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Abstract

Design of experiments and estimation of treatment effects in large-scale networks,
in the presence of strong interference, is a challenging and important problem. Most
existing methods’ performance deteriorates as the density of the network increases.
In this paper, we present a novel strategy for accurately estimating the causal
effects of a class of treatments in a dense large-scale network. First, we design an
approximate randomized controlled experiment by solving an optimization problem
to allocate treatments in the presence of competition among neighboring nodes.
Then we apply an importance sampling adjustment to correct for any leftover bias
(from the approximation) in estimating average treatment effects. We provide
theoretical guarantees, verify robustness in a simulation study, and validate the
scalability and usefulness of our procedure in a real-world experiment on a large
social network.

1 Introduction

Measuring the effect of treatment variants is a fundamental problem in several fields of study
[2, 22, 14]. A/B testing is a commonly used method in the internet industry [18, 19, 25, 29] and
beyond, wherein randomized experiments are run with two or more such variants. Traditional
A/B testing depends on the key assumption that the effect of treatment on an experiment unit is
independent of the treatment allocation to other experiment units – commonly called “Stable Unit
Treatment Value Assumption” (SUTVA) [22]. However, in many important network settings, this
assumption is violated due to various forms of interference [3, 4, 13, 16, 17, 23, 26, 28].

We focus on one such class of problems – a marketplace of commodity producers and consumers. An
example is a social media platform, where the commodity is content, and the return utility is feedback.
Examples include Facebook, Instagram, LinkedIn, Twitter, etc. Other marketplace problems differ
primarily on the commodity and return utility in question. Rides are commodities in Uber and Lyft,
retail items are commodities in marketplaces like Amazon and eBay, and money is the common
return utility. Note that we do not make any assumptions on how the utility affects a producer’s
behavior (i.e., the incentive function).

In the marketplace setting, we define a treatment class represented by a modification of the edge-
level probability pij of showing a commodity of a producer i to a consumer j. This abstraction
represents a very general class of treatments since any redistribution or shift in producer and consumer
exposure can be expressed via the change in the edge-level probabilities. In content marketplaces, such
treatments can reshape the content creator’s exposure to their audience, whereas, in a transportation
marketplace, it can reshape the likelihood of specific drivers and riders being matched.

In such marketplace problems, SUTVA is violated because of interference from the network. For
instance, the effect of treatment on a producer (the experimental unit) is influenced by the allocation
and effect of the treatment on all potential consumers of that producer, which in turn depend on each
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of their producers’ experiences (and hence, their allocated treatments) – thus leading to competition
among producers connected to common consumers. When SUTVA is violated, the effect of treatment
can be measured by allocating experimental units as well as their first-degree neighbors (and second-
degree neighbors, depending upon the interference function) to the same treatment (or control)
[10, 23]. The number of such units for which we can successfully allocate treatments in this fashion
(i.e., whose neighborhood is appropriately treated) decreases with increasing density in the graph,
resulting in lower statistical power in the measurements.

In this paper, we propose a novel technique named OASIS, “Optimal Allocation Strategy and
Importance Sampling Adjustment”, that provides a randomized testing framework for large-scale
marketplace problems in the presence of interference. The performance of OASIS does not deteriorate
(and may improve) as the density of the network increases, and it can be used to obtain high-power
measurements. Our approach relies on the existence of an “intervening variable” (a.k.a. mediator) —
i.e., the effect of the treatment allocation to an experimental unit’s network on the unit itself is fully
captured by a sufficient statistic (cf.[1, 8, 20]). For example, the total feedback received by a content
producer (or the total money made by a driver) can be an intervening variable. The producers in a
marketplace compete with each other to receive feedback, and we attempt to mimic this competition
effect in the design of experiment. Furthermore, we construct an unbiased estimator of the treatment
effect by applying an importance sampling correction. We use simulation studies to compare our
method against a graph cluster based baseline. From both the simulation studies and from a real-world
experiment on a large social network, we show that our technique (i) compares favorably against
the baseline method and also (ii) works very well for large-scale dense graphs that cannot be
decomposed into reasonably isolated clusters.

This technique can be used in any marketplace problem where the treatment in question can be
expressed via the pij “edge weight” abstraction, and where the key assumptions (outlined as As-
sumptions 1 and 2 in later sections) are satisfied. In many applications, the treatment needs to be
applied over a time window during which pij can change periodically (e.g., consumers’ favored
producers may change over time) and this dynamism can be handled by updating the experiment
design periodically (see the real-world experiment in Section 5).

The rest of the paper is organized as follows. Section 2 formulates the problem and discusses the
setup in detail. The key aspects of how we design an experiment via an optimization formulation
are described in Section 3. We propose the OASIS estimator and provide theoretical guarantees in
Section 4. In Section 5, we provide some empirical results both from an elaborate simulation study
and a real-world experiment on a large social network graph, before concluding with a discussion in
Section 6. We end this section with a selective literature review.

Related Work: Recently there has been a lot of focus on A/B testing in the presence of interference,
especially on large real-world networks, with several proposed approaches. This is due to the ever-
growing popularity of several marketplace products mentioned previously, and critical applications in
those products violating SUTVA in randomized testing. Under the assumption that the interference
between units has some known form, [3] propose inverse probability weighting based methods to
estimate effects defined in terms of “effective treatments” and refines the estimator via covariance
adjustment, and [26] propose to estimate causal effects under partial interference (i.e., when k
neighbors are in treatment) using a sequential design. Unlike [3, 26], we aim to estimate the full
treatment effect, i.e., all neighbors are in treatment vs. no neighbor is in treatment, for which the
sequential design strategy is expected to break down ([26] used k = 4 in the experiments).

Network bucket testing [4, 17] looks at a form of interference where a new feature will take effect only
if some minimal number of a treated user’s neighbors are also in treatment. The key idea, proposed
in [4] is to use a walk-based sampling method to generate a core set of users who are internally well-
connected while being approximately representative of the population. [17] generalizes this further
and provides variance bounds for various core set generation functions. Graph cluster randomization
is a related approach introduced in [28]. In this work, a notion of “network exposure” is defined,
where a unit is “network exposed” to treatment if its behavior under a particular assignment is the
same as its behavior if everyone were assigned to treatment. For various definitions of network
exposure, a clustering approach is proposed, and randomization is done at the cluster level. In a
real-world network, it very difficult to obtain a large number of reasonably isolated clusters, resulting
in low-powered experiments. To mitigate this issue, [23] proposed ego-network randomization,
where a cluster is comprised of an “ego” (a focal individual), and her “alters” (the individuals she is
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immediately connected to). Our class of treatment definitions can be viewed as a specific instance of
network exposure. However, our randomization is still at the node level and allows us to obtain
much higher-confidence measurements with much smaller treatment exposure.

