ré. Asynchronous stochastic convex optimization. In
Proc. Advances in Neural Information Processing Systems (NIPS), 2015.

[9] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and
Y. Y. Petuum. Petuum: A new platform for distributed machine learning on big data. IEEE
transactions on Big Data, 1(2):49–67, 2015.

[10] S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learning with elastic averaging SGD. In
Proc. Advances in Neural Information Processing Systems (NIPS), 2015.

[11] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application
to data-parallel distributed training of speech DNNs. In Proc. INTERSPEECH, 2014.

[12] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited
numerical precision. In Proc. International Conference on Machine Learning (ICML), 2015.

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, and M. Devin. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv:1603.04467, 2016.

5www.vectorinstitute.ai/#partners

10

www.vectorinstitute.ai/#partners

[14] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. DoReFa-Net: Training low bitwidth
convolutional neural networks with low bitwidth gradients. arXiv:1606.06160, 2016.

[15] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. TernGrad: Ternary gradients to
reduce communication in distributed deep learning. In Proc. Advances in Neural Information
Processing Systems (NIPS), 2017.

[16] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signSGD: Compressed
optimisation for non-convex problems. In Proc. International Conference on Machine Learning
(ICML), 2018.

[17] S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends ® in
Machine Learning, 8(3-4):231–358, 2015.

[18] P. Cummiskey, N. S. Jayant, and J. L. Flanagan. Adaptive quantization in differential PCM
coding of speech. Bell System Technical Journal, 52(7):1105–1118, 1973.

[19] D. Alistarh, S. Ashkboos, and P. Davies. Distributed mean estimation with optimal error bounds.
arXiv:2002.09268v2, 2020.

[20] D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Proc. Advances in Neural Information
Processing Systems (NIPS), 2017.

[21] A. Ramezani-Kebrya, F. Faghri, and D. M. Roy. NUQSGD: Improved communication efficiency
for data-parallel SGD via nonuniform quantization. arXiv preprint arXiv:1908.06077v1, 2019.

[22] S. Horváth, C.-Y Ho, L. Horváth, A. N. Sahu, M. Canini, and P. Richtárik. Natural compression
for distributed deep learning. arXiv:1905.10988v1, 2019.

[23] H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, and C. Zhang. ZipML: Training linear models with
end-to-end low precision, and a little bit of deep learning. In Proc. International Conference on
Machine Learning (ICML), 2017.

[24] D. Zhang, J. Yang, D. Ye, and G. Hua. LQ-Nets: Learned quantization for highly accurate and
compact deep neural networks. In Proc. European Conference on Computer Vision (ECCV),
2018.

[25] F. Fu, Y. Hu, Y. He, J. Jiang, Y. Shao, C. Zhang, and B. Cui. Don’t waste your bits! squeeze
activations and gradients for deep neural networks via TINYSCRIPT. In Proc. International
Conference on Machine Learning (ICML), 2020.

[26] M. H. Protter and C. B. Morrey. Intermediate Calculus. Springer, 1985.

[27] A. Ramezani-Kebrya, F. Faghri, I. Markov, V. Aksenov, D. Alistarh, and D. M. Roy. NUQSGD:
Provably communication-efficient data-parallel SGD via nonuniform quantization. Technical
Report.

[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[29] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[30] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2009.

[31] Dami Choi, Christopher J. Shallue, Zachary Nado, Jaehoon Lee, Chris J. Maddison, and
George E. Dahl. On Empirical Comparisons of Optimizers for Deep Learning. arXiv e-prints,
art. arXiv:1910.05446, October 2019.

[32] T. M. Cover and J. A. Thomas. Elements of Information Theory. WILEY, 2006.

11

[33] S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[34] T. Yang, Q. Lin, and Z. Li. Unified convergence analysis of stochastic momentum methods for
convex and non-convex optimization. arXiv:1604.03257v2, 2016.

[35] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[36] Y. Nesterov. A method of solving a convex programming problem with convergence O(1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983.

12

A CDF and its inverse

A.1 Normal distribution

The probability density function (PDF) for X ∼ N (µ, σ2) is defined as

pN (x) =
1√

2πσ2
exp

(−(x− µ)2

2σ2

)
, (13)

and the cumulative distribution function (CDF) defined as

FN (x) = Φ
(x− µ

σ

)
= 1−Q

(x− µ
σ

)
=

1

2

(
1 + erf

(x− µ√
2σ

))
, (14)

where

Φ(x) =

∫ x

−∞

1√
2π

exp(−u2/2) du,

Q(x) =

∫ ∞
x

1√
2π

exp(−u2/2) du,

erf(x) = 2

∫ x

0

1√
π

exp(−u2) du.

The inverse of CDF for the normal distribution is given by

F−1
N (y) = σΦ−1(y) + µ =

√
2σerf−1(2y − 1) + µ. (15)

Various approximations of Eq. (14) and Eq. (15) are available in the literature.

A.2 Truncated normal distribution

The probability density function (PDF) of a truncated normal distribution that lies within the interval
(a, b) with −∞ < a < b <∞ is defined as

pT (x; a, b) =
pN (x)

σ
(
FN (b)− FN (a)

) , (16)

where pN (·) is defined in Eq. (13) and the cumulative distribution function (CDF) is defined as

FT (x; a, b) =
FN (x)− FN (a)

FN (b)− FN (a)

=
Φ((x− µ)/σ)− Φ((a− µ)/σ)

Φ((b− µ)/σ)− Φ((a− µ)/σ)
,

(17)

where FN (·) and Φ(·) are defined in Eq. (14). Note that the mean and variance of a random variable
with truncated normal distribution are not µ and σ2 based on our notation. The mean and variance
depend on the interval (a, b), which is clear in contexts that we use.

The inverse of CDF for truncated normal distribution is given by

F−1
T (y; a, b) = F−1

N (y) = σΦ−1(y) + µ, (18)

where y =
(
FN (b)− FN (a)

)
y + FN (a) and F−1

N (·), Φ−1(·) are defined in Eq. (15).

B Expected normalized variance minimization

B.1 Theorem 1

We prove Theorem 1 in two steps in Proposition 1 and Proposition 2.

13

Let R denote a random variable with probability density function (PDF) p and cumulative distribution
function (CDF) F . To show that problem (3) is nonconvex, we first focus on the problem of optimizing
two levels mina,bQ(a, b) where

Q(a, b) =

∫ a

0

(a− r)r dF (r) +

∫ b

a

(b− r)(r − a) dF (r) +

∫ 1

b

(1− r)(r − b) dF (r) (19)

in the range 0 ≤ a ≤ b ≤ 1.

Proposition 1. The function Q(a, b) is nonconvex in general. It becomes convex if for all 0 ≤ a ≤
b ≤ 1, we have

b(1− a)p(a)p(b) > (F (b)− F (a))
2
. (20)

Proof. Using Leibniz’s rule [26], we have

∇2Q =

[
bp(a) F (a)− F (b)

F (a)− F (b) (1− a)p(b)

]
. (21)

We can find the eigenvalues of ∇2Q by solving |∇2Q − λI| = 0, which leads to the following
quadratic equation:

λ2 − (bp(a) + (1− a)p(b))λ+
(
b(1− a)p(a)p(b)− (F (b)− F (a))2

)
= 0. (22)

We note that (20) is sufficient to guarantee∇2Q � 0.

