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Abstract

Graph-based neural network models are producing strong results in a number of
domains, in part because graphs provide flexibility to encode domain knowledge
in the form of relational structure (edges) between nodes in the graph. In practice,
edges are used both to represent intrinsic structure (e.g., abstract syntax trees of
programs) and more abstract relations that aid reasoning for a downstream task
(e.g., results of relevant program analyses). In this work, we study the problem of
learning to derive abstract relations from the intrinsic graph structure. Motivated by
their power in program analyses, we consider relations defined by paths on the base
graph accepted by a finite-state automaton. We show how to learn these relations
end-to-end by relaxing the problem into learning finite-state automata policies on a
graph-based POMDP and then training these policies using implicit differentiation.
The result is a differentiable Graph Finite-State Automaton (GFSA) layer that adds
a new edge type (expressed as a weighted adjacency matrix) to a base graph. We
demonstrate that this layer can find shortcuts in grid-world graphs and reproduce
simple static analyses on Python programs. Additionally, we combine the GFSA
layer with a larger graph-based model trained end-to-end on the variable misuse
program understanding task, and find that using the GFSA layer leads to better
performance than using hand-engineered semantic edges or other baseline methods
for adding learned edge types.

1 Introduction

Determining exactly which relationships to include when representing an object as a graph is not
always straightforward. As a motivating example, consider a dataset of source code samples. One
natural way to represent these as graphs is to use the abstract syntax tree (AST), a parsed version of
the code where each node represents a logical component.1 But one can also add additional edges to
each graph in order to better capture program behaviors. Indeed, adding additional edges to represent
control flow or data dependence has been shown to improve performance on code-understanding
tasks when compared to a AST-only or token-sequence representation [1, 19].

An interesting observation is that these additional edges are fully determined by the AST, generally
by using hand-coded static analysis algorithms. This kind of program abstraction is reminiscent
of temporal abstraction in reinforcement learning (e.g., action repeats or options [30, 38]). In both
cases, derived higher-level relationships allow reasoning more abstractly and over longer distances
(in program locations or time).

In this work, we construct a differentiable neural network layer by combining two ideas: program
analyses expressed as reachability problems on graphs [34], and mathematical tools for analyzing
temporal behaviors of reinforcement learning policies [13]. This layer, which we call a Graph

1For instance, the AST for print(x + y) contains nodes for print, x, y, x + y, and the call as a whole.
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def example_fn(x, y):

print(x, y)

while x > 0:

x = x - 1

if y > 10:

print(x, y)

break

print(x, y)

y = y + 1

print(x, y)

(a) LASTREAD edges for an
example function.

def example_fn(x, y):

print(x, y)

while x > 0:
x = x - 1

if y > 10:

print(x,  y)

break

print(x, y)

y = y  + 1

print(x, y)

(b) Learned behavior of GFSA
on LASTREAD task.

(c) Learned behavior of GFSA
on grid-world task.

Figure 1: (a) Target edges for the LASTREAD task starting from the final use of y on a handwritten
example function. (b) Learned behavior starting at the final use of y (blue circle). Thickness represents
probability mass, color and style represent the finite-state memory, and boxes represent AST nodes
in the graph. The automaton changes to a reverse-execution mode (green) and steps backward to
the while loop, then nondeterministically either looks at the condition or switches to a break-finding
mode (orange) and jumps to the body. In the first case, it checks for uses of y in the condition,
then splits again between the previous print and the loop body. In the second, it walks upward until
finding a break statement, then transitions back to the reverse-execution mode. For simplicity, we
hide backtracking trajectories and combine some intermediate steps. Note that only the start and end
locations (colored boxes in (a)) are supervised; all intermediate steps are learned. (c) Colored arrows
denote the path taken by the GFSA policy for each option, shown starting from four arbitrary start
positions (white) on a grid-world layout not seen during training. The tabular agent can jump from
each start position to the endpoint of any of its arrows in a single step.

Finite-State Automaton (GFSA), can be trained end-to-end to add derived relationships (edges) to
arbitrary graph-structured data based on performance on a downstream task.2 We show empirically
that the GFSA layer has favorable inductive biases relative to baseline methods for learning edge
structures in graph-based neural networks.