In the marketplace setting, [30] introduced the bipartite randomized experiment framework, where
two distinct groups of units are linked together through a bipartite graph. The treatment is assigned
to the first group, called diversion units, and the response is measured on the second group, called
outcome units. Under a linear treatment exposure model, [21] proposed a clustering-based approach
for estimating the exposure-response function, whereas [9] proposed a generalized-propensity-score
[15] based estimator. A treatment exposure model relates the responses of the outcome units to a
measure of treatment exposure they receive (cf. Definition 1). The measure of treatment exposure
is considered to be a linear function of the treatment assignments of the diversion units in a linear
exposure model (cf. Assumption 1). Our framework differs from the bipartite randomized experiment
framework in the following two major aspects. First, we consider general directed graphs where each
experiment unit can be a diversion unit, an outcome unit, or both. Second, we consider a setting
with limited exposure to each outcome unit, leading to a competition among the treatment units for
being exposed to an outcome unit. The limited exposure is a common feature of many marketplace
settings, where the consumers (e.g., buyers in a commodity marketplace or viewers in a content
marketplace) can only view a limited number of items. Finally, we note that our approach does
not require extrapolation of the estimated exposure-response function for estimating the average
treatment effect, which caused an additional overhead in approaches proposed by [9, 21].

Two other related classical lines of work in estimating causal effect is the instrumental variable
approach [1, 8] and the mediation or intervening variable effect estimation [20]. Both approaches
make key assumptions about the how the causal effect flows through specific known variables to
affect the outcome, and is similar to the assumption we make in order to facilitate replicating a
completely treated universe with a much smaller exposure.

2 Problem Setup

We describe the problem in a content marketplace setup, where each member is a node in a directed
graph (or network) G = (Ω, E), and each member is either a content-consumer, a content-producer
or both. If i → j, then producer i is a parent of j and consumer j is a child of i. We denote the
set of all parents of j by Pa(j) and the set of all children of i by Ch(i). When a consumer j visits
the marketplace she views a content produced by one of her parents i with probability pij , where∑
i∈Pa(j) pij = 1. We denote the probabilities in the existing system (i.e., prior to any intervention)

by pbaseij and an intervention (or a treatment) on member j replaces her consumer-side experience

{pbaseij : i ∈ Pa(j)} by {p(r)
ij : i ∈ Pa(j)} satisfying

∑
i∈Pa(j) p

(r)
ij = 1.

Let T (r)
E = {p(r)

ij : (i, j) ∈ E} be an intervention over the entire population and τr = E[Y (T
(r)
E )] be

the expected response of the population under T (r)
E . We assume that the responses of members i and

j, denoted by Yi(T
(r)
E ) and Yj(T

(r)
E ) respectively, are independently distributed for a given T (r)

E . We
consider m treatments T (1)

E , . . . T
(m)
E and a control environment T (0)

E = {pbaseij : (i, j) ∈ E}. Our
goal is to estimate the average treatment effects τ1 − τ0, . . . , τm − τ0 in a marketplace setup (see
Figure 1b and 1a) defined below.

Definition 1. A directed network G = (Ω, E) of members is said to be a marketplace if member i’s
response Yi(T

(r)
E ) depends on the treatment T (r)

E through

1. Consumer-side experience: the exposure of producers to consumer i: {p(r)
ki : k ∈ Pa(i)},

and

2. Producer-side experience: the exposure of producer i to consumers: {p(r)
ij : j ∈ Ch(i)}.

In a marketplace setup, T (r)
E not only has a direct effect on Yi(T

(r)
E ) through the modification of

the existing consumer-side experience {pbaseri : r ∈ Pa(i)} (i.e., what contents have been shown
to i), but also has an indirect effect on Yi(T

(r)
E ) through the modification of the producer-side
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experience {pbaseij : j ∈ Ch(i)} (i.e., other members liking, sharing or commenting on the contents
produced by i). The latter violates the SUTVA assumption and is known as the network effect.
Further, each producer competes with its second-degree neighbors, to obtain higher p(r)

ij values as∑
i∈Pa(j) p

(r)
ij = 1 for all j. This was referred as the competition effect in Section 1. In Figure 1a,

the producer-side experience of member 1 depends on the feedback received from consumers 2, 3 and
5, while the consumer-side depends on the incoming edges from producers 4 and 5. Due to this fact,
there is a competition between member 4 and member 5 for getting the feedback from consumer 1.

Recall that a classical A/B testing setting would consider randomly selected non-overlapping subsets
Ω0, . . . , Ωm of Ω and assign treatment {p(r)

ki : k ∈ Pa(i)} to each i ∈ Ωr and estimate τr − τ0 by

τ̂r − τ̂0 =
1

|Ωr|
∑
i∈Ωr

Y
(exp)
i − 1

|Ω0|
∑
i∈Ω0

Y
(exp)
i , (1)

where Y (exp)
i is the response of member i under the aforementioned experimental design. It is easy

to see that the estimator defined in (1) is not unbiased as the producer-side experience of member
i ∈ Ωr is not the same in the classical A/B testing design and under T (r)

E , since all j ∈ Ch(i) is
not guaranteed to be in Ωr. The bias of the estimator in (1) is known as the “spillover effect” in the
literature. A commonly used technique for mitigating the spillover effect is to choose Ω0, . . . , Ωm as
disjoint from each other as possible. This is called the cluster-based approach. Even for moderately
dense networks, a cluster-based method does not provide a reasonable solution, since it either induces
a large bias by ignoring inter-cluster edges and/or suffers from the loss of power by considering
a small sample consisting of nearly perfect clusters. In this paper, we propose a complementary
approach under the following assumption.

Assumption 1. The producer-side experience of member i depends on the treatment condition T (r)
E

only through a weighted total exposure Zi(T
(r)
E ) =

∑
j∈Ch(i) αijp

(r)
ij for some constants αij’s

representing the strength of the relationship between producer i and consumer j (see Figure 1b).
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(1a) A producer-consumer network.

T
(r)
E

producer-side
experience

consumer-side
experience

Zi(T
(r)
E )

Yi(T
(r)
E )

Network Effect

Direct Effect

A1

(1b) A graphical representation of Assumption 1.

In the content marketplace setup, Assumption 1 corresponds to the situation where the producer-side
experience of member i depends only on an aggregated feedback to member i’s content. Note that
as the potential number of consumers for member i’s content increases, it becomes more likely that
the total feedback determines the producer-side experience. Thus, Assumption 1 becomes more
reasonable, as the density of the network increases.

In Section 3, we construct an experiment T ∗E where we exactly match p∗ki with p(r)
ki for all i ∈ Ωr

and k ∈ Pa(i) (as in the classical A/B testing design), and attempt to match Zi(T ∗E) with Zi(T
(r)
E )

as much as possible by solving a joint optimization problem for all i ∈ Ωr and r ∈ [m] (where
[m] = 0, . . . ,m). In practice, it is reasonable to assume that αij’s are unknown or approximately
known. In Section 3.1, we show the robustness of our estimator under the violation of the assumption
that αij’s are known. Finally, we propose an importance sampling based adjustment to correct for
experimental bias and describe the OASIS estimator.