Corollary 1. The sufficient condition (20) is satisfied if R is uniformly distributed in the range [0, 1].

We now solve the problem of optimizing a single level, i.e., minbQ(b) where

Q(b) =

∫ b

a

(b− r)(r − a) dF (r) +

∫ c

b

(c− r)(r − b) dF (r). (23)

Proposition 2. The optimal solution to minimize Q(b) is given by6

b∗ = F−1

(
F (c)−

∫ c

a

r − a
c− a

dF (r)

)
. (24)

Proof. Using Leibniz’s rule, we have

dQ

db
=

∫ b

a

(r − a) dF (r)−
∫ c

b

(c− r) dF (r),

d2Q

db2
= (c− a)p(b).

We note that Q is convex so we can find the closed-form optimal solution through satisfying the first
order optimality condition.

Corollary 2. In the special case with a = 0 and c = 1, the optimal solution to minimize Q(b) is
given by

b∗ = F−1(1− E[R]).

For the special case of a truncated normal, the inner integral is evaluated as∫ c

a

r − a
c− a

dFT (r) =
µ− a
c− a

(FT (c)− FT (a))− σ2

c− a
(pT (c)− pT (a)),

where FT and pT , the CDF and PDF of the truncated normal, are defined in Appendix A.

6If F is not a one-to-one function, b∗ can be any solution that satisfies (c−a)
∫ c
b
dF (r) =

∫ c
a
(r−a) dF (r).

14

B.2 Projected Gradient Descent

For the special case of a normal or truncated normal distribution, the gradient of the expected
normalized variance used in Section 3.2 is:

∂Ψ(`(t))

∂`j
= (µ− `j−1(t)) (F (`j(t))− F (`j−1(t))) + σ2 (p(`j−1(t))− p(`j+1(t)))

+ (µ− `j+1(t)) (F (`j+1(t))− F (`j(t))) .

(25)

B.3 Symmetric Levels

In this section, we introduce quantization method with symmetrical levels. This is particularly useful
when the estimated PDF of normalized coordinates is an even function, which is the case for normal
distribution with zero mean. Let (−`s+1, . . . ,−`1, `1, . . . , `s+1) denote a sequence of symmetrical
quantization levels w.r.t. 0 where 0 < `1 < · · · < `s < `s+1 = 1. Let rewrite the vector of adaptable
quantization levels as ˜̀ = [˜̀1, . . . , ˜̀

2s+2]> where ˜̀
1 = −1 < ˜̀

2 < · · · < ˜̀
2s+1 < ˜̀

2s+2 = 1. For
θ ∈ [−1, 1], let ˜̀(θ) and ρ(θ) satisfy ˜̀̃

`(θ) ≤ θ ≤ ˜̀̃
`(θ)+1 and θ =

(
1 − ρ(θ)

)
˜̀̃
`(θ) + ρ(θ)˜̀̃

`(θ)+1,
respectively. Let v ∈ Rd and θi = vi/‖v‖ for i = 1, . . . , d.

Definition 1. The symmetrical quantization of a vector v ∈ Rd is

Q˜̀(v) , [q˜̀(v1), . . . , q˜̀(vd)]
>, (26)

where q˜̀(vi) = ‖v‖ · h(θi) and h(θi)’s are independent random variables such that h(θi) = ˜̀̃
`(θi)

with probability 1−ρ(θi) and h(θi) = ˜̀̃
`(θi)+1 otherwise where ρ(θ) = (θ− ˜̀̃

`(θ))/(
˜̀̃
`(θ)+1− ˜̀̃

`(θ)).

Let ri = |θi| for i = 1, . . . , d. We have the following propositions.

Proposition 3. The variance of quantization with symmetric levels is given by

E[‖Q˜̀(v)− v‖2] = ‖v‖2
d∑
i=1

σ2(ri), (27)

where

σ2(ri) =
∑

ri∈[0,`1]

(`21 − r2
i) +

s∑
j=1

∑
ri∈[`j ,`j+1]

(ri − `j)(`j+1 − ri). (28)

Proof. Note that for symmetrical levels, we have∑
|θi|∈[`j ,`j+1]

(|θi| − `j)(`j+1 − |θi|) =
∑

θi∈[−`j+1,−`j]

(θi + `j+1)(−`j − θi)

+
∑

θi∈[`j ,`j+1]

(θi − `j)(`j+1 − θi).

In addition, we have ∑
|θi|∈[0,`1]

(`21 − |θi|2) =
∑

θi∈[−`1,`1]

(`21 − θ2
i).

Proposition 4. If PDF of normalized gradients is an even function,i.e., p(−θ) = p(θ) for θ ∈ [−1, 1],
the expected normalized variance in (3) can be rewritten as

Ψ(`) = 2

∫ `1

0

(`21 − r2) dF (r) +

s∑
j=1

∫ `j+1

`j

(`j+1 − r)(r − `j) dF (r)

 . (29)

15

B.3.1 GD

For the case of symmetrical levels, the gradient of the expected normalized variance is given by

1

2

∂Ψ(`(t))

∂`1
= 2`1(t)

(
F (`1(t))− F (0)

)
−
∫ `2(t)

`1(t)

(`2(t)− r) dF (r),

1

2

∂Ψ(`(t))

∂`j
=

∫ `j(t)

`j−1(t)

(r − `j−1(t)) dF (r)−
∫ `j+1(t)

`j(t)

(`j+1(t)− r) dF (r)

(30)

for j = 2, . . . , s.

For the special case of normal or truncated normal distribution, 1
2
∂Ψ(`(t))
∂`j

is obtained by the R.H.S.
of Eq. (25) for j = 2, . . . , s. In addition, we have:

1

2

∂Ψ(`(t))

∂`1
= 2`1(t)

(
F (`1(t))− F (0)

)
+ (µ− `2(t)) (F (`2(t))− F (`1(t)))− σ2p(`2(t)).

B.3.2 CD

In the following lemma, we solve the problem of optimizing a single level, i.e., minb Q̃(b) where

Q̃(b) =

∫ b

0

(b2 − r2) dF (r) +

∫ c

b

(c− r)(r − b) dF (r).

Proposition 5. The optimal solution to minimize Q̃ satisfies

2b∗(F (b∗)− F (0)) =

∫ c

b∗
(c− r) dF (r), (31)

where F is the CDF of the normalized coordinate.

Proof. Using Leibniz’s rule [26], we have

dQ̃

db
=

∫ b

0

2bdF (r)−
∫ c

b

(c− r) dF (r),

d2Q̃

db2
= bp(b) + cp(b) + 2(F (b)− F (0)) > 0.

We note that Q̃ is convex so we can find the unique optimal solution by satisfying the first order
optimality condition.

We can solve Eq. (31) efficiently through a bisection search on [0, `2(t)]. In particular, for the special
case of normal and truncated normal, starting with a random `(0), the update rule at iteration t+ 1 is
the same as Eq. (5) for j = 2, . . . , s. For `1(t+ 1), we solve

(`2(t)− µ) (F (`2(t))− F (`1(t+ 1))) + 2`1(t+ 1) (F (0)− F (`1(t+ 1)))

+ σ2 (p(`2(t))− p(`1(t+ 1))) = 0.