2 Background

2.1 Neural Networks on Graphs

Many neural architectures have been proposed for graph-structured data. We focus on two general
families of models: first, message-passing neural networks (MPNNs), which compute sums of
messages sent across each edge [17], including recurrent models such as Gated Graph Neural
Networks (GGNNs) [27]; second, transformer-like models operating on the nodes of a graph, which
include the Relation-Aware Transformer (RAT) [42] and Graph Relational Embedding Attention
Transformer (GREAT) [19] models along with other generalizations of relative attention [37]. All of
these models assume that each node is associated with a feature vector, and each edge is associated
with a feature vector or a discrete type.

2.2 Derived Relationships as Constrained Reachability

Compilers and static analysis tools use a variety of techniques to analyze programs, many of which
are based on fixed-point analysis over a problem-specific abstract lattice (see for instance Cousot and
Cousot [10]). However, it is possible to recast many of these analyses within a different framework:
graph reachability under formal language constraints [34].

Consider a directed graph G where the nodes and edges are annotated with labels from finite sets N
and E . Let L be a formal language over alphabet Σ = N ∪ E , i.e. L ⊆ Σ∗ is a set of words (finite

2An implementation is available at https://github.com/google-research/google-research/
tree/master/gfsa.
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sequences of labels from Σ) built using formal rules. One useful family of languages is the set of
regular languages: a regular language L consists of the words that match a regular expression, or
equivalently the words that a finite-state automaton (FSA) accepts [20]. Note that each path in G
corresponds to a word in Σ∗, obtained by concatenating the node and edge labels along the path. We
say that a path from node n1 to n2 is an L-path if this word is in L.

Using a construction similar to Reps [34], one can construct a regular language L such that, if n1 is
the location of a variable and n2 is the location of a previous read from that variable, then there is an
L-path from n1 to n2 (and every L-path is of this form); roughly, L contains paths that trace backward
through the program’s execution. This corresponds to edge type LASTREAD as described by Allamanis
et al. [1], which is visualized in Figure 1a. Similarly, one can define edges and corresponding regular
languages that connect each use of a variable to the possible locations of the previous assignment
to it (the LASTWRITE edge type from [1]) or connect each statement to the statements that could
execute directly afterward (which we denote NEXTCONTROLFLOW since it corresponds to the control
flow graph); see appendix A.1 for details. More generally, the existence of L-paths summarizes the
presence of longer chains of relationships with a single pairwise relation. Depending on L, this can
represent transitive closures, compositions of edges, or other more complex patterns. We may not
always know which language L would be useful for a task of interest; our approach makes it possible
to jointly learn L and use the L-paths as an abstraction for the downstream task.

3 Approach

Consider, as a motivating example, a graph representing the abstract syntax tree for a Python program.
Each of the nodes of this tree has a type, for instance “identifier”, “binary operation” or “if statement”,
and edges correspond to AST fields such as “X is the left child of Y” or “X is the loop condition of
Y”. Section 2.2 suggests that L-paths on this graph are a useful abstraction for higher-level reasoning,
but we do not know what the best choice of L is; we seek a mechanism to learn it end-to-end.

We propose placing an agent on a node of this tree, with actions corresponding to the possible fields
of each node (e.g. “go to parent node” or “go to left child”), and observations giving local information
about each node (e.g. “this is an identifier, but not the one we are trying to analyze”). Note that
the trajectories of this agent then correspond to paths in the graph. We allow the agent to terminate
the episode and add an edge from its initial to its current location, thus “accepting" the path it has
taken. By averaging over all trajectories, we obtain an expected adjacency matrix for these edges that
summarizes the paths that the agent tends to accept, which we use as an output edge type.

If the agent’s actions were determined by a finite-state automaton for a regular language L, the added
edges would correspond to L-paths. We propose parameterizing the agent with a learnable finite-state
automaton, so that it can learn to do the kinds of analyses that a regular language can express. As
long as the actions and observations are shared across all ASTs, we can then apply this policy to
many different ASTs, even ones not seen at training time.

In this section, we formalize and generalize this intuition by describing a transformation from graphs
into partially-observable Markov decision processes (POMDPs). We show that, for agents with a
finite-state hidden memory, we can efficiently compute and differentiate through the distribution of
trajectory endpoints. We propose using this distribution to define a new edge type, and demonstrate
that any regular-language-constrained reachability problem (and in particular, basic program analyses)
can be expressed as a policy of this form.