3 Design of Experiment

We present our design in Algorithm 1 and an example in Figure 2. Let Ωr, Λr, and C ′ be disjoint
subsets of Ω (as in Algorithm 1), and let Ω′ = ∪mr=0Ωr and Λ′ = ∪mr=0Λr. The three disjoint subsets
represent the following:
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1. Ωr: This is the population which will be used to measure Y (T
(r)
E ). |Ωr| determines the

statistical power of the measurement. We allocate the exact consumer-side experience
for each member i ∈ Ωr. The producer side experience is approximately matched by an
optimization formulation (see below).

2. Λr: This is a shadow population for which we also allocate the exact consumer-side
experience. As shown in Figure 2, since Ωr matches both the consumer-side and producer-
side experience while Λr matches only the consumer side experience, we can compare Ωr
and Λr to detect the presence of network effect.

3. C ′: Members whose incoming edges from Ω′ are assigned weights to match the producer
experience for members in Ω′.

In order to achieve the above objectives, we assign edges in the following manner:

1. p(r)
ij to all incoming edges to members in Ωr ∪ Λr, hence exactly matching their consumer

side experience.
2. a new treatment p∗ij to all incoming edges to members in C ′, to approximately match the

producer side experience of members in Ω′, and
3. pbaseij to all incoming edges to members not in Ωr ∪ Λr ∪ C ′, to control the overall risk.

We solve an optimization problem to define the new treatment p∗ij for all edges from Ω′ to C ′ and
line (6) of Algorithm 1 defines p∗ij of all other incoming edges to C ′ such that

∑
i∈Pa(j) p

∗
ij = 1 for

all j ∈ C ′. The selection probability q in Algorithm 1 controls the number of members |C ′| that are
receiving the new treatment.

Algorithm 1 Optimal Allocation Strategy (OAS)

1: Randomly select disjoint subsets Ω0,Ω1, . . . , Ωm of Ω and define Ω′ = ∪mr=0Ωr;
2: Randomly select disjoint subsets Λ0,Λ1, . . . ,Λm of Ω \ Ω′ and define Λ′ = ∪mr=0Λr;
3: Set p∗ij = p

(r)
ij for all j ∈ Ωr ∪ Λr, r = 0, . . . ,m, i ∈ Pa(j);

4: Construct a subset of children C ′ by selecting each member in ∪i∈Ω′Ch(i) \ (Ω′ ∪ Λ′) with
probability q;

5: Obtain {p∗ij : j ∈ C ′, i ∈ Pa(j) ∩ Ω′} by solving the optimization problem given in (2);

6: Set p∗ij = pbaseij × 1−
∑

k∈Pa(j)∩Ω′ p
∗
kj

1−
∑

k∈Pa(j)∩Ω′ p
base
kj

for j ∈ C ′ and i ∈ Pa(j) \ Ω′;

7: For all other (i, j) ∈ E, set p∗ij = pbaseij ;

The sets Λr will also be used in the importance sampling step described in Section 4. Thus, the
existence of Λr increases the accuracy of our final estimator without increasing the time complexity
of the optimization problem. Further, as mentioned above, Ωr and Λr can be compared to detect the
presence of the network effect in a real-world experiment.
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(a) Steps 1-3 of OAS
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(b) Steps 4-5 of OAS
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(c) Step 6 of OAS
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(d) Step 7 of OAS

Figure 2: Consider Algorithm 1 with the network in Figure 1a. Let Ω0 = {1}, Ω1 = {6}, Λ0 = {5}, Λ1 = {2}
and C′ = {3}. In (a), we assign the color red or blue to a node j with consumer-side experience {p(0)ij : i ∈
Pa(j)} or {p(1)ij : i ∈ Pa(j)} respectively. In (b) we assume αij = 1 for all (i, j) ∈ E and obtain {p∗13, p∗63}
by minimizing (p

(0)
12 + p

(0)
13 − p

(1)
12 − p13)2 + (p

(1)
63 − p63)2. Next, we assign p∗23 = pbase23 × 1−(p∗13+p∗63)

1−(pbase
13 +pbase

63 )

in (c). Finally, we assign pbase54 to the edge 5→ 4 in (d).
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3.1 Optimization Problem

Let E∗ ⊆ E be the set of all edges from Ω′ to C ′. Our goal is to obtain {p∗ij : (i, j) ∈ E∗}
such that J(E∗) =

∑m
r=0

∑
i∈Ωr

(Zi(T
(r)
E ) − Zi(T

∗
E))2 is minimized. Recall that Zi(T

(r)
E ) =∑

j∈Ch(i) αijp
(r)
ij . By Algorithm 1, we first assign all edge weights that won’t be determined by the

optimization. This includes assigning p(s)
ij to all edges Ei,s from i to members in Ωs ∪ Λs and assign

pbaseij to all edges Ei,base from i to members not in Ωs ∪ Λs ∪ C ′. To capture this already assigned
exposure of a member i ∈ Ω′, we define

Z ′i(T
∗
E) =

m∑
s=0

∑
(i,j)∈Ei,s

αijp
(s)
ij +

∑
(i,j)∈Ei,base

αijp
base
ij .

Next, we denote the set of all edges from i to C ′ by Ei,C′ . All outgoing edges from i is the union of
{Ei,s : s = 0, . . . ,m}, Ei,base and Ei,C′ and we adjust the exposure level corresponding to Ei,C′
to minimize (Zi(T

(r)
E )− Zi(T ∗E))2 simultaneously for all i ∈ Ωr, r ∈ {0, . . . ,m}. Also, note that

∪i∈Ω′Ei,C′ = E∗. Therefore, we find {p∗ij : (i, j) ∈ E∗} by solving

Minimize
pij

m∑
r=0

∑
i∈Ωr

(
Zi(T

(r)
E )− Z ′i(T ∗E)−

∑
(i,j)∈Ei,C′

αijpij
)2

subject to
∑

i∈Pa(j)∩Ω′

pij ≤ 1,

pij ≥ 0.

(2)

Risk Control: The risk of an experiment is defined as the total negative impact of an online
experiment on members’ experience. The risk of OAS tend to be higher than a classical A/B testing
design due the modification in the consumer-side experience of members in C ′. We can control the
risk by restricting the size of C ′, and by imposing additional constraints to the optimization problem
to control the deviation of p∗ij from pbaseij (see Appendix A.1).

Scaling the Optimization: The quadratic programming (QP) defined in (2) does not scale well with
the number of edges n := |E∗|. Even in moderately sized experiments in social network graphs,
we can expect n to range in billions, making it almost impossible to solve the QP. We propose an
iterative approximation that iterates over K overlapping sub-problems of roughly equal size nsub,
where each sub-problem respects the constraints of the full optimization and the solution of each
sub-problem can improve the potential solution obtained in the previous step. By following this
strategy, we achieve an O(K × n3

sub) time complexity, which is much better than the O(n3) time
complexity of QP when K1/3 × nsub << n. We use the Operator Splitting method to solve each QP
[5, 6, 24]. The detailed algorithm and simulation results are provided in Appendix A.2.