B.3.3 Exponentially spaced levels

In this section, we focus on ` = [−1,−p, . . . ,−ps, ps, . . . , p, 1]>, i.e., exponentially spaced levels
with symmetry. Following Proposition 4, the expected normalized variance is given by

Ψ(p) = 2

∫ ps

0

(p2s − r2) dF (r) +

s−1∑
j=0

∫ pj

pj+1

(pj − r)(r − pj+1) dF (r)

 . (32)

16

Using Leibniz’s rule, we can compute the first order derivative:

1

2

dΨ(p)

dp
=

∫ ps

0

2sp2s−1 dF (r) +

s−1∑
j=0

∫ pj

pj+1

(
(jpj−1 + (j + 1)pj)r − (2j + 1)p2j

)
dF (r).

In particular, in the special case of a normal or truncated normal distribution, we have

1

2

dΨ(p)

dp
= 2sp2s−1 (F (ps)− F (0)) + σ2

s−1∑
j=0

(jpj−1 + (j + 1)pj)
(
p(pj+1)− p(pj)

)
+

s−1∑
j=0

(
µ(jpj−1 + (j + 1)pj)− (2j + 1)p2j

) (
F (pj)− F (pj+1)

)
.

We can update p efficiently by a gradient descent algorithm as we have a closed-form expression to
find the gradient function.

C Expected variance minimization in Section 3.4

In the following, we provide the update rules and the analysis of computation complexity of ALQ,
GD, and AMQ.

C.1 ALQ (CD update)

Starting with a random `(0), for t = 0, 1, . . . and j = 1, . . . , s, we solve

F (`j(t+ 1)) = F (`j+1(t))−
∫ `j+1(t)

`j−1(t)

r − `j−1(t)

`j+1(t)− `j−1(t)
dF (r) (33)

by a bisection search on [`j−1(t), `j+1(t)].

In the special case of (truncated) normal distribution, to obtain `j(t+ 1) for j = 1, . . . , s, we solve

N∑
n=1

γn
(
(`j−1(t)− µn) (Fn(`j+1(t))− Fn(`j−1(t))) + σ2

n (pn(`j+1(t))− pn(`j−1(t)))
)

+ (`j+1(t)− `j−1(t))
(
F (`j+1(t))− F (`j(t+ 1))

)
= 0

(34)

by a bisection search on [`j−1(t), `j+1(t)].

In the special case of symmetrical levels and (truncated) normal distribution, the update rule is the
same as Eq. (34) for j = 2, . . . , s. For `1(t+ 1), we solve

N∑
n=1

γn
(
(`2(t)− µn) (Fn(`2(t))− Fn(`1(t+ 1))) + σ2

n (pn(`2(t))− pn(`1(t+ 1)))
)

+ 2`1(t+ 1)
(
F (0)− F (`1(t+ 1))

)
= 0

(35)

by a bisection search on [0, `2(t)].

C.2 GD update

The GD algorithm to minimize Eq. (10) is based on the following update rule by starting from a
random `(0):

`j(t+ 1) = `j(t)− sign(ĝ(t, j)) min{η(t)|ĝ(t, j)|, δj(t)/2}

ĝ(t, j) =

∫ `j(t)

`j−1(t)

(r − `j−1(t)) dF (r)−
∫ `j+1(t)

`j(t)

(`j+1(t)− r) dF (r)
(36)

for t = 0, 1, . . . and j = 1, . . . , s.

17

In the special case of (truncated) normal distribution, we have

ĝ(t, j) =

N∑
n=1

γn

(
(µn − `j−1(t)) (Fn(`j(t))− Fn(`j−1(t)))

+ (µn − `j+1(t)) (Fn(`j+1(t))− Fn(`j(t))) + σ2
n (pn(`j−1(t))− pn(`j+1(t)))

)
.

(37)

C.3 AMQ (GD update with exponentially spaced levels)

In this section, we focus on ` = [−1,−p, . . . ,−ps, ps, . . . , p, 1]>, i.e., exponentially spaced levels
with symmetry. Following Proposition 4, the expected variance of quantization is given by

Ṽ (p) = 2

∫ ps

0

(p2s − r2) dF (r) +

s−1∑
j=0

∫ pj

pj+1

(pj − r)(r − pj+1) dF (r)

 . (38)

In the special case of (truncated) normal distribution, we have

dṼ (p)

dp
= +2sp2s−1

(
F (ps)− F (0)

)
+

N∑
n=1

γn

(s−1∑
j=0

(
µn(jpj−1 + (j + 1)pj)− (2j + 1)p2j

) (
Fn(pj)− Fn(pj+1)

)
+ σ2

n

s−1∑
j=0

(jpj−1 + (j + 1)pj)
(
pn(pj+1)− pn(pj)

))
.

We can update p efficiently by a gradient descent algorithm as we have a closed-form expression to
find the gradient function.

C.4 Computational complexity and scalability

The number of iterations for ALQ method to converge is in the order of O(s log(1/ε)) where ε is the
suboptimality gap of bisection search. The number of iterations for AMQ method to achieve a local
minimum with gap ε is O(1/ε). The total number of gradient computations for GD method to achieve
a local minimum with gap ε is O(s/ε). Note that processors can run our methods in parallel. The
time complexity of these methods is independent of the number of samples, the number of processors,
and the number of parameters. The extra computational overhead is negligible compared to costs of
computation of stochastic gradients and communication. Furthermore, we do not need to optimize
levels at each iteration. Our experimental results suggest that it is sufficient to optimize levels at the
lr_scheduler iterations.

D Encoding

A quantized gradient Q`(v) can be uniquely determined by a tuple (‖v‖, s,h) where ‖v‖ is the
Euclidean norm of the gradient, s , [sign(v1), . . . , sign(vd)]

> is the vector of signs of the coordi-
nates vi’s, and h , [h(r1), . . . , h(rd)]

> are the discrete values of the normalized coordinates after
quantization.

We can describe the ENCODE function (for Algorithm 1) in terms of the tuple (‖v‖, s,h) and en-
coding/decoding scheme Γ : {`0, `1, . . . , `s+1} → {0, 1}∗ and Γ−1 : {0, 1}∗ → {`0, `1, . . . , `s+1}.
Any lossless prefix code can be used for encoding/decoding. In particular, we consider Huffman
coding due to its efficient encoding/decoding and its optimality in terms of achieving the minimum
expected code length among methods encoding symbols separately [32].

The encoding, ENCODE(v), of a stochastic gradient is as follows: We first encode the norm ‖v‖
using b bits where, in practice, we use standard 32-bit floating point encoding. We then proceed in
rounds, t = 0, 1, . . . , d. Noting that we do not need to encode the sign bit for zero entries of h, on

18

round t, if h(rt) = 0, we transmit Γ(0). If h(rt) 6= 0, we transmit Γ(hrt), transmit one bit encoding
the sign(vt), and proceed to the next entry of h.

The DECODE function (for Algorithm 1) simply reads b bits to reconstruct ‖v‖. Using Γ−1, it
decodes the index of the first coordinate, depending on whether the decoded entry is zero or nonzero,
it may read one bit indicating the sign, and then proceeds to decode the next symbol. The process
proceeds in rounds, mimicking the encoding process, finishing when all coordinates have been
decoded. Note that we can improve coding efficiency by encoding blocks of symbols at the cost of
increasing encoding/decoding complexity. In this paper, we focus on a simple lossless prefix coding
scheme that encodes symbols separately.