3.1 From Graphs to POMDPs

Suppose we have a family of graphs G with an associated set of node types N . Our approach is
to transform each graph G ∈ G to a rewardless POMDP, in which an agent takes a sequence of
actions to move between nodes of the graph while observing only local information about its current
location. To ensure that all graphs have compatible action and observation spaces, for each node type
τ(n) ∈ N we choose a finite setMτ(n) of movement actions associated with that node type (e.g.
the set of possible fields that can be followed) and a finite set Ωτ(n) of observations (which include
the node type as well as other task-specific information). These choices may depend on domain
knowledge about the graph family or the task to be solved; see appendix B for the specific choices
we used in our experiments.
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At each node nt ∈ N of a graph G ∈ G, the agent selects an action at from the set

At =
{

(MOVE,m)
∣∣m ∈Mτ(nt)

}
t {ADDEDGEANDSTOP, STOP, BACKTRACK}

according to some policy π. If at = ADDEDGEANDSTOP, the episode terminates by adding an edge
(n0, nt) to the output adjacency matrix. If at = STOP, the episode terminates without adding an edge.
If at = (MOVE,m), the agent is either moved to an adjacent node nt+1 ∈ N in the graph by the
environment or stays at node nt (and thus nt+1 = nt), and then receives an observation ωt+1 with
ωt+1 ∈ Ωτ(nt+1). The MDP is partially observable because the agent does not see node identities or
the global structure; instead, ωt+1 encodes only node types and other local information. Since derived
edge types may depend on existing pairwise relationships between nodes (for instance, whether two
variables have the same name), we allow the observations to depend on the initial node n0 as well as
the current node nt and most recent transition; in effect, each choice of n0 ∈ N specifies a different
version of the POMDP for graph G. Finally, if at = BACKTRACK is selected, the agent is reset to its
initial state. We note that, since the action and observation spaces are shared between all graphs in G,
a single policy π can be applied to any graph G ∈ G.

We would like our agent to be powerful enough to extract useful information from this POMDP,
but simple enough that we can efficiently compute and differentiate through the learned trajectories.
Since our motivating program analyses can be represented as regular languages, which correspond to
finite-state automata (see section 2.2), we focus on agents augmented with a finite-state memory.

3.2 Computing Absorbing Probabilities

Here we describe an efficient way to compute and differentiate through the distribution over trajectory
endpoints for a finite-state memory policy over a graph. Let Z be a finite set of memory states,
and consider a specific policy πθ(at, zt+1 | ωt, zt) parameterized by θ (see appendix C.1 for details
regarding the parameterization we use). Combining the policy πθ with the environment dynamics for
a single graphG yields an absorbing Markov chain over tuples (nt, ωt, zt), with transition distribution

p(nt+1, ωt+1, zt+1|nt, ωt, zt, n0) =
∑
mt

πθ (at = (MOVE,mt), zt+1|ωt, zt)
· p(nt+1|nt,mt) · p(ωt+1|nt+1, nt,mt, n0)

and halting distribution πθ(at ∈ {ADDEDGEANDSTOP, STOP, BACKTRACK} | nt, ωt, zt). We can
represent this distribution via a transition matrix Qn0

∈ RK×K where K is the set of possible
(n, ω, z) tuples, along with a halting matrix H ∈ R(3×|N |)×K (keeping track of the final node
nT ∈ N as well as the halting action). We can then compute probabilities for each final action by
summing over each possible trajectory length i:

p(aT , nT |n0, πθ) =
[∑
i≥0

HQin0
δn0

]
(aT ,nT )

= H(aT ,nT ),: (I −Qn0
)
−1
δn0

, (1)

where δn0 is a vector with a 1 at the position of the initial state tuple (n0, ω0, z0). Note that, since
the matrix depends on the initial state n0, it would be inefficient to analytically invert this matrix
for every n0. We thus use Tmax iterations (typically 128) of the the Richardson iterative solver [3]
to obtain an approximate solution using only efficient matrix-vector products; this is equivalent to
truncating the sum to include only paths of length at most Tmax.