Robustness: In the Appendix A.3, we show the robustness of the OAS design in the sense that we
can work with partially known αij’s (see Assumption 1) or assume them to be equal to one without
inducing any bias, as long as certain assumptions of independence are satisfied. More precisely, if we
design a treatment T ∗E and a member i such that p∗ki = p

(r)
ki for all k ∈ Pa(i) and∑

j∈Ch(i)

βijp
∗
ij =

∑
j∈Ch(i)

βijp
(r)
ij ,

then E[Yi(T
∗
E)] = E[Yi(T

(r)
E )] holds under much less strict condition than the equality of βij’s and

αij’s. In our simulation study in Section 5, consider further violations of Assumption 1, where
Zi(T

(r)
E )’s are chosen to be non-linear functions of p(r)

ij ’s.

4 Post-experiment Bias Correction

Importance Sampling Adjustment: Under the following assumption, we propose an unbiased esti-
mator of the average treatment effect τr − τ0 under a weaker requirement than a ”perfect” design of
experiment that facilitates the unbiased estimation using (1).
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Assumption 2. For any treatment T (r)
E , the producer-side experience of member i depends on T (r)

E

only through the total exposure Zi(T
(r)
E ) =

∑
j∈Ch(i) Zij(T

(r)
E ) for some observable i.i.d. random

variables Zij’s. We assume that Zi(T
(r)
E ) and {p(r)

ki : k ∈ Pa(i)} are independently distributed.

The first part of Assumption 2 is weaker than Assumption 1 where we additionally assume
Zij(T

(r)
E ) = αijp

(r)
ij . Also, note that the existence of an intermediate variable or mediator Zi(T

(r)
E )

need not be unique. For example, in the content marketplace setup, Zij(T
(r)
E ) can be a function of

p
(r)
ij , as well as Zij(T

(r)
E ) can be a more downstream variable representing the feedback of member j

on the content of member i. In the latter case, the second part of Assumption 2 corresponds to the
assumption that the feedback on member i’s content is independent of the contents shown to member
i, which is a reasonable assumption for most real-world recommendation systems.

Theorem 1. Let fr denote the density of Zi(T
(r)
E ), and let f∗r denote the density of Zi(T ∗E) condi-

tionally on i ∈ Ωr, where T ∗E is the output of Algorithm 1. We define

wi =
fr(Zi(T

∗
E))

f∗r (Zi(T ∗E))
, and τ̂r =

1

|Ωr|
∑
i∈Ωr

wiYi(T
∗
E)

Then under Assumption 2, we have E[τ̂r] = τr, ∀ r ∈ {0, . . . ,m}.

The correctness of Theorem 1 does not rely on Assumption 1 and the experimental design. However,
from a practical standpoint, if we (approximately) know the dependency of Zi(TE), we should use
it to do the matching while designing the experiment. It is crucial for reducing the variance of the
importance sampling weights as well as the corresponding estimator. Further, we recommend to use
the self-normalized importance sampling 1∑

wi

∑
Yiwi, as it is known to be more stable in practice.

The densities f∗r and fr in Theorem 1 can be estimated using the data {Zi(T ∗E) : i ∈ Ωr} and the data
{Zij(T (r)

E ) : i ∈ Ωr, j ∈ Ch(i) ∩ (Ωr ∪ Λr)} respectively, where Ωr and Λr are as in Algorithm 1.
For further the details, please see Appendix A.5.

OASIS: We conclude this section by gluing all the pieces together in Algorithm 2, called Optimal
Allocation Strategy and Importance Sampling Adjustment (OASIS). Under certain assumptions, an
asymptotically correct (1− α)100% confidence interval for τr is given by τ̂r ±Φ−1(1− α/2)× σ̂r,
where Φ is the CDF of the standard normal distribution, where σ̂r is a bootstrap variance estimator
[11] (see Appendix A.6). The result follows from the consistency of density estimation, the central
limit theorem and the consistency of the bootstrap variance estimator. Note that the estimator in
Theorem 1 is an empirical average when the densities are known, implying the consistency of
the bootstrap variance estimators under mild assumptions. When the densities are unknown, the
consistency of the bootstrap variance relies on the consistency of the density estimation (which holds
under some regularity conditions).

Algorithm 2 OASIS

1: Obtain T ∗E by applying Algorithm 1;
2: Run experiment T ∗E to collect data;
3: Obtain estimated densities f̂∗r and f̂r of {Zi(T ∗E) : i ∈ Ωr} and {Zi(T (r)

E ) : i ∈ Ωr} using the
aforementioned technique, for r = 0, . . . ,m;

4: Obtain τ̂r = 1
|Ωr|

∑
i∈Ωr

Yi(T
∗
E)

f̂r(Zi(T
∗
E))

f̂∗r (Zi(T∗E))
for r = 0, . . . ,m;

5: Return τ̂1 − τ̂0, . . . , τ̂m − τ̂0.

5 Experiments

Simulation Study: We compare OASIS with a graph-cluster randomization method that randomly
assigns treatment (or control) to all members in a cluster and uses (1) for estimating treatment effects.
The cluster-based (CB) method yields an unbiased estimator when the clusters are disjoint, and the
performance of CB is expected to deteriorate as the number of inter-cluster edges increase. We
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generate graphs with 50000 nodes from some well studied graphical models [7, 12] with 5 equal-
sized clusters and varying density (i.e. average degree) and varying inter-cluster edge proportion
(see Appendix A.7.1). We directly use these clusters (instead of estimating them) for graph-cluster
randomization to avoid the dependency on the performance of a graph clustering technique (see
Appendix A.7.2). While the chosen network topology (i.e. the presence of clusters) and the use of the
known clusters is somewhat favorable to CB, the presence of clusters does not provide any advantage
to the OASIS design and estimates.

We generate data under moderate violations of Assumption 1. More precisely, we set Zi(T
(r)
E ) as

Zi(δ, T
(r)
E ) =

∑
j∈Ch(i) αij (pij)

δ for r ∈ {0, 1}, δ ∈ {1/4, 1/2, 1}. Observe that the strength
of the network effect Z(r)

i (δ, T
(r)
E ) decreases as δ increases. We choose αij = 1 for constructing

T ∗E using Algorithm 1. The details on the graph and data generation and the treatment definitions are
given in the Appendix.

d̄G
21
55
120

τ0 τ1 − τ0 OASIS CB
9.81 0.042 0.958 0.974
9.73 0.064 0.950 0.948
9.61 0.089 0.956 0.914

(a) δ = 1/4

τ0 τ1 − τ0 OASIS CB
9.10 0.165 0.968 0.976
8.32 0.233 0.950 0.946
7.55 0.234 0.938 0.592

(b) δ = 1/2

τ0 τ1 − τ0 OASIS CB
6.76 0.262 0.928 0.946
5.84 0.137 0.954 0.938
5.50 0.078 0.932 0.880

(c) δ = 1

Table 1: Empirical coverage probability for 95% confidence intervals, computed based on n = 500 experiments.
Higher coverage corresponds to higher accuracy in measurement. d̄G denotes the average degree of the graph.

