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Abstract

Normalization methods such as batch [Ioffe and Szegedy, 2015], weight [Salimans
and Kingma, 2016], instance [Ulyanov et al., 2016], and layer normalization [Ba
et al., 2016] have been widely used in modern machine learning. Here, we study
the weight normalization (WN) method [Salimans and Kingma, 2016] and a variant
called reparametrized projected gradient descent (rPGD) for overparametrized least
squares regression. WN and rPGD reparametrize the weights with a scale g and
a unit vector w and thus the objective function becomes non-convex. We show
that this non-convex formulation has beneficial regularization effects compared to
gradient descent on the original objective. These methods adaptively regularize
the weights and converge close to the minimum `2 norm solution, even for initial-
izations far from zero. For certain stepsizes of g and w, we show that they can
converge close to the minimum norm solution. This is different from the behavior
of gradient descent, which converges to the minimum norm solution only when
started at a point in the range space of the feature matrix, and is thus more sensitive
to initialization.

1 Introduction

Modern machine learning models often have more parameters than data points, allowing a fine-
grained adaptation to the data, but also suffering from the risk of over-fitting. To alleviate this, various
explicit and implicit regularization methods are used. For instance, weight decay can control the
model complexity by shrinking the norm of the weights, and dropout can reduce the model capacity
by sub-sampling features during training [Gal and Ghahramani, 2016, Mianjy et al., 2018, Arora
et al., 2020]. Recent state-of-the-art techniques such as batch, weight, and layer normalization [Ioffe
and Szegedy, 2015, Salimans and Kingma, 2016, Ba et al., 2016], empirically have a regularization
effect, e.g., as described in Ioffe and Szegedy [2015], "batch normalisation acts as a regularizer, in
some cases eliminating the need for dropout".

While normalization methods are practically popular and successful, their theoretical understanding
has only started to emerge recently. For instance, normalization methods make learning more robust
to hyperparameters such as the learning rate [Wu et al., 2018, Arora et al., 2019]. Moreover, it has
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Figure 1: Comparison of the outputs ||x̂|| = ‖ĝŵ‖ pro-
vided by GD, WN and rPGD on an overparametrized lin-
ear regression problem (see Section 1.1). All algorithms
(with stepsizes 0.005) start from the same initialization
and stop when the loss reaches 10−5. Note that the or-
ange (rPGD) and green (WN) curves overlap (see Lemma
2.2 for explanation and Section F for experimental de-
tails). GD converges to the minimum `2-norm solution
only when ‖x0‖ = 0, while WN and rPGD converge
close to the minimum norm solution for a wider range of
initializations with smaller standard deviation. 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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been argued that normalization methods can make the model robust to the shift and scaling of the
inputs, preventing “internal covariate shift" [Ioffe and Szegedy, 2015] as well as smooth or modify
[Santurkar et al., 2018, Lian and Liu, 2019] the optimization landscape.

Yet, a precise characterization of the regularization effect of normalization methods in over-
parametrized models is not available. For overparametrized models, there are typically infinitely
many global minima, as shown e.g., in matrix completion [Ge et al., 2016] and neural networks [Ge
et al., 2017]. Thus, we can analyze how different algorithms converge to different global minima as a
way of quantifying implicit bias. It is critical for the algorithm to converge to a solution with good
generalization properties, e.g., Zhang et al. [2016], Neyshabur et al. [2019], etc. For the key model
of over-parameterized linear least squares, it is well-known that gradient descent (GD) converges
to the minimum Euclidean norm solution when started from zero, [see e.g. Hastie et al., 2019]. It
has been argued that this may have favorable generalization properties in learning theory (norms can
control the Radamechar complexity), as well as more recent analyses [Bartlett et al., 2019, Hastie
et al., 2019, Belkin et al., 2019, Liang and Rakhlin, 2018].

However, for non-convex optimization, starting from the origin might be problematic – this is true in
particular in neural networks with ReLU activation function which is often used [LeCun et al., 2015].
In neural networks, we often instead apply random initialization [Glorot and Bengio, 2010, He et al.,
2015] which can for instance help escape saddle points [Lee et al., 2016]. Thus, it is important to
study algorithms with initializations not close to zero.

With this in mind, we study how a particular normalization method, weight normalization (WN)
[Salimans and Kingma, 2016], affects the choice of global minimum in overparametrized least squares
regression. WN writes the model parameters x as x = gw/‖w‖2, and optimizes over the "length"
g ∈ R and the unnormalized direction w ∈ Rd separately. Inspired by weight normalization, we also
study a related method where we parametrize the weight as x = gw, with g ∈ R and a normalized
direction w with ‖w‖2 = 1, [see e.g. Douglas et al., 2000]. Different from WN, this method performs
projected GD on the unit norm vector v, while WN does GD on w such that w/‖w‖ is the unit vector.
We call this variant the reparametrized projected gradient descent (rPGD) algorithm. We show that
the two algorithms (rPGD and WN) have the same limit when the stepsize tends to zero. Arguing in
both discrete and continuous time, we show that both find global minima robust to initialization.