To compute gradients with respect to θ, we use implicit differentiation to express the gradients as the
solution to another (transposed) linear system and use the same iterative solver; this ensures that the
memory cost of this procedure is independent of Tmax (roughly the cost of a single propagation step
for a message-passing model). We implement the forward and backward passes using the automatic
differentiation package JAX [8], which makes it straightforward to use implicit differentiation with
an efficient matrix-vector product implementation that avoids materializing the full transition matrix
Qn0

for each value of n0 (see appendix C for details).

3.3 Absorbing Probabilities as a Derived Adjacency Matrix

Finally, we construct an output weighted adjacency matrix by averaging over trajectories:

Ân,n′ = p(aT = ADDEDGEANDSTOP, nT = n′ | n0 = n, aT 6= BACKTRACK, z0, πθ),

An,n′ = σ
(
a σ−1

(
Ân,n′

)
+ b
) (2)
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where a, b ∈ R are optional learned adjustment parameters, σ denotes the logistic sigmoid, and σ−1
denotes its inverse. Note that, since they are derived from a probability distribution, the columns
of Ân,n′ sum to at most 1. The adjustment parameters a and b remove this restriction, allowing the
model to express one-to-many relationships.

Given a fixed initial automaton state z0, An,n′ can be viewed as a new weighted edge type. Since
An,n′ is differentiable with respect to the policy parameters θ, this adjacency matrix can either be
supervised directly or passed to a downstream graph model and trained end-to-end.

3.4 Connections to Constrained Reachability Problems

As described in section 2.2, many interesting derived edge types can be expressed as the solutions
to constrained reachability problems. Here, we describe a correspondence between constrained
reachability problems on graphs and trajectories within the POMDPs defined in section 3.1.
Proposition 1. Let G be a family of graphs annotated with node and edge types. There exists an
encoding of graphs G ∈ G into POMDPs as described in section 3.1 and a mapping from regular
languages L into finite-state policies πL such that, for any G ∈ G, there is an L-path from n0 to nT
in G if and only if p(aT = ADDEDGEANDSTOP, nT |n0, πL) > 0.

In other words, for any ordered pair of nodes (n0, nT ), determining if there is a path inG that satisfies
regular-language reachability constraints is equivalent to determining if a specific policy takes the
ADDEDGEANDSTOP action at node nT with nonzero probability when started at node n0, under a
particular POMDP representation. See appendix A.2 for a proof. As a specific consequence:
Corollary. There exists an encoding of program AST graphs into POMDPs and a specific policy
πNEXT-CF with finite-state memory such that p(aT = ADDEDGEANDSTOP, nT | n0, π) > 0 if and only
if (n0, nT ) is an edge of type NEXTCONTROLFLOW in the augmented AST graph. Similarly, there are
policies πLAST-READ and πLAST-WRITE for edges of type LASTREAD and LASTWRITE, respectively.

3.5 Connections to Reinforcement Learning and the Successor Representation

The GFSA layer deterministically computes continuous edge weights by marginalizing over trajecto-
ries. These weights can then be transformed nonlinearly (e.g. f(E[τ ]) where f is the downstream
model and loss and τ are edge additions from trajectories). In contrast, standard RL approaches
produce stochastic discrete samples. As such, is not possible to “drop in” an RL approach instead of
GFSA; one must first reformulate the model and task in terms of an expected reward E[f(τ)].

Even so, there are interesting connections between the gradient updates for GFSA and traditional RL.
In particular, the columns of the matrix (I −Qn0

)
−1 are known in the RL literature as the successor

representation. If immediate rewards are described by r, then taking a product rT (I −Qn0
)
−1

corresponds to computing the value function [13]. In our case, instead of specifying a reward, we
use the GFSA layer for a downstream task that requires optimizing some loss L. When computing
gradients of our parameters with respect to L, backpropagation computes a linear approximation of
the downstream network and loss function and then uses it in the intermediate expression

∂L
∂p(·|n0, πθ)

T

H (I −Qn0
)
−1
.

This is analogous to a non-stationary “reward function” for the GFSA policy, which assigns reward
to the absorbing states that produce useful edges for the rest of the model. Unlike in standard RL,
however, this quantity depends on the full marginal distribution over behaviors. As such, the “reward”
assigned to a given trajectory may depend on the probability of other, mutually exclusive trajectories.