Table 1 shows the empirical coverage probabilities defined as the proportion of times τ1 − τ0 lies
in the corresponding 95% confidence interval. Ideally, the empirical coverage probability should
match 0.95, a lower value would indicate a higher Type-1 error and a higher value would indicate a
higher Type-2 error. The setting d̄G is the most unfavorable setting for CB with the proportion of
inter-cluster edges, and among all settings with d̄G , the setting with δ = 1/2 has the largest treatment
effect. We suspect that CB failed to capture a significant portion of the network effect under these
extreme conditions.
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 avgDegree=21  avgDegree=55  avgDegree=120  CB  OASIS 

Figure 3: Box-plots of the estimation errors under different settings corresponding to δ ∈ {1/4, 1/2, 1} and
avgDegree = d̄G ∈ {21, 55, 120} based on 500 repeats.

We compare the errors of estimating τ1 − τ0 with the OASIS and the cluster-based estimators in
Figure 3. We observe two important patterns:

1. The performance of the cluster-based method deteriorates as we move from a sparse and
low impurity setting to a dense and high impurity setting, while the performance of OASIS
remains the same or gets better as the density of the network increases. Note that with
increasing density in the graph, the experiment design part of OASIS gets more flexibility to
redistribute the exposure optimally, and the post-experiment adjustment part gets a larger
sample size for density estimation (see Section A.5 in the supplement).

2. Performance is better, and the difference between OASIS and the cluster-based method is
higher when the treatment effect is larger (e.g., the middle set of experiments, where τ1 − τ0
is large).

Real World Experiments: We demonstrate an application of our method on the LinkedIn newsfeed,
a content recommender system with 675M+ members. A content recommender system is often opti-
mized for content consumers’ experience. However, there has been a growing interest in developing
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recommender systems that additionally enhance content producers’ experience [27]. It is easy to see
that the classical A/B testing framework won’t be able to capture the enhancement in the producers’
experience. We apply OASIS for A/B testing a new recommender system M (1) and a baseline model
M (0). For details on the setup, please see Appendix A.8. To estimate the p(0)

ij and p(1)
ij values, we ran

a preliminary experiment for one week where we assignedM (0) andM (1) to members in Ω0∪Λ0∪Γ
and Ω1 ∪ Λ1 respectively. The assignment of M (r) to member i means that the LinkedIn newsfeed
of member i generated by M (r) as follows. An item-generator model creates a list of items for each
member i, then each item in the list receives a score M (r)(item, i), and finally the items are shown
to member i ranked by their scores.

Let’s denote the sum of the scores of all items of producer k that are shown to member i by S(r)(k, i).
Then,

p
(r)
ij :=

S(r)(i, j)∑
k∈Pa(j) S

(r)(k, j)
.

Moreover, we define

Zi(T
(r)
E ) :=

|Ω|
|Ωr ∪ Λr|

∑
j∈Ch(i)∩(Ωr∪Λr)

p
(r)
ij for r = 0, 1.

We assume αij = 1 and we obtain {p∗ij : (i, j) ∈ E∗} by minimizing J(E∗) defined in Section 3,
where E∗ is the set of all edges from Ω′ to C ′. We started running the main experiment by modifying
the scores generated by M (0) with a multiplicative boost factors bij’s (see Appendix A.8.1) such that

bijS
(0)(i, j)∑

k∈Pa(j) bkjS
(0)(k, j)

= p∗ij , for all incoming edges to members in C ′. (3)

We ran the main experiment for three weeks while updating p∗ij’s and bij’s periodically (twice a
week) to incorporate the dynamic nature of the underlying network. The OASIS estimates (based
on the main experiment) showed significant impact in the following metrics that are related to the
producer side experience of a member:

(i) Daily Unique Contributors: Number of unique members in a day who contribute on (i.e.,
either like, comment or share) items on the newsfeed, showed a lift of +0.52% with a
p-value of 0.041.

(ii) Members in Active Community: Number of members who contribute to or receive contribu-
tions from at least 5 members, showed a lift of +1.14% with a p-value of 0.016.

(iii) Feed Interaction received Uniques: Number of unique members who receive at least one
contribution, showed a lift of +1.34% with a p-value of 0.001.

The above results compares the responses of members in Ω1 with the members in Ω0. A similar
comparison for Λ1 with the members in Λ0 turns out to be statistically insignificant for these metrics,
indicating the presence of network effect.

6 Discussion
We have presented a two-step method, called OASIS, for estimating the average treatment effect for
a class of treatments represented by modifications of edge weights in networks with interference.
First, we design an experiment by optimally allocating a “modified” treatment exposure to a set of
randomly selected consumer-producer pairs by solving a large-scale quadratic program. Secondly, we
apply an importance sampling correction for estimating the average treatment effect, which corrects
for the design bias induced by the violations of assumptions and/or the restrictions applied for risk
control. The main advantage of OASIS compared to cluster-based methods is that it tends to perform
better for dense networks that cannot be decomposed into reasonably isolated clusters, while the
cluster-based methods would have an advantage over OASIS for sparse networks. An interesting
future work could be to combine a cluster-based approach with OASIS in order to gain additional
robustness and efficiency. Finally, note that we can handle dynamic networks where the edge weights
pij change over the experiment time window by updating the OASIS design periodically. In some
cases, pij may change very quickly with time or depend on the current context (e.g., drivers and riders
are matched based on current proximity). Therefore, considering the distribution of pij (instead of a
point estimate) for designing the OASIS treatment allocation can be another interesting future work.
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Broader Impact

Online A/B testing plays the most crucial role in product development in the internet industry by
deciding which recommender system is an optimal choice. The optimality criterion often focuses
on the experience of the direct users of the recommender system, e.g., the viewers of a social media
newsfeed or the recruiters searching for potential candidates. This choice can have a potentially
negative impact on the people indirectly affected by these recommendation choices. For example, the
less popular content creators or a certain group of jobseekers might be getting less exposure than the
already popular creators or candidates, leading to a “rich get richer" ecosystem. There has been a
growing interest in enhancing the experience of the people that are indirectly affected. However, a
significant obstacle to achieving this goal is that these indirect effects are challenging to measure in
an online A/B testing experiment. In this paper, we take a step toward solving this problem, which
can potentially lead to product developments focusing on the holistic improvement of the underlying
ecosystem.
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A Appendix

A.1 Risk Control

We find {p∗ij : (i, j) ∈ E∗} by minimizing

J(E∗) =

m∑
r=0

∑
i∈Ωr

(
Zi(T

(r)
E )− Z ′i(T ∗E)−

∑
(i,j)∈Ei,C′

αijpij
)2
.

under some constraints controlling the risk of overexposure or underexposure of parents of j ∈ C ′.
We choose 0 ≤ Rmin ≤ 1 ≤ Rmax and 0 ≤ Smin ≤ 1 ≤ Smax to control the changes in {pbaseij :

(i, j) ∈ E∗} and {pbaseij : j ∈ C ′, (i, j) ∈ E \ E∗} respectively by defining {p∗ij : (i, j) ∈ E∗} as a
solution of the following quadratic optimization problem with linear constraints:

Min
pij

J(E∗) such that: pbaseij Rmin ≤ pij ≤ pbaseij Rmax,

Smin ≤
1−

∑
i∈Pa(j)∩Ω′ pij

1−
∑
i∈Pa(j)∩Ω′ p

base
ij

≤ Smax, 0 ≤
∑

i∈Pa(j)∩Ω′
pij ≤ 1.