Our Contributions. We consider the overparametrized least squares (LS) optimization problem,
which is convex but has infinitely many global minima. As a simplified companion of WN in LS,
we introduce the rPGD algorithm (Alg. 2), which is projected gradient descent on a nonconvex
reparametrization of LS. We show that WN and rPGD have the same limiting flow—the WN flow—in
continuous time (Lemma 2.2). We characterize the stationary points of the loss, showing that the
nonconvex reparametrization introduces some additional stationary points that are in general not
global minima. However, we also show that the loss still decreases at a geometric rate, if we can
control the scale parameter g.

How to control the scale parameter? Perhaps surprisingly, we show the delicate property that the scale
and the orthogonal complement of the weight vector are linked through an invariant (Lemma 2.5).
This allows us to show that the WN flow converges at a geometric rate in spite of the non-convexity
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of the reparameterized objective. We precisely characterize the solution, and when it is close to the
min norm solution.

In discrete-time, when the stepsize is not infinitely small, we first consider a simple setting where
the feature matrix is orthogonal and characterize the behavior of rPGD (Theorem 3.2). We show
that by appropriately lowering the learning rate for the scale g, rPGD converges to the minimum `2
norm solution. We give sharp iteration complexities and upper bounds for the stepsize required for
g. We extend the result to general data matrices A (Theorem 3.3), where the results become more
challenging to prove and a bit harder to parse. This sheds light the empirical observation that only
optimizing the direction w training the last layer of neural nets improves generalization [Goyal et al.,
2017, Xu et al., 2019].

1.1 Setup

We use ‖ · ‖ for the `2 norm, and consider the standard overparametrized linear regression problem:

min
x∈Rd

1

2
‖Ax− y‖2, (1)

where A ∈ Rm×d (m < d) is the feature matrix and y ∈ Rm is the target vector. Without loss of
generality, we assume that the feature matrix A has full rank m. This objective has infinitely many
global minimizers, and among them let the minimum `2-norm solution be x∗. Observe that x∗ is
characterized by the two properties: (1) Ax∗ = y; (2) x∗ is in the row space of the matrix A. We can
describe condition (2) via Definition 1.1.
Definition 1.1. For any z ∈ Rd, we can write z = z‖ + z⊥ where Az‖ = Az and Az⊥ = 0.

Then we can equivalently write condition (2) as x∗‖ = x∗. We focus on weight normalization and
a related reparametrized projected gradient descent method. Notably, both transform the original
convex LS problem to a non-convex problem, which increases the difficulty of theoretical analysis.

Weight normalization (WN) WN reparametrizes the variable x as g · w/‖w‖, where g ∈ R and
w ∈ Rd, which leads to the following minimization problem:

min
g∈R,w∈Rd

h(w, g) =
1

2
‖gAw/‖w‖ − y‖2 . (2)

We can write the min norm solution as x∗ = g∗w∗/‖w∗‖, where w∗ is unique up to scale. However,
we can always choose w∗ so that g∗ > 0, unless x∗ = 0, which implies that y = 0. We exclude this
degenerate case throughout the paper. The discrete time WN algorithm is shown in Algorithm 1.

Algorithm 1 WN for (2)
Input: Unit norm w0 and scalar g0,iterations
T , step-sizes {γt}T−1t=0 and {ηt}T−1t=0
for t = 0, 1, 2, · · · , T − 1 do
wt+1 = wt − ηt∇wh(wt, gt)
gt+1 = gt − γt∇gh(wt, gt)

end for

Algorithm 2 rPGD for (3)
Input: Unit norm w0 and g0, number of iter-
ations T , step-sizes {γt}T−1t=0 and {ηt}T−1t=0
for t = 0, 1, 2, · · · , T − 1 do
vt = wt − ηt∇wf(wt, gt) (gradient step)
wt+1 = vt

‖vt‖ (projection)
gt+1 = gt−γt∇gf(wt, gt) (gradient step)

end for

Reparametrized Projected Gradient Descent (rPGD) Inspired by WN algorithm, we investigate
an algorithm that directly updates the direction of w. See Douglas et al. [2000] for an example of
such algorithms. Since the direction is a unit vector, we can perform projected gradient descent on it.
To be more concrete, we reparametrize the variable x as gw, where g denotes the scale and w ∈ Rd
with ‖w‖ = 1 denotes the direction, and transform (2) into the following problem:

min
g∈R,w∈Rd

f(w, g) :=
1

2
‖Agw − y‖2, s.t. ‖w‖ = 1. (3)

The minimum norm solution can be uniquely written as x∗ = g∗w∗, where g∗ > 0 and ‖w∗‖ = 1.
To solve (3), we update g with standard gradient descent, and update w via projected gradient descent
(PGD) (see Algorithm 2). We call this algorithm reparameterized PGD (rPGD).
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One may observe that both algorithms can heuristically be viewed as a variation of adaptive `2
regularization, where the magnitude of the regularization depends on the current iteration. We refer
the readers to Appendix A for a detailed discussion.