4 Related Work

Some prior work has explored learning edges in graphs. Kipf et al. [25] propose a neural relational
inference model, which infers pairwise relationships from observed particle trajectories but does
not add them to a base graph. Franceschi et al. [15] infer missing edges in a single fixed graph by
jointly optimizing the edge structure and a classification model; this method only infers edges of a
predefined type, and does not generalize to new graphs at test time. Yun et al. [48] propose adding
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new edge types to a graph family by learning to compose a fixed number of existing edge types,
which can be seen as a special case of GFSA where each state is visited once. The MINERVA model,
described in Das et al. [12], uses an RL agent trained with REINFORCE to add edges to a knowledge
base, but requires direct supervision of edges. Wang et al. [43] use a RL policy to remove existing
edges from a noisy graph, with reward coming from a downstream classification task.

Bielik et al. [7] apply decision trees to program traces with a counterexample-guided program
generator in order to learn static analyses of programs. Their method is provably correct, but cannot
be used as a component of an end-to-end differentiable model or applied to general graph structures.

Our work shares many commonalities with reinforcement learning techniques. Section 3.5 describes
a connection between the GFSA computation and the successor representation [13]. Our work is also
conceptually similar to methods for learning options. For instance, Bacon et al. [4] describe an end-
to-end architecture for learning options by differentiating through a primary policy’s reward. Their
option policies and primary policy are analogous to our GFSA edge types and downstream model; on
the other hand, they apply policy gradient methods to trajectory samples instead of optimizing over
full marginal distributions, and their full architecture is still a policy, not a general model on graphs.

Existing graph embedding methods have used stochastic walks on graphs [47, 23, 49, 24, 21, 9], but
generally assume uniform random walks. Alon et al. [2] propose representing ASTs by sampling
random paths and concatenating their node labels, then attending over the resulting sequences. Dai
et al. [11] describe a framework of MDPs over graphs, but focus on a “learning to explore” task,
where the goal is to visit many nodes and the agent can see the entire subgraph it has already visited.
Hudson and Manning [22] propose treating the nodes of an inferred scene graph as states of a learned
state machine, and learning to update the current active node based on natural-language inputs.

Self-attention can be viewed as constructing a weighted adjacency matrix similar to GFSA, but only
considers pairwise relationships and not longer paths. Existing approaches to learning multi-step
path-based relationships include iterating a graph neural network until convergence [36] and using
a learned stopping criterion as in Universal Transformers [14]. The algorithm in section 3.2 in
particular resembles running a separate graph neural network model to convergence for each start
node and training with recurrent backpropagation [36, 28], and is also similar to other uses of implicit
differentiation [45, 5, 32]. The GFSA layer enables multi-step relationships to be efficiently computed
for every start node in parallel and provides good expressivity and inductive biases for learning edges,
in contrast to previous techniques that focus on learning node representations and must learn from
scratch to propagate multi-step information without letting distinct paths interfere with each other.

Weiss et al. [44] describe a method for extracting a discrete finite-state automaton from a RNN; this
assumes access to an existing trained RNN for the task, and is intended for recognizing sequences,
not adding edges to graphs. See also Mohri [31] for a framework of weighted automata on sequences.

5 Experiments

5.1 Grid-World Options

As an illustrative example, we consider the task of discovering useful navigation strategies in grid-
world environments. We generate grid-world layouts using the LabMaze generator [6],3 and interpret
each cell as a node in a graph G, where edges represent cardinal directions. We augment this
graph with additional edges from a GFSA layer, using four independent GFSA policies to add four
additional edge types; let G′θ(G) denote the augmented graph using GFSA parameters θ. Next, we
construct a pathfinding task on the augmented graph G′θ(G), in which a graph-specific agent finds
the shortest path to some goal node g. We assign an equal cost to all edges (including those that
the GFSA layer adds); when the agent follows a GFSA edge, it ends up at a destination cell with
probability proportional to the edge weights from the GFSA layer.

Inspired by existing work on meta-learning options [16], we interpret the GFSA-derived edges as
a kind of option for this agent: given a random graph, the edges added by the GFSA layer should
make it possible to quickly reach any goal node g from any start location n0. More specifically, we
train the graph-independent GFSA layer (in an outer loop) to minimize the number of steps that a

3https://github.com/deepmind/labmaze
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graph-specific policy (trained in an inner loop) takes to reach the goal g, i.e. we minimize

L = EG,n0,g

[
Ent∼π∗(·|nt−1,g,G′θ(G)) [T | nT = g]

]
where π∗(·|g,G′θ(G)) is an optimal tabular policy for graph G′θ(G) and goal g. In order to dif-
ferentiate this with respect to the GFSA parameters θ, we use entropy regularization to ensure
π∗(·|g,G′θ(G)) is smooth, and solve for it by iterating the soft Bellman equation until convergence
[18], again using implicit differentiation to backpropagate through that solution (see appendix D.1).