(4)

Note that the last two constraints can be combined as `j ≤
∑
i∈Pa(j)∩Ω′ pij ≤ uj for `j =

max{0, 1− Smax(1−
∑
i∈Pa(j)∩Ω′ p

base
ij )} and uj = min{1, 1− Smin(1−

∑
i∈Pa(j)∩Ω′ p

base
ij )}.

A.2 Scaling the Optimization

We split the set of consumers C ′ into disjoint sets Sk of roughly equal sizes, such that C ′ = ∪Kk=1Sk.
Since this induces a natural partition in the constraint space of (4), it is easy to see that any candidate
solution {poldij : (i, j) ∈ E∗} of (4) can be improved by updating {poldij : (i, j) ∈ E∗, j ∈ Sk} with
the solution of the following optimization problem for all k ∈ {1, . . . ,K}. For i ∈ Ωr let

∆ik,r := Zi(T
(r)
E )− Z ′i(T ∗E)−

∑
(i,j)∈Ei,C′ , j /∈Sk

αijp
old
ij .

Minimize
pij

m∑
r=0

∑
i∈Ωr∩(∪j∈SkPa(j))

(
∆ik,r −

∑
(i,j)∈Ei,C′ , j∈Sk

αijpij

)2

such that

Rmin × pbaseij ≤ pij ≤ Rmax × pbaseij ,

Smin ≤
1−

∑
i∈Pa(j)∩Ω′ pij

1−
∑
i∈Pa(j)∩Ω′ p

base
ij

≤ Smax, and

0 ≤
∑

i∈Pa(j)∩Ω′

pij ≤ 1. (5)

Note that (5) and (4) have the same set of constraints for each j ∈ Sk.

We apply this strategy in Algorithm 3 to solve the overall optimization problem. We start with a
feasible candidate poldij = pbaseij and run an iterative scheme to update pij using (5) as we loop over
each k = {1, . . . ,K}. Once this inner loop completes, we get the full next best {pij : (i, j) ∈ E∗}.
We continue the outer loop till convergence. By doing this iterative scheme we are able to solve much
larger problems, since size of the each optimization problem nk =

∑
j∈Sk |Pa(j) ∩ Ω′| is much

smaller than n =
∑
j∈C′ |Pa(j) ∩ Ω′|. In fact, the worst-case complexity of the iterative method

with nIter outer iterations is given byO(maxIter×
∑K
k=1 n

3
k). This is much better than theO(n3)

worst-case complexity of (4) when maxIter = O(1) and K1/3 × (maxk nk) << n. Although the
convergence cannot be guaranteed for maxIter = O(1), we were able to obtain reasonable solutions
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Algorithm 3 Solving for Optimal pij
Input: Number of Groups K, Outer Iteration Limit maxIter

1: Create Sk s.t. S = ∪Kk=1Sk s.t. |Sk| ≈ |S|/K for all k;
2: Set poldij = pbaseij and p∗ij = pbaseij ;
3: for t = 1, . . . ,maxIter do
4: for k = 1, . . . ,K do
5: Solve the optimization problem as in (5) to obtain p∗ij for all j ∈ Sk, i ∈ Ne(j) ∩ Ω′;
6: Set poldij = p∗ij for all j ∈ Sk, i ∈ Ne(j) ∩ Ω′;
7: end for
8: end for
9: Return {p∗ij : i ∈ Ω′, j ∈ S}.

in simulations and real applications by using maxIter = 10. Finally, note that for a fixed value of
maxIter, K represents the speed-accuracy trade-off, i.e. the quality of the solution is expected to be
better for a smaller value of K but the computational efficiency is expected to be better for a larger
value of K.

We illustrate the computational efficiency and the accuracy of the iterative algorithm with the fol-
lowing simulation setup. We consider 5 settings with n = 10000, 20000, 30000, 40000 and 50000
variables. For each setting, we generate n producers and n consumers by sampling with replacement
from Ω = {1, . . . , 100}. Let Ω′ denote the set of all selected producers and letE∗ denote the set of se-
lected producer-consumer pairs. For each producer i ∈ Ω′, we generate hi from Uniform[0, n/100]
and for each producer-consumer pair (i, j) ∈ E∗, we generate pbaseij ∼ Uniform[0, 1]. We solve
the following optimization problem:

Minimize
pij

∑
i∈Ω′

(
hi −

∑
j∈Ch(i)

pij

)2

such that:

0.1× pbaseij ≤ pij ≤ 10× pbaseij , and 0.2×
∑

i∈Pa(j)

pbaseij ≤
∑

i∈Pa(j)

pij ≤ 5×
∑

i∈Pa(j)

pbaseij ,

(6)

where the Pa(i) and Ch(i) are defined on the producer-consumer graph (Ω, E∗).
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Figure 4: Boxplots of runtimes and the final objective values for solving (6) directly using a QP solver (method:
full) and for solving (6) using Algorithm 3 with K = 10 and maxIter = 2 (method: iterative). We used the
Operator Splitting method [24] in R package rosqp for solving each subproblem in Algorithm 3 as well as for
solving the full QP.

Figure 4 shows that our iterative QP algorithm (Algorithm 3) can outperform the full QP solver in
terms of computational efficiency without sacrificing the solution quality (measured by the final
objective value).
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A.3 Robustness

Lemma 1. Let i be a randomly chosen member in Ω and let {p(r)
ki : k ∈ Pa(i)} and {αij , p(r)

ij :

j ∈ Ch(i)} be well-defined random variables. Assume

Yi(T
(r)
E ) = g

( ∑
j∈Ch(i)

αijp
(T

(r)
E )

ij ,Wi(T
(r)
E )

)
+ εi,

where g is a differentiable function with respect to the first coordinate, Wi(T
(r)
E ) := {p(r)

ki : k ∈
Pa(i)}, and εi does not depend on T (r)

E . Let {Uij : j ∈ Ch(i)} be a set of i.i.d. random variables
independent of {(βijp(r)

ij , αij/βij) : j ∈ Ch(i)}. Define

U∗ij =
Uij
∑
k∈Ch(i) βikp

(r)
ik∑

k∈Ch(i) βikp
(r)
ik Uik

such that {U∗ij : j ∈ Ch(i)} are identically distributed random variables satisfying∑
j∈Ch(i)

βijp
(r)
ij U

∗
ij =

∑
j∈Ch(i)

βijp
(r)
ij . (7)

If there exist an experimental design T ∗E such that Wi(T
∗
E) = Wi(T

(r)
E ) and p∗ij = p

(r)
ij U

∗
ij , then

E[Yi(T
∗
E)] = E[Yi(T

(r)
E )].