In order to implement an efficient lossless prefix code, we need to know the probabilities associated
with our symbols to be coded, i.e., {`0, `1, . . . , `s+1}. Fortunately, we can compute those proba-
bilities using the marginal PDF of normalized coordinates and quantization levels as shown in this
proposition:
Proposition 6. The probability of occurrence of `j (weight of symbol `j) is given by

Pr(`j) =

∫ `j

`j−1

r − `j−1

`j − `j−1
dF (r) +

∫ `j+1

`j

`j+1 − r
`j+1 − `j

dF (r)

for j = 1, . . . , s where F is the marginal CDF of normalized coordinates. In addition, we have

Pr(`0 = 0) =

∫ `1

0

1− r
`1

dF (r) and Pr(`s+1 = 1) =

∫ 1

`s

r − `s
1− `s

dF (r).

In the special case of truncated normal distribution, we have the symbol probabilities in closed-form:
Corollary 3. Suppose normalized coordinates have truncated normal distribution with PDF pT and
CDF FT defined in Appendix A.2. The probability of occurrence of `j (weight of symbol `j) is given
by

Pr(`j) =
σ2(pT (`j−1)− pT (`j)) + (µ− `j−1)(FT (`j)− FT (`j−1))

`j − `j−1

+
σ2(pT (`j+1)− pT (`j)) + (`j+1 − µ)(FT (`j+1)− FT (`j))

`j+1 − `j
for j = 1, . . . , s. In addition, we have

Pr(`0 = 0) =
σ2(pT (`1)− pT (0)) + (`1 − µ)(FT (`1)− FT (`0))

`1
,

Pr(`s+1 = 1) =
σ2(pT (`s)− pT (1)) + (µ− `s)(FT (1)− FT (`s))

1− `s
.

Note that each processor can construct the Huffman tree by knowing ` and estimating µ and σ2. A
Huffman tree of a source with n symbols can be constructed in time O(n) if the symbols are sorted
by probability. Huffman codes are optimal in terms of expected code-length:
Theorem 5 (Cover and Thomas 32, Theorems 5.4.1 and 5.8.1). Let X denote a random source. The
expected code-length of an optimal prefix code, e.g., Huffman code to compress X is bounded by
H(X) ≤ E[L] ≤ H(X) + 1 where H(X) is the entropy of X in bits.

E Variance gap

Proposition 7 (Variance gap). For any distribution where the gap between the expected variance of
a normalized coordinate under an optimal quantization to minimize (3) and the worst-case one is
lower bounded by some constant, the total gap is lower bounded by Ω(d). We quantify this gap for
the special case of one level with truncated normal density.

Proof. Suppose we want to design a single level b ∈ (0, 1). As shown in Corollary 2, the optimal
b to minimize Q(b) is given by b∗ = F−1(1 − E[R]). Let R have truncated normal density with

19

parameters µ, σ2 in the unit interval. Plugging PDF and CDF of R, the optimal level to minimize (3)
is given by

b∗ = σΦ−1
(

∆(1− µ) + σδ + Φ
(
− µ

σ

))
+ µ,

where ∆ = Φ((1 − µ)/σ) − Φ(−µ/σ), δ = φ((1 − µ)/σ) − φ(−µ/σ), Φ(x) =∫ x
−∞ exp(−u2/2) du/

√
2π, and φ(x) = exp(−x2/2)/

√
2π.

Note that b̂ = 1/2 minimizes the worst-case variance upper bound in Eq. (1) [27]. In general, b∗ 6= b̂

depending on µ and σ2. Without loss of generality, assume b∗ > b̂.

As show in Proposition 2, Q(b) =
∫ b

0
(b− r)(r− a) dF (r) +

∫ 1

b
(1− r)(r− b) dF (r) is convex and

d2Q

db2
=
φ((b− µ)/σ)

σ∆
.

In the interval [b̂, b∗], we have

d2Q

db2
≥ γ , min

{φ((b∗ − µ)/σ)

σ∆
,
φ((b̂− µ)/σ)

σ∆

}
.

In this interval, Q is γ-strongly convex, i.e.,

Q(b̂) ≥ Q(b∗) +
γ

2
(b∗ − b̂)2.

Hence, the gap in the expected normalized variance under b∗ and b̂ is lower bounded by:
1

2
dγ(b∗ − b̂)2.

F Proof of Theorem 2 (variance bound)

Let ` = [`0, `1, . . . , `s, `s+1]> denote arbitrary quantization levels where `0 = 0 < `1 < · · · <
`s+1 = 1. The variance of Q`(v), i.e., V`(v) = E[‖Q`(v)− v‖22], can be expressed as

V`(v) = ‖v‖2q
(∑
ri∈I0

(`1 − ri)ri +

s∑
j=1

∑
ri∈Ij

(`j+1 − ri)(ri − `j)
)
, (39)

where ri = |vi|/‖v‖q , I0 , [0, `1], and Ij , [`j , `j+1] for j = 1, . . . , s.

We can find the minimum kj that satisfies (`j+1 − r)(r − `j) ≤ kjr
2 for r ∈ Ij and j = 1, . . . , s.

Expressing r = `jθ, we can find k through solving

kj = max
1≤θ≤`j+1/`j

(`j+1/`j − θ)(θ − 1)

θ2

=

(
`j+1/`j − 1

)2
4(`j+1/`j)

.

(40)

We note that `j+1/`j > 1 and (x− 1)2/(4x) is monotonically increasing function of x for x > 1.

Furthermore, note that ∑
ri /∈I0

r2
i ≤
‖v‖22
‖v‖2q

.

Substituting Eq. (40) into Eq. (39), an upper bound on V`(v) is given by

V`(v) ≤ ‖v‖2q
((`j∗+1/`j∗ − 1)2

4(`j∗+1/`j∗)

‖v‖22
‖v‖2q

+
∑
ri∈I0

(`1 − ri)ri
)
,

where j∗ = arg max1≤j≤s `j+1/`j .

In our proofs, we use the following known lemma.

20

Lemma 1. Let v ∈ Rd. Then, for all 0 < p < q, we have ‖v‖q ≤ ‖v‖p ≤ d1/p−1/q‖v‖q .

Note that Lemma 1 holds even when q < 1 and ‖ · ‖q is merely a seminorm.

In the following, we derive a bound on
∑
ri∈I0(2−s − ri)ri, which completes the proof.

Lemma 2. Let p ∈ (0, 1) and r ∈ I0. Then we have r(`1 − r) ≤ Kp`1
(2−p)rp where

Kp =
(1/p

2/p− 1

)(1/p− 1

2/p− 1

)(1−p)
. (41)

Proof. We can find the minimum Kp through solving Kp = `1
(−2+p) maxr∈I0 r(`1 − r)/rp. Ex-

pressing the optimization variable as r = `1θ
1/p, Kp can be obtained by solving this problem:

Kp = max
0<θ<1

θ1/p−1 − θ2/p−1. (42)

We can solve (42) and obtain the optimal solution θ∗ =
(1/p−1

2/p−1

)p
. Substituting θ∗ into (42), we

obtain Eq. (41).