Figure 1c shows the derived edges learned by the GFSA layer on a graph not seen during training;
we find that the edges learned by the GFSA layer are discrete and roughly correspond to diagonal
motions in the grid. Over the course of training the GFSA layer, the average number of steps taken by
the (optimal) primary policy (on a validation set of unseen layouts) decreases from 40.1 steps to 11.5
steps, a substantial improvement in the end-to-end performance. This example illustrates the kind of
relationships the GFSA layer can learn from end-to-end supervision; note that we do not claim these
options are optimal for this task or would be practical in a more traditional RL context.

5.2 Learning Static Analyses of Python Code

Proposition 1 ensures that a GFSA is theoretically capable of performing simple static analyses of
code. We demonstrate that the GFSA can practically learn to do these analyses by casting them as
pairwise binary classification problems. We first generate a synthetic dataset of Python programs by
sampling from a probabilistic context-free grammar over a subset of Python. We then transform the
corresponding ASTs into graphs, and compute the three edge types NEXTCONTROLFLOW, LASTREAD,
and LASTWRITE, which are commonly used for program understanding tasks [1, 19] and which we
describe in section 2.2. Note that there may be multiple edges from the same statement or variable,
since there are often multiple possible execution paths through the program.

For each of these edge types, we train a GFSA layer to classify whether each ordered pair of nodes is
connected with an edge of that type. We use the focal-loss objective [29], a more stable variant of the
cross-entropy loss for highly unbalanced classification problems, minimizing

L = E(N,E)∼D

 ∑
n1,n2∈N

{
−(1−An1,n2

)γ log(An1,n2
) if (n1 → n2) ∈ E,

−(An1,n2)γ log(1−An1,n2) otherwise


where the expectation is taken over graphs in the training dataset D.

We compare against four graph model baselines: a GGNN [27], a GREAT model over AST graphs
[19], a RAT model [42], and an NRI-style encoder [25]. For the GGNN, GREAT, and RAT models, we
present results for two methods of computing output adjacency matrices: the first computes a learned
key-value dot product (similar to dot-product attention) and interprets it as an adjacency matrix, and
the second runs the model separately for each possible source node, tagging that source with an extra
node feature, and computing an output for each possible destination (denoted “nodewise”). For the
NRI encoder model, the output head is an MLP over node feature pairs as described by Kipf et al.
[25]; we extend the NRI model with residual connections and layer normalization to improve stability,
similar to a transformer model [40]. All baselines use a logistic sigmoid as a final activation, and are
trained with the focal-loss objective. See appendix D.2 for more details.

As an ablation, we also train a standard RL agent with the same parameterization as GFSA, inspired
by MINERVA [12]. We replace the cross-entropy loss with a reward of +1 for adding a correct edge
(or correctly not adding any) and 0 otherwise, and train using REINFORCE with 20 rollouts per start
node and a leave-one-out control variate [46, 26]. Since edges are added by single trajectories rather
than marginals over trajectories, this RL agent can add at most one edge from each start node.

Table 1 shows results of each of these models on the three edge classification tasks. We present
results after training on a dataset of 100,000 examples as well as on a smaller dataset of only 100
examples, and report F1 scores at the best classification threshold; we choose the model with the
best validation performance from a 32-job random hyperparameter search. To assess generalization,
we also show results on two modified data distributions: programs of half the size of those in the
training set (0.5x), and programs twice the size (2x). When trained on 100,000 examples, all models
achieve high accuracy on examples of the training size, but some fail to generalize, especially to larger
programs. When trained on 100 examples, only the GFSA layer and RL ablation consistently achieve
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Table 1: Results on the program analysis edge-classification tasks. Values are F1 scores (in percent),
with bold indicating overlapping 95% confidence intervals with the best model; see appendix D.2.3
for full-precision results. “nw” denotes nodewise output, and “dp” denotes dot-product output.