Proof. Since g is differentiable with respect to the first coordinate, and Wi(T
∗
E) = Wi(T

(r)
E ), by

applying mean value theorem, we obtain

E[Yi(T
∗
E)]− E[Yi(T

(r)
E )]

= E

[
g

( ∑
j∈Ch(i)

αijp
(r)
ij U

∗
ij , Wi(T

(r)
E )

)

− g

( ∑
j∈Ch(i)

αijp
(r)
ij , Wi(T

(r)
E )

)]

= E

[
g′(x∗i , Wi(TE))

∑
j∈Ch(i)

αijp
(r)
ij (U∗ij − 1)

]
,

where g′ denotes the partial derivative of g with respect to the first coordinate, and x∗i depends on
{(αij , p(r)

ij , U
∗
ij) : j ∈ Ch(i)}. We complete the proof by showing that the conditional expectation

of
Vij(T

(r)
E ) := g′(x∗i , Wi(TE))(U∗ij − 1)

given Zi(T
(r)
E ) := {αijp(r)

ij : j ∈ Ch(i)} is zero.

From
∑
j∈Ch(i) βijp

(r)
ij U

∗
ij =

∑
j∈Ch(i) βijp

(r)
ij , we have∑

j∈Ch(i)

βijp
(TE)
ij Vij(TE) = 0. (8)

It follows from the definition of U∗ij and the independence of {Uij : j ∈ Ch(i)} and Z∗i (TE) =

{(βijp(TE)
ij , αij/βij) : j ∈ Ch(i)} that {U∗ij : j ∈ Ch(i)} is a set of identically distributed random

variables conditionally on Z∗i (TE). Therefore, the conditional expectation of Vij(TE) given Z∗i (TE)
is identical for all j ∈ Ch(i). Thus it follows from (8) that

E[Vij(TE) | Z∗i (TE)] = 0 for all j ∈ Ch(i).
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Since αijp
(r)
ij = (αij/βij)× βijp(r)

ij , we have

E[Vij(TE) | Zi(TE)]

= E[E[Vij(TE) | Z∗i (TE)] | Zi(TE)]] = 0.

This completes the proof, since

E[Yi(T
∗
E)]− E[Yi(T

(r)
E )]

= E

[ ∑
j∈Ch(i)

αijp
(TE)
ij Vij(TE)

]

= E

[ ∑
j∈Ch(i)

αijp
(TE)
ij E[Vij(TE) | Zi(TE)]

]
= 0.

A.4 Proof of Theorem 1

It follows from Assumption 2 that

E[Yi(T
∗
E) | Zi(T ∗E) = z] = E[Yi(z,Wi(T

∗
E))],

where Wi(T
∗
E) = {p∗ki : k ∈ Pa(i)}. By design, Wi(T

∗
E) = Wi(T

(r)
E ) for all i ∈ Ωr. Therefore,

for i ∈ Ωr,

E

[
Yi(T

∗
E)
fr(Zi(T

∗
E))

f∗r (Zi(T ∗E))

]

=

∫
E

[
Yi(z,Wi(T

(r)
E ))

fr(z)

f∗r (z)
| Zi(T ∗E) = z

]
f∗r (z) dz

=

∫
E

[
Yi(z,Wi(T

(r)
E ))

]
fr(z) dz

= E[Yi(T
(r)
E )] = τr.

This completes the proof, since we have

E[τ̂r] =
1

Ωr

∑
i∈Ωr

E[Yi(T
(r)
E )] = τr.

A.5 Density Estimation

Since we observe {Zi(T ∗E) : i ∈ Ωr}, any parametric or non-parametric density estimation method
can be applied for estimating f∗r . For estimating fr, we make the following additional assumptions:
Assumption 3. Assume that fr(z) ∝ f∗r ((σ∗r (z + µ∗r) − µr)/σr) for all r ∈ [m], where µr =

EZi(T (r)
E ), µ∗r = EZi(T ∗E), σ2

r = Var[Zi(T
(r)
E )] and σ∗2r = Var[Zi(T

∗
E)].

Assumption 3 states that the functional form of the densities of Zi(T ∗E) and Zi(T
(r)
E ) are identical,

except for the mean and the variance. This allows us to obtain an estimate of fr by adjusting the
mean and the variance of an estimated f∗r . In Lemma 2, we provide consistent estimators of the first
two moments of Zi(T

(r)
E ) from the data {Zij(T (r)

E ) : i ∈ Ωr, j ∈ Ch(i) ∩ (Ωr ∪ Λr)}, where Ωr
and Λr are as in Algorithm 1. Finally, note that Assumption 3 is not a theoretical necessity, but a
practical recommendation for avoiding overfitting in estimating the target density.
Lemma 2. Assume that

ρi :=
|Ch(i) ∩ (Ωr ∪ Λr)|

|Ch(i)|
and ρ′i :=

(|Ch(i) ∩ (Ωr ∪ Λr)− 1)|
(|Ch(i)| − 1)
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are independent of |Ch(i)|, µr|i := E[Zi(T
(r)
E ) | i] and σ2

r|i := Var[Zi(T
(r)
E ) | i]. We define

V
(r)
1 :=

∑
i∈Ωr

∑
j∈Ch(i)∩(Ωr∪Λr)

Zij(T
(r)
E ),

V
(r)
2 :=

∑
i∈Ωr

∑
j∈Ch(i)∩(Ωr∪Λr)

Zij(T
(r)
E )2 and

V
(r)
3 :=

∑
i∈Ωr

( ∑
j∈Ch(i)∩(Ωr∪Λr)

Zij(T
(r)
E )

)2

.

Then

V
(r)
1∑

i∈Ωr
ρi

a.s−→ E[Zi(T
(r)
E )] and

V
(r)
2∑

i∈Ωr
ρi

+
V

(r)
3 − V (r)

2∑
i∈Ωr

ρiρ′i

a.s−→ E[Zi(T
(r)
E )2].

Proof. Let di = |Ch(i)| denote the out-degree of member i. Then the expected value of Zi(T
(r)
E ) is

given by

E[Zi(T
(r)
E )] = lim

|Ω|→∞

1

|Ω|
∑
i∈Ω

diµr|i = E[diµr|i]. (9)

Therefore,

lim
|Ωr|→∞

V
(r)
1∑

i∈Ωr
ρi

= lim
|Ωr|→∞

1
|Ωr|

∑
i∈Ωr

ρidiµr|i
1
|Ωr|

∑
i∈Ωr

ρi

=
E[ρidiµr|i]

E[ρi]
= E[Zi(T

(r)
E )]

where the last equality follows from (9) and the fact that ρi and µr|idi are independently distributed.