Let Sj denote the coordinates of vector v whose elements fall into the (j + 1)-th bin, i.e.,
Sj , {i : ri ∈ [lj , lj+1]} for j = 0, . . . , s.

Then, for any 0 < p < 1 and q ≥ 2, we have

‖v‖2q
∑
ri∈I0

rpi = ‖v‖2−pq

∑
i∈S0

|vi|p

≤ ‖v‖2−pq ‖v‖pp
≤ ‖v‖2−pq ‖v‖p2d1−p/2

≤ ‖v‖22d1−p/2,

where the third inequality holds as ‖v‖p ≤ ‖v‖2d1/p−1/2 using Lemma 1 and the last inequality
holds as ‖v‖q ≤ ‖v‖2 for q ≥ 2.

This gives us an upper bound on V`(v):

V`(v) ≤ ‖v‖22
((`j∗+1/`j∗ − 1)2

4(`j∗+1/`j∗)
+Kp`1

(2−p)d1−p/2
)
.

For q ≥ 1, we have ‖v‖2−pq ≤ ‖v‖2−p2 d
2−p

min{q,2}−
2−p
2 , which gives

V`(v) ≤ ‖v‖22
((`j∗+1/`j∗ − 1)2

4(`j∗+1/`j∗)
+Kp`1

(2−p)d
2−p

min{q,2}

)
.

G Proof of Theorem 3 (code-length bound)

Let | · | denote the length of a binary string. In this section, we obtain an upper bound on
E[|ENCODE(v)], i.e., the expected number of communication bits per iteration. Recall from
Appendix D that the quantized vectors Q`(v) is uniquely determined by the tuple (‖v‖q, s,h).

We first encode the norm ‖v‖q using b bits where, in practice, we use standard 32-bit floating point
encoding.

We send one bit for each nonzero entry of h. Let Sj , {i : ri ∈ [lj , lj+1]} and dj , |Sj | for
j = 0, . . . , s. We have an upper bound on the expected number of nonzero entries as follows:

Lemma 3. Let v ∈ Rd. The expected number of nonzeros in Q`(v) is bounded above by

E[‖Q`(v)‖0] ≤ `1−q +
d1−1/q

`1
.

21

Proof. Note that d− d0 ≤ `1−q since

(d− d0)`1
q ≤

∑
i 6∈S0

rqi ≤ 1. (43)

For each i ∈ S0, Q`(vi) becomes zero with probability 1− ri/`1, which results in

E[‖Q`(v)‖0] ≤ d− d0 +
∑
i∈S0

ri/`1

≤ `1−q +
d1−1/q

`1
,

(44)

where the last inequality holds as ‖v‖1 ≤ ‖v‖qd1−1/q using Lemma 1.

For each entry of h, we send the associated codeword. The optimal expected code-length for
transmitting one random symbol is within one bit of the entropy of the source. Hence, we need to
transmit upto d(H(L) + 1) to transmit entries of h [32]. Putting everything together, we have

E[|ENCODE(v)|] ≤ b+ n`1,d + d(H(L) + 1).

Finally, note that the entropy of a source with n outcomes is bounded above by log2(n).

H AQSGD for smooth nonconvex optimization

On nonconvex problems, we can establish convergence guarantees in terms of convergence to a local
minima for a smooth loss function along the lines of, e.g., [33, Theorem 2.1].
Theorem 6 (AQSGD for smooth nonconvex optimization). Let f : Ω → R denote a possibly
nonconvex and β-smooth function. Let w0 ∈ Ω denote an initial point, εQ and NQ be defined as in
Theorem 4, T ∈ Z>0, and f∗ = infw∈Ω f(w). Suppose that Algorithm 1 is executed for T iterations
with a learning rate α < 2/β on M processors, each with access to independent stochastic gradients
of f with a second-moment bound B, such that levels are updated K times where `k with variance
bound εQ,k and code-length bound NQ,k is used for Tk iterations. Then there exists a random
stopping time R ∈ {0, . . . , T} such that AQSGD guarantees

E[‖∇f(wR)‖2] ≤ β(f(w0)− f∗)
T

+
2(1 + εQ)B

M
.

In addition, AQSGD requires at most NQ communication bits per iteration in expectation.

I AQSGD with momentum

The update rule for full-precision unified momentum SGD (UMSGD) is given by [34]

yt+1 = wt − αg(wt)

y`t+1 = wt − lαg(wt)

wt+1 = yt+1 + µ
(
y`t+1 − y`t

)
,

(45)

where wt is the current parameter input and µ ∈ [0, 1) is the momentum parameter. Note that the
heavy-ball method [35] and Nesterov’s accelerated gradient method [36] are the special cases of
UMSGD obtained by substituting l = 0 and l = 1 into Eq. (45), respectively.

The steps for data-parallel version of UMSGD are those in Algorithm 1 by replacing Line 9 with an
UMSGD update. We have convergence guarantees for adaptively quantized SGD with momentum
(AQSGDM) along the lines of, e.g., [34, Theorem 1]. We first establish the convergence guarantees
for convex optimization in the following theorem.
Theorem 7 (AQSGDM for convex optimization). Let f : Rd → R denote a convex function with
‖∇f(w)‖ ≤ V for all w. Let w0 denote an initial point, w∗ = arg min f(w), ŵT = 1/T

∑T
t=0 wt,

and εQ and NQ be defined as in Theorem 4.

22

Suppose that AQSGDM is executed for T iterations with a learning rate α > 0 on M processors,
each with access to independent stochastic gradients of f with a second-moment bound B, such that
levels are updated K times where `k with variance bound εQ,k and code-length bound NQ,k is used
for Tk iterations. Then AQSGDM satisfies

E[f(ŵT)]− min
w∈Ω

f(w) ≤ ε`µ, (46)

where ε`µ = µ(f(w0) − f(w∗))/((1 − µ)(T + 1)) + (1 − µ)‖w0 −w∗‖2/(2α(T + 1)) + α(1 +

2lµ)(V 2 + (1 + εQ)B/M)/(2(1− µ)).

In addition, AQSGD requires at most NQ communication bits per iteration in expectation.

On nonconvex problems, (weaker) convergence guarantees can be established for AQSGDM. In
particular, AQSGDM is guaranteed to converge to a local minima for smooth general loss functions.
Theorem 8 (AQSGDM for smooth nonconvex optimization). Let f : Rd → R denote a possibly
nonconvex and β-smooth function with ‖∇f(w)‖ ≤ V for all w. Let w0 denote an initial point,
w∗ = arg min f(w), and εQ and NQ be defined as in Theorem 4.

Suppose that AQSGDM is executed for T iterations with α = min{(1− µ)/(2β), C/
√
T + 1} for

some C > 0 on M processors, each with access to independent stochastic gradients of f with a
second-moment bound B, such that levels are updated K times where `k with variance bound εQ,k
and code-length bound NQ,k is used for Tk iterations. Then AQSGDM satisfies

min
t=0,...,T

E[‖∇f(wt)‖2] ≤ 2(f(w0)− f(w∗))(1− µ)

α(T + 1)
+

CṼ

(1− µ)3
√
T + 1

,

where

Ṽ = β
(
µ2((1− µ)l − 1)2 + (1− µ)2

)
(V 2 + (1 + εQ)B/M).

In addition, AQSGD requires at most NQ communication bits per iteration in expectation.