100,000 training examples
Task Next Control Flow Last Read Last Write

Example size 1x 2x 0.5x 1x 2x 0.5x 1x 2x 0.5x

RAT nw 99.98 99.94 99.99 99.86 96.29 99.98 99.83 94.87 99.97
GREAT nw 99.98 99.87 99.98 99.91 95.12 99.98 99.75 93.22 99.93
GGNN nw 99.98 93.90 97.77 95.52 9.22 86.24 98.82 40.69 88.28

RAT dp 99.99 92.53 96.59 99.96 42.58 91.96 99.98 68.96 99.76
GREAT dp 99.99 96.32 98.36 99.99 47.07 99.78 99.99 68.46 99.88
GGNN dp 99.94 62.75 98.51 98.44 0.99 63.77 99.35 38.40 94.52

NRI encoder 99.98 85.91 99.92 99.83 43.44 99.39 99.87 52.73 99.84
RL ablation 94.24 93.56 94.83 96.69 94.85 97.85 98.08 96.64 98.93

GFSA (ours) 100.00 99.99 100.00 99.66 98.94 99.90 99.47 98.73 99.78

100 training examples
RAT nw 98.63 95.93 96.32 80.28 1.12 83.49 79.27 8.91 83.79

GREAT nw 98.23 97.98 98.52 78.88 6.96 60.90 80.19 40.22 84.54
GGNN nw 99.37 98.36 98.60 79.36 28.28 5.66 91.13 71.62 91.79

RAT dp 81.81 68.46 87.05 59.53 28.91 62.27 75.99 48.10 81.63
GREAT dp 86.60 62.98 80.58 57.02 27.13 64.48 73.69 46.27 80.03
GGNN dp 76.85 22.99 28.91 44.37 9.64 38.34 53.82 17.84 55.08

NRI encoder 81.74 69.08 88.87 68.69 26.64 73.52 65.38 36.43 73.86
RL ablation 91.70 91.14 92.29 98.48 97.03 99.17 98.32 96.96 99.07

GFSA (ours) 99.99 99.99 100.00 98.81 97.82 99.22 98.71 96.98 99.55

high accuracy, highlighting the strong inductive bias for constrained-reachability-based reasoning
tasks. The GFSA layer trained with exact marginals and cross-entropy loss obtains higher accuracy
than the RL ablation, and also converges more reliably: 82% of GFSA layer training jobs achieve at
least 90% accuracy on the validation set, compared to only 11% of RL ablation jobs.

Figure 1b shows an example of the behavior that the GFSA layer learns for the LASTREAD task
based on only input-output supervision. We note that the GFSA layer discovers separate modes for
break statements and regular control flow, and also learns to split probability mass across multiple
trajectories in order to account for multiple paths through the program, closely following the program
semantics. The paths learned by this policy are also quite long; the policy shown takes an average
of 35 actions before accepting (on the 1x test set). More generally, this shows that the GFSA layer
is able to learn many-hop reasoning that covers large distances in the graph by breaking down the
reasoning into subcomponents defined by the learned automaton states.

5.3 Variable Misuse

Finally, we investigate performance on the variable misuse task [1, 39]. Following Hellendoorn
et al. [19], we use a dataset of small code samples from a permissively-licenced subset of the ETH
150k Python dataset [33], where synthetic variable misuse bugs have been introduced in half of the
examples by randomly replacing one of the identifiers with a different identifier in that program.4
We train a model to predict the location of the incorrect identifier, as well as another location in the
program containing the correct replacement that would restore the original program; we use a special
“no-bug” location for the unmodified examples, similar to Vasic et al. [39] and Hellendoorn et al. [19].

We consider two graph neural network architectures: either an eight-layer RAT model [42] or eight
GGNN blocks [27] with two message passing iterations per block (similar to Hellendoorn et al.
[19]). For each, we investigate adding different types of edges to the base AST graph: no extra
edges, hand-engineered edges used by Allamanis et al. [1] and Hellendoorn et al. [19], weighted

4https://github.com/google-research-datasets/great
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Table 2: Accuracy on the variable misuse task, in percent. “Start” indicates that edges are added to the
base graph before running the graph model, and “middle” indicates they are added halfway through,
conditioned on the output of the first half. Bold indicates overlapping 95% confidence intervals with
the best model for each metric. See appendix D.3.3 for standard error estimates and additional details.