Next, it follows from similar calculations that

E[Zi(T
(r)
E )2] = E[diσ

2
r|i + d2

iµ
2
r|i]

lim
|Ωr|→∞

1

|Ωr|
V

(r)
2 = E[ρidiσ

2
r|i + ρidiµ

2
r|i], and

lim
|Ωr|→∞

1

|Ωr|
V

(r)
3 = E[ρidiσ

2
r|i + ρ2

i d
2
iµ

2
r|i]

Furthermore, it is easy to verify that ρ2
i d

2
i − ρidi = ρiρ

′
i(d

2
i − di). Therefore,

lim
|Ωr|→∞

1

|Ωr|
[V

(r)
3 − V (r)

2 ] = E[ρiρ
′
i(d

2
i − di)µ2

r|i].

Using the independence of (ρi, ρ
′
i) and (di, µr|i, σr|i), we obtain

lim
|Ωr|→∞

1
|Ωr|V

(r)
3 − V (r)

2

1
|Ωr|

∑
i∈Ωr

ρiρ′i
= E[d2

iµ
2
r|i − diµ

2
r|i] and

lim
|Ωr|→∞

1
|Ωr|V

(r)
2

1
|Ωr|

∑
i∈Ωr

ρi
= E[diσ

2
r|i + diµ

2
r|i].

Hence, we have,

lim
|Ωr|→∞

V
(r)
2∑

i∈Ωr
ρi

+
V

(r)
3 − V (r)

2∑
i∈Ωr

ρiρ′i

=E[diσ
2
r|i + diµ

2
r|i] + E[d2

iµ
2
r|i − diµ

2
r|i]

=E[diσ
2
r|i + d2

iµ
2
r|i] = E[Zi(T

(r)
E )2].

16



A.6 Bootstrap Variance Estimation

We draw B random samples with replacement {Ω′(1), . . . ,Ω′(B)} of size |Ω′| from Ω′. For each
t ∈ {1, . . . , B} and r = 0, . . . ,m, we obtain Ω

(t)
r by selecting all elements of Ω′(t) that are in Ωr.

Then we obtain τ̂ (t)
r by applying the density estimation and the estimate computation of Algorithm 2

with Ω
(t)
r instead of Ωr. Finally, we obtain the bootstrap variance σ̂2(T

(r)
E ) by computing the sample

variance of τ̂ (1)
r , . . . , τ̂

(B)
r . Finally, note that the bootstrap parameter B should be large enough to

have a stable variance estimator. We found B=1000 to be good enough for our simulations and
real-world experiments.

A.7 Simulation Setup Details

A.7.1 Graph Construction

For our simulation, we want a graph composed of a set of pre-determined clusters with significantly
high intra-cluster connectivity, and sparse inter-cluster connectivity. To that end, we first obtain
an undirected graph GundirBA = (Ω, EundirBA ) by combining 10 randomly generated graphs with
5000 vertices and average degree equals d̄BA, where each graph is generated according to the
Barabasi-Albert model [7] with the power of the preferential attachment equals 0.25. Then we
generate an Erdös-Rényi graph [12] GundirER = (Ω, EundirER ) with 50000 vertices and average degree
equals d̄ER, where all pairs of nodes have an equal probability of being connected. We obtain
Gundir = (Ω, EundirBA ∪ EundirER ). Finally, we transform Gundir to a directed graph G by replacing
each undirected edge i− j by two directed edges i→ j and j → i. Note that the average degree (of
the incoming edges) in G is given by d̄G := 1

|Ω|
∑
i∈Ω |Pa(i)| = d̄BA + d̄ER.

For the simulation study, we choose the following three settings:

dBA dER d̄G d̄ER/d̄G Sparsity Impurity (inter-cluster edge proportion)
20 1 21 1/20 High Low
50 5 55 1/10 Medium Medium
80 40 120 1/3 Low High

Table 2: Simulation Settings.

A.7.2 Cluster-based method (CB)

We take advantage of the presence of the disjoint connected components in GBA to define a ”oracle”
cluster-based method. More precisely, we randomly choose two clusters to assign them T

(0)
E and

T
(1)
E by defining

p∗ij :=

{
p

(r)
ij if i ∈ Pa(j), j ∈ Hr, r = 0, 1

pbaseij if i ∈ Pa(j), j ∈ Ω \ (H0 ∪H1).

whereH0 andH1 are randomly chosen disjoint connected components of GBA.

A.7.3 Data Generation Mechanism

For each directed edge (i, j) in G, we independently generate Uij and Vij from Uniform[10, 100]
and Uniform[1, 2] respectively. We define αij = Uij/dj and pbaseij = Vij/

∑
i∈Pa(j) Vij , where

dj = |Pa(j)| denotes the degree of node j. We define T (0)
E = {p(0)

ij : (i, j) ∈ E} and T (1)
E =

{p(1)
ij : (i, j) ∈ E} where p(0)

ij = pbaseij and p(1)
ij ∝ pbaseij ×

( αij

log(1+didj)

)1/2
, where di is the degree

of member i. Finally, we define

W
(r)
i =

1

di

∑
k∈Pa(i)

αki p
(r)
ki , Z

(r)
i (δ) =

∑
j∈Ch(i)

αij (p
(r)
ij )δ and

Yi(T
(r)
E , δ) = g(W

(r)
i + Z

(r)
i (δ)(1 +W

(r)
i )) + εi
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where g(x) = 10/(1 + exp(−x/10)) and εi
i.i.d∼ N(0, 1). Note that Assumption 1 is satisfied if and

only if δ = 1 and αij’s are known. To verify robustness of our method, we choose δ ∈ {1/4, 1/2, 1}
and we choose αij = 1 for constructing T ∗E using Algorithm 1.

To match with sample size of the cluster-based method, we choose |Ω0| = |Ω1| = 0.1 × |Ω|.
Furthermore, we choose |Λ0| = |Λ1| = 0.1× |Ω|. For choosing C ′ in Algorithm 1, we set q = 0.5.
For setting the optimization constraints, we choose Rmin = 0, Rmax = 10, Smin = 0.2, Smax = 5.
For running the iterative QP, we set K = 1000 and maxIter = 10.

A.8 Real-World Experimental Setup

We consider a directed network G = (Ω, E) of all LinkedIn members (675+ million) with edges i→ j
if at least one content of member i is considered by the baseline recommender system to be shown to
member j in the last 7 days. First, we randomly choose five disjoint sets subsets Ω0,Ω1,Λ0,Λ1,Γ
such that |Ω0| = |Ω1| = 0.03 × |Ω| and |Λ0| = |Λ1| = 0.04 × |Ω| and |Γ| = 0.06 × Ω. Next, we
choose C ′ = Γ ∩ (∪i∈Ω0∪Ω1Ch(i)). The reason for choosing C ′ in a sightly different manner is to
make C ′ well-defined even if the underlying network is dynamic over the experiment time window.

A.8.1 Boost factors bij

It follows from a straightforward calculation that the following definition of bij’s for j ∈ C ′ will
satisfy (3):

bij :=


p∗ij (1−

∑
k∈Ω′∩Pa(j) p

(0)
kj )

p
(0)
ij (1−

∑
k∈Ω′∩Pa(j) p

∗
kj)

if i ∈ Pa(i) ∩ Ω′

1 if i ∈ Pa(i) \ Ω′.
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