J Theoretical guarantees for levels with symmetry

We first obtain variance upper bound for the symmetrical ` = [−`s+1, . . . ,−`1, `1, . . . , `s+1]>.

Theorem 9 (Variance bound). Let v ∈ Rd and q ≥ 1. The quantization of v under Lq normalization
satisfies E[Q`(v)] = v. Furthermore, we have

E[‖Q`(v)− v‖22] ≤ εQ‖v‖22, (47)

where εQ = `21d
2

min{q,2} +
(`j∗+1/`j∗−1)2

4(`j∗+1/`j∗) where j∗ = arg max1≤j≤s `j+1/`j .

Proof. Following Proposition 3, the variance is given by

E[‖Q`(v)− v‖22] = ‖v‖2q
(∑
ri∈[0,`1]

(`21 − r2
i) +

s∑
j=1

∑
ri∈[`j ,`j+1]

(ri − `j)(`j+1 − ri)
)
.

Note that `21 − r2 ≤ `21 for r ∈ [0, `1]. The rest of the proof follows the proof of Theorem 2.

In order to implement an efficient lossless prefix code, we need to know the probabilities associated
with our symbols to be coded, i.e., {−`s+1, . . . ,−`1, `1, . . . , `s+1}. We can obtain those probabilities
using the marginal PDF of normalized coordinates:
Proposition 8. Suppose p(−θ) = p(θ). The probability of occurrence of `j (weight of symbol `j)
Pr(`j) is equal to Pr(−`j), given by

Pr(`j) =

∫ `j

`j−1

θ − `j−1

`j − `j−1
dF (θ) +

∫ `j+1

`j

`j+1 − θ
`j+1 − `j

dF (θ)

23

for j = 2, . . . , s. In addition, we have

Pr(`1) = Pr(−`1) =

∫ `1

−`1

θ + `1
2`1

dF (θ) +

∫ `2

`1

`2 − θ
`2 − `1

dF (θ),

Pr(`s+1 = 1) = Pr(−`s+1) =

∫ 1

`s

θ − `s
1− `s

dF (θ).

In the special case of truncated normal distribution, we have the symbol probabilities in closed-form:
Corollary 4. Suppose normalized coordinates have truncated normal distribution with PDF pT and
CDF FT defined in Appendix A.2. The probability of occurrence of `j (weight of symbol `j) is given
by

Pr(`j) = Pr(−`j) =
σ2(pT (`j−1)− pT (`j)) + (µ− `j−1)(FT (`j)− FT (`j−1))

`j − `j−1

+
σ2(pT (`j+1)− pT (`j)) + (`j+1 − µ)(FT (`j+1)− FT (`j))

`j+1 − `j
for j = 2, . . . , s. In addition, we have

Pr(`1) = Pr(−`1) =
σ2(pT (`2)− pT (`1)) + (`2 − µ)(FT (`2)− FT (`1))

`2 − `1

+
(µ+ `1)(FT (`1)− FT (−`1))

2`1
,

Pr(`s+1 = 1) = Pr(−`s+1) =
σ2(pT (`s)− pT (1)) + (µ− `s)(FT (1)− FT (`s))

1− `s
.

Finally, we have the following bound on the expected number of communication bits per iteration for
quantizing with symmetrical levels.
Theorem 10 (Code-length bound). Let v ∈ Rd and q ≥ 1. The expectation E[|ENCODE(v)|] of
the number of communication bits needed to transmit Q`(v) under Lq normalization is bounded by

E[|ENCODE(v)|] ≤ b+ d(H(L) + 1) ≤ b+ d(log2(2s+ 2) + 1), (48)

where b is a constant and L is a random variable with the probability mass function given by
Proposition 8.

K Experimental details and additional experiments

In this section, we provide additional experiments for the methods evaluated in Section 5. In addition
to baselines discussed in Section 5, we present results for ALQ-N, which minimizes the expected
normalized variance using coordinate descent in (3), ALQ with norm adjustments in Section 3.4,
ALQ adapted using gradient descent in Section 3.2 (ALQG, ALQG-N), AMQ-N, and AMQ. This
section includes full ImageNet runs. Figs. 3a, 3b, 5a and 5b have also been extended to include all
variations of the proposed algorithms and baselines.

An implementation challenge is that the value of the statistics, especially the variance, can become
very small. This makes PDF and CDF calculations challenging. The challenge is that the value of
PDF is very close to zero when it is far from the mean but not exactly zero. In order to overcome this
challenge, we use histograms to model the distribution of gradients as a weighted sum of truncated
normals. Another problem is the large number of statistics that are calculated. As presented in
Section 3, we sample a number of gradients and then normalize the gradients. Then we split the
gradients into buckets and calculate average, variance, and norm of each of the buckets. The number
of means, variances, and norms can become very large with large networks and small bucket sizes.
To reduce computational complexity of the algorithm, we sample uniformly from these values. This
number of samples is equal to 20 for small networks such as ResNet-8 and networks trained on
CIFAR-10; however, in experiments on ImageNet, we used 350 samples to achieve the desired
accuracy.

24

Table 3: Training Hyper-parameters for CIFAR-10 and ImageNet

Hyperparameter ResNet-32 on
CIFAR-10

ResNet-110 on
CIFAR-10 ImageNet

Learning Rate 0.1 0.1 0.1
LR Decay Schedule At 45K & 60K At 45K & 60K At 300K & 450K

Batch Size 128 64 64
Momentum 0.9 0.9 0.9

Total Iterations 80K 80K 600K
Weight Decay 10−4 10−4 10−4

Optimizer SGD SGD SGD

Table 4: Validation Accuracy on Full ImageNet Run

Quantization Method ResNet-18 on
ImageNet

Bucket Size 8192

SGD 64.67% ± 0.13
SuperSGD 69.85% ± 0.05

NUQSGD [21, 22] 35.43% ± 0.28
QSGDinf [20] 67.48% ± 0.08

TRN [15] 63.97% ± 0.11

ALQ 68.65% ± 0.10
ALQ-N 68.50% ± 0.10
AMQ 67.76% ± 0.09

AMQ-N 67.96% ± 0.10

One other understudied detail in quantizing is how bucketing is performed. In [20, 21], gradient
coordinates in each bucket do not exceed the layer size. It means that the gradient coordinates
in a bucket do not contain gradient coordinates from the next layer even if the bucket size is not
fully utilized. This leads to creation of under-sized buckets that can be problematic for quantization
performance. Different tricks are employed to fix this problem. These tricks include transmitting
biases or under-sized buckets in full-precision (not that typically biases are main sources of under-
sized buckets). In our implementation, we normalize the buckets network-wise and do not consider
the layer size as the bucket size boundary. We only transmit the last bucket in full precision if it is
smaller than the specified bucket size.

Update Schedule. In the ImageNet and CIFAR-10 runs, adaptive level updates are scheduled at 100
and 2000 iterations only once and every 10K iterations. The reason for this schedule is changes in
the gradient statistics over the course of training. As shown in Fig. 1, the average variance changes
rapidly during the first iterations and then only changes at every learning rate schedule. In practice, we
noticed accuracy degradation especially when the levels are not updated during the initial iterations
where the average variance is rapidly changing.