Example type: All No bug With bug

Metric: Full accuracy Classification Classification Loc & Repair

Graph model family: RAT GGNN RAT GGNN RAT GGNN RAT GGNN

Base AST graph only 88.22 83.52 92.05 91.26 93.03 88.15 88.30 81.63
Base AST graph, +2 layers 87.85 84.38 92.45 88.80 92.03 91.92 87.76 83.97
Hand-engineered edges 88.50 84.78 92.93 90.19 92.48 91.56 88.39 83.52
NRI head @ start 88.71 84.47 92.55 91.49 93.21 89.38 88.73 82.73
NRI head @ middle 88.42 84.41 92.83 88.29 92.31 92.20 88.62 84.44
Random walk @ start 88.91 84.52 93.22 91.35 92.77 89.28 88.73 82.96
RL ablation @ middle 87.28 84.96 90.36 90.44 93.71 90.64 87.73 84.30
GFSA layer (ours) @ start 89.47 85.01 93.10 90.08 93.56 91.80 89.58 83.91
GFSA layer (ours) @ middle 89.63 84.72 92.66 90.98 94.25 89.81 89.93 83.63

edges learned by a GFSA layer, weighted edges output by an NRI-like pairwise MLP, weighted
edges produced by an ablation of GFSA consisting of a uniform random walk with a learned halting
probability, and a single edge per start state sampled by a GFSA-based RL agent. For the NRI and
GFSA layers, we investigate adding the edges either before the graph neural network model (building
from the base graph), or halfway through the model (conditioned on the node embeddings from the
first half). For the RL agent, we train with REINFORCE and a learned scalar reward baseline, and
use the downstream cross-entropy loss as the reward. To show the effect of just increasing model
capacity, we also present results for ten-layer models on the base graph. In all models, we initialize
node embeddings based on a subword tokenization of the program (using the Tensor2Tensor library
by Vaswani et al. [41]), and predict a joint distribution over the bug and repair locations, with softmax
normalization and the standard cross entropy objective. See appendix D.3 for additional details on
each of the above models, as well as results using an eight-layer GREAT model [19].

The results are shown in Table 2. We report overall accuracy, along with a breakdown by example
type: for non-buggy examples, we report the fraction of examples the model predicts as non-buggy,
and for buggy examples, we report both accuracy of the classification and accuracy of the predicted
error and replacement identifier locations conditioned on the classification. Consistent with prior
work, adding the hand-engineered features from Allamanis et al. [1] improves performance over
only using the base graph. Interestingly, adding weighted edges using a random walk on the base
graph yields similar performance to adding hand-engineered edges, suggesting that, for this task,
improving connectivity may be more important than the specific program analyses used. We find that
the GFSA layer combined with the RAT graph model obtains the best performance, outperforming
the hand-engineered edges. Interestingly, we observe that the GFSA layer does not seem to converge
to a discrete adjacency matrix, but instead assigns continuous weights. We conjecture that the output
edge weights may provide additional representative power to the base model.

6 Conclusion

Inspired by ideas from programming languages and reinforcement learning, we propose the differen-
tiable GFSA layer, which learns to add new edges to a base graph. We show that the GFSA layer
can learn sophisticated behaviors for navigating grid-world environments and analyzing program
behavior, and demonstrate that it can act as a viable replacement for hand-engineered edges in the
variable misuse task. In the future, we plan to apply the GFSA layer to other domains and tasks, such
as molecular structures or larger code repositories. We also hope to investigate the interpretability
of the edges learned by the GFSA layer to determine whether they correspond to useful general
concepts, which might allow the GFSA edges to be shared between multiple tasks.
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Broader Impact

We consider this work to be a general technical and theoretical contribution, without well-defined
specific impacts. If applied to real-world program understanding tasks, extensions of this work might
lead to reduced bug frequency or improved developer productivity. On the other hand, those benefits
might accrue mostly to groups with sufficient resources to incorporate machine learning into their
development practices. Additionally, if users put too much trust in the output of the model, they could
inadvertently introduce bugs in their code because of incorrect model predictions. If applied to other
tasks involving structured data, the impact would depend on the specific application; we leave the
exploration of these other applications and their potential impacts to future work.
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