Convergence of level updating. Fig. 8 shows the expected normalized variance (the objective in (3))
and expected variance (the objective in (9)) during one step of adapting levels. This figure shows that
the objective function in (3) is nonconvex and different initializations lead to sub-optimal solutions.
ALQG and ALQG-N refer to variations of ALQ using gradient descent instead of coordinate descent.

Hyperparameters used for training. Table 3 shows the hyperparameters used for training CIFAR-
10 and ImageNet. These are conventional hyperparameters for training ResNet models. SuperSGD is
able to replicate the accuracy reported in [28] showing the correct setting for training.

Validation accuracy on full ImageNet run Table 4 shows the validation accuracy of full ImageNet
runs on ResNet-18. Total number of iterations required for a full ImageNet run is 600K. This table
shows that ALQ and ALQ-N are able to outperform QSGDinf by 1% on ImageNet.

25

0 5 10 15 20 25
Iterations

10−5

10−4

10−3

Ex
pe

ct
ed

 V
ar

ia
nc

e

ALQ (exp init)
ALQ (uni init)
ALQG (exp init)
ALQG (uni init)
AMQ (init 0.5)
AMQ (init 0.2)

(a) Expected Normalized Variance

0 5 10 15 20 25
Iterations

10−5

10−4

10−3

Ex
pe

ct
ed

 V
ar

ia
nc

e

ALQ-N (exp init)
ALQ-N (uni init)
ALQG-N (exp init)
ALQG-N (uni init)
AMQ-N (init 0.5)
AMQ-N (init 0.2)

(b) Expected Variance

Figure 8: Convergence of different level update methods

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−3

10−2

10−1

100

Lo
ss

SuperSGD
ALQ-N
AMQ-N
Qinf
TRN
NUQ,p=0.5
SGD
ALQ
AMQ

(a) ResNet-32 on CIFAR-10

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−3

10−2

10−1

100

Lo
ss

(b) ResNet-110 on CIFAR-10

Figure 9: Extended Training loss on CIFAR-10. All methods use 3 quantization bits. Bucket size for
ResNet-110 trained on CIFAR-10 is 16384 and for ResNet-32 is 8192.

Similar performance of normalized and unnormalized variations of AMQ and ALQ methods suggests
that for given datasets and deep models, the distribution of normalized gradient coordinates can be
represented by either of the forumulations in Section 3. In AMQ-N and ALQ-N, µ and σ values for
the truncated normal distribution is equal to the average of µ and σ for individual buckets.

Figs. 10a and 10b show an interesting observation for NUQSGD. Although NUQSGD has worse
performance in terms of the training loss and average variance compared to all other approaches, it is
able to achieve better validation accuracy. This suggests that NUQSGD is able to generalize better in
this specific setting. However, this pattern does not repeat when it comes to the ImageNet dataset.

K.1 Revised Experiments

Figs. 9 to 12 are extended versions of Figs. 3, 4 and 11 figures in the main body. The difference is that
they contain more baselines compared to the figures in the main body. Fig. 9 contains the training
loss for the experiments on CIFAR-10. It was not possible to include the same figure for ImageNet,
because calculating the full training loss on ImageNet takes a very long time.

The expected variance, training loss, and the validation loss for the results presented in Table 2 are
shown in Fig. 13. Although ALQ performs better in expected variance and training loss, it seems
to have trouble when it comes to the validation loss for 32-GPUs. We suspect that this is due to the
large total batch size used for these experiment that results in overfitting. The batch size for each
GPU is 128.

K.2 Effect of Using Gradient Clipping

TRN [15] introduced the idea of gradient clipping before quantization. Gradient clipping replaces
the gradient coordinates that are far from the mean to reduce the gradient variance. The gradient
coordinates that are very far from the mean can affect the normalization. In order to tackle this

26

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

1.0

0.4

0.6

2.0

Lo
ss

SuperSGD
ALQ-N
AMQ-N
Qinf
TRN
NUQ,p=0.5
SGD
ALQ
AMQ

(a) ResNet-32 on CIFAR-10

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

1.0

0.4

0.6

2.0

Lo
ss

(b) ResNet-110 on CIFAR-10

0 1 2 3 4 5
Training Iteration 1e5

2.0

4.0

Lo
ss

(c) ResNet-18 on ImageNet

Figure 10: Extended Validation loss on CIFAR-10 and ImageNet. All methods use 3 quantization bits. Bucket
size for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on ImageNet is
8192.

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−10

10−8

10−6

10−4

Av
er

ag
e

Va
ria

nc
e

SuperSGD
ALQ-N
AMQ-N
Qinf
TRN
NUQ,p=0.5
SGD
ALQ
AMQ

(a) ResNet-32 on CIFAR-10

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−10

10−8

10−6

10−4

Av
er

ag
e

Va
ria

nc
e

(b) ResNet-110 on CIFAR-10

0 1 2 3 4 5 6
Training Iteration 1e5

10−7

10−6

10−5

10−4

Av
er

ag
e

Va
ria

nc
e

(c) ResNet-18 on ImageNet

Figure 11: Extended Variance (no train) on CIFAR-10 and ImageNet. All methods use 3 quantization bits.
Bucket size for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on
ImageNet is 8192.

problem, they clip the gradients before quantization. The clipping process can be described using
Eq. (49):

f(gi) =

{
gi |gi| ≤ cσ
sign(gi).cσ |gi| > cσ

(49)

10 100 1000 10000
Bucket Size

86.5

87.0

87.5

88.0

88.5

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

) ALQ
AMQ
ALQ-N
AMQ-N
Qinf
TRN

Figure 14: Validation Loss

The constant c used in TRN equals to 2.5. In order to inves-
tigate the effect of gradient clipping in ALQ and AMQ, we
train a ResNet-8 on CIFAR-10 dataset for various bucket
sizes. Fig. 14 shows the validation accuracy of the base-
lines and the algorithms we proposed. ALQ and ALQ-N
always maintain better or equal accuracy compared to the
other quantization schemes. It is also worth noting that
the quantization is performed by each layer instead of a
performing the quantization across the network without
considering the layers.

K.3 Timing Overhead

In this section, we provide the timing results per step for training ResNet-18 (Table 6) and ResNet-50
(Table 7) on ImageNet with mini-batch size 512. The training setup consists of 4 AWS nodes with
one V100 GPU on each. Network bandwidth programmatically constrained to 1GBit/s.

27

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−10

10−8

10−6

10−4

Av
er

ag
e

Va
ria

nc
e

SuperSGD
ALQ-N
AMQ-N
Qinf
TRN
NUQ,p=0.5
SGD
ALQ
AMQ

(a) ResNet-32 on CIFAR-10

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−10

10−8

10−6

10−4

Av
er

ag
e

Va
ria

nc
e

(b) ResNet-110 on CIFAR-10

0 1 2 3 4 5
Training Iteration 1e5

10−7

10−6

10−5

10−4

Av
er

ag
e

Va
ria

nc
e

(c) ResNet-18 on ImageNet

Figure 12: Extended Variance on CIFAR-10 and ImageNet. All methods use 3 quantization bits. Bucket size
for ResNet-110 trained on CIFAR-10 is 16384, for ResNet-32 is 8192, and for ResNet-18 on ImageNet is 8192.

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−9

10−8

10−7

10−6

10−5

Av
er

ag
e

Va
ria

nc
e

SuperSGD
ALQ
AMQ
Qinf
TRN

(a) Variance

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

10−3

10−2

10−1

100

Lo
ss

(b) Training Loss

0 1 2 3 4 5 6 7 8
Training Iteration 1e4

1.0

0.4

0.6

2.0

Lo
ss

(c) Validation Loss

Figure 13: Using 32-GPUs to train ResNet-32 on CIFAR-10.

28

Table 5: Training ResNet50 on ImageNet with min-batch size 512. Time per step for training with 32bits
full-precision is 1.2s and with 16 bits full-precision is 0.61s.

Bits Bucket size Time per step (s) Ratio to FP32 Ratio to FP16

2 64 0.41 0.34 0.67
2 256 0.39 0.33 0.64
2 1024 0.38 0.32 0.62
2 8192 0.38 0.32 0.62
2 16384 0.38 0.32 0.62
3 64 0.4 0.33 0.66
3 256 0.4 0.33 0.66
3 1024 0.4 0.33 0.66
3 8192 0.4 0.33 0.66
3 16384 0.38 0.32 0.62
4 64 0.42 0.35 0.69
4 256 0.41 0.34 0.67
4 1024 0.4 0.33 0.66
4 8192 0.4 0.33 0.66
4 16384 0.4 0.33 0.66
5 64 0.43 0.36 0.70
5 256 0.42 0.35 0.69
5 1024 0.41 0.34 0.67
5 8192 0.4 0.33 0.66
5 16384 0.4 0.33 0.66
6 64 0.42 0.35 0.69
6 256 0.41 0.34 0.67
6 1024 0.41 0.34 0.67
6 8192 0.41 0.34 0.67
6 16384 0.41 0.34 0.67
7 64 0.45 0.38 0.74
7 256 0.43 0.36 0.70
7 1024 0.42 0.35 0.69
7 8192 0.42 0.35 0.69
7 16384 0.43 0.36 0.70
8 64 0.45 0.38 0.74
8 256 0.44 0.37 0.72
8 1024 0.43 0.36 0.70
8 8192 0.43 0.36 0.70
8 16384 0.43 0.36 0.70

29

Table 6: Training ResNet18 on ImageNet with min-batch size 512. Time per step for training with 32bits
full-precision is 0.57s and with 16 bits full-precision is 0.28s.

Bits Bucket size Time per step Ratio to FP32 Ratio to FP16

2 64 0.13 0.23 0.46
2 256 0.12 0.21 0.43
2 1024 0.11 0.19 0.39
2 8192 0.11 0.19 0.39
2 16384 0.11 0.19 0.39
3 64 0.13 0.23 0.46
3 256 0.12 0.21 0.43
3 1024 0.12 0.21 0.43
3 8192 0.12 0.21 0.43
3 16384 0.12 0.21 0.43
4 64 0.13 0.23 0.46
4 256 0.13 0.23 0.46
4 1024 0.12 0.21 0.43
4 8192 0.12 0.21 0.43
4 16384 0.12 0.21 0.43
5 64 0.13 0.23 0.46
5 256 0.13 0.23 0.46
5 1024 0.13 0.23 0.46
5 8192 0.13 0.23 0.46
5 16384 0.13 0.23 0.46
6 64 0.14 0.25 0.50
6 256 0.13 0.23 0.46
6 1024 0.13 0.23 0.46
6 8192 0.13 0.23 0.46
6 16384 0.13 0.23 0.46
7 64 0.14 0.25 0.50
7 256 0.13 0.23 0.46
7 1024 0.14 0.25 0.50
7 8192 0.13 0.23 0.46
7 16384 0.13 0.23 0.46
8 64 0.15 0.26 0.54
8 256 0.14 0.25 0.50
8 1024 0.14 0.25 0.50
8 8192 0.14 0.25 0.50
8 16384 0.14 0.25 0.50

30

Table 7: Additional overhead of proposed methods for training ResNet18 on ImageNet (Table 6). We also show
the cost of performing 3 updates relative to the total cost of training for 60 epochs. Full-precision training for 60
epochs with 32 bits takes 95 hours while with 16 bits takes 46 hours.

Bits Bucket size Quantization Method Time per update Ratio to FP32 Ratio to FP16

3 64 ALQ-N 1012 0.89 1.81
3 256 ALQ-N 630 0.55 1.13
3 1024 ALQ-N 533 0.47 0.95
3 8192 ALQ-N 559 0.49 1.00
3 16384 ALQ-N 591 0.52 1.06
4 64 ALQ-N 1170 1.03 2.09
4 256 ALQ-N 822 0.72 1.47
4 1024 ALQ-N 733 0.64 1.31
4 8192 ALQ-N 681 0.60 1.22
4 16384 ALQ-N 684 0.60 1.22
6 64 ALQ-N 2036 1.79 3.64
6 256 ALQ-N 1710 1.50 3.05
6 1024 ALQ-N 1556 1.36 2.78
6 8192 ALQ-N 1574 1.38 2.81
6 16384 ALQ-N 1671 1.47 2.98
8 64 ALQ-N 5604 4.92 10.01
8 256 ALQ-N 5253 4.61 9.38
8 1024 ALQ-N 5478 4.81 9.78
8 8192 ALQ-N 5180 4.54 9.25
8 16384 ALQ-N 5576 4.89 9.96
3 64 ALQ 1032 0.91 1.84
3 256 ALQ 585 0.51 1.04
3 1024 ALQ 444 0.39 0.79
3 8192 ALQ 474 0.42 0.85
3 16384 ALQ 477 0.42 0.85
4 64 ALQ 930 0.82 1.66
4 256 ALQ 529 0.46 0.94
4 1024 ALQ 450 0.39 0.80
4 8192 ALQ 431 0.38 0.77
4 16384 ALQ 486 0.43 0.87
6 64 ALQ 974 0.85 1.74
6 256 ALQ 573 0.50 1.02
6 1024 ALQ 489 0.43 0.87
6 8192 ALQ 428 0.38 0.76
6 16384 ALQ 438 0.38 0.78
8 64 ALQ 1051 0.92 1.88
8 256 ALQ 637 0.56 1.14
8 1024 ALQ 516 0.45 0.92
8 8192 ALQ 508 0.45 0.91
8 16384 ALQ 516 0.45 0.92

31

	Introduction
	Summary of contributions
	Related work

	Preliminaries: data-parallel SGD
	Adaptive quantization
	ALQ: Adapting individual levels using coordinate descent
	Gradient descent
	AMQ: Exponentially spaced levels
	Expected variance minimization

	Theoretical guarantees
	Experimental evaluation
	Hyperparameter studies

	Conclusions
	CDF and its inverse
	Normal distribution
	Truncated normal distribution

	Expected normalized variance minimization
	thm:expvarmin
	Projected Gradient Descent
	Symmetric Levels
	GD
	CD
	Exponentially spaced levels

	Expected variance minimization in body:norm
	ALQ (CD update)
	GD update
	AMQ (GD update with exponentially spaced levels)
	Computational complexity and scalability

	Encoding
	Variance gap
	Proof of thm:varbound (variance bound)
	Proof of thm:codebound (code-length bound)
	AQSGD for smooth nonconvex optimization
	AQSGD with momentum
	Theoretical guarantees for levels with symmetry
	Experimental details and additional experiments
	Revised Experiments
	Effect of Using Gradient Clipping
	Timing Overhead