2 Continuous Time Analysis

In this section, we study the properties of a continuous limit of WN and rPGD, to give insight into
the implicit regularization of normalization methods. We use constant stepsizes for both the update
of the scale g and weight w, and take them to zero in a way that their ratio remains a constant.
Condition 2.1 (Stepsizes). For both Algorithms 1 and 2, use constant stepsizes ηt = η and γt = cη
for g and w respectively, with c ≥ 0 a fixed constant ratio. We take the continuous limit η → 0.

Setting c = 0 amounts to fixing g and only updating w. We first prove that the continuous limit of
the dynamics of (gt, wt/‖wt‖) for WN evolves the same as the continuous limit of the dynamics of
(gt, wt) for rPGD, assuming we start with ‖w0‖ = 1 for WN. The proof can be found in Appendix B.
Lemma 2.2 (Limiting flow for WN and rPGD). Assume Condition 2.1 and that ‖w0‖ = 1 for WN.
Then WN (Algorithm 1) with (gt, wt/‖wt‖) and rPGD (Algorithm 2) with (gt, wt) have the same
limiting dynamics, which we call WN flow. This is given by the pair of ordinary differential equations

dgt
dt

= −c∇gf(wt, gt)
dwt
dt

= −gtPt (∇wf(wt, gt)) . (4)

Here f is from (3). With r = y − Agw to denote the residual, ∇wf = AT r, ∇gf = wTAT r, and
Pt = I − wtw>t /‖wt‖2 the projection matrix onto the space orthogonal to wt.

While the flow is valuable, the nonconvex reparametrization introduces some new stationary points.
We characterize them, and later use this to understand the convergence.
Lemma 2.3 (Stationary points). Suppose the smallest eigenvalue of AAT , is positive, λmin :=
λmin(AAT ) > 0. The stationary points of the reparameterized loss from (2) either (a) have loss
equal to zero, or (b) belong to the set S := {(g, w) : g = 0, yTAw = 0}. If the loss (2) at g, w is
strictly less than the loss at (g = 0, w), i.e. ‖y‖2 > ‖Agw − y‖2, we are always in case (a).

It is a folklore result that under gradient flow, the loss is non-increasing even in the nonconvex case
[see e.g. Rockafellar and Wets, 2009]. For the WN gradient flow, we can make this folklore rigorous
and, provided the scale parameter gt is lower bounded, show that the loss decreases at a geometric
rate.
Lemma 2.4 (Rate of ‖rt‖). Under the setting of Lemma 2.2, we have the bounds:

−max{g2t , c}‖AT rt‖2 ≤ d[1/2‖rt‖2]/dt ≤ −min{g2t , c}‖AT rt‖2 ≤ 0. (5)
This shows that ‖rt‖ is non-increasing. If for some C > 0, gt > C for all t, then the loss decreases
geometrically at rate min(C2, c).

How can we control the scale parameter? Perhaps surprisingly, we show that the scale parameter and
the orthogonal complement of the weight vector are linked through an invariant.
Lemma 2.5 (Invariant). Assume c > 0 in Condition 2.1. Under the setting from Lemma 2.2, let
wt = w⊥t + w

‖
t as defined in Definition 1.1. We have at time t > 0,

w⊥t = exp

(
g20 − g2t

2c

)
w⊥0 and so ‖w⊥t ‖2 · exp(g2t /2c) = ‖w⊥0 ‖2 · exp(g20/2c). (6)

Lemma 2.5 shows that the orthogonal complement w⊥t can change during the WN flow dynamics.
This is the key property of WN that can yield additional regularization. Lemma 2.5 also implies that
‖w⊥t ‖2 · exp(g2t /2c) is invariant along the path. If we initialize with small |g0| and |gt| is greater
than |g0| (we will describe the dynamics of gt in the next part), then ‖w⊥t ‖2 will decrease, and we get
close to the minimum norm solution. This is in contrast to gradient descent and flow, where ‖w⊥‖2
is preserved (see e.g., [Hastie et al., 2019]).

The invariant (6) in the optimization path holds for certain more general settings. Specifically, it holds
for linearly parametrized loss functions that only depend on a small dimensional linear subspace of
the parameter space (e.g., overparametrized logistic regression). See Appendix D. Equipped with the
above lemmas, we can discuss the solution and implicit regularization effect of the WN flow.
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Theorem 2.6 (WN flow Solution). Assume Condition 2.1 and λmin > 0. Suppose we initialize the
WN flow at g0, w0, such that ‖w0‖ = 1. We have that either (a) the loss converges to zero, or (b)
the iterates (gt, wt) converge to a stationary point in S as defined in Lemma 2.3. In case (a), we
characterize the solutions based on gt:

Part I. If c > 0, and the loss converges to zero, the solution can be expressed as

lim
t→∞

gtwt = x∗ + g∗w⊥0 exp

(
g20 − g∗2

2c

)
. (7)

A sufficient condition for the loss converging to zero is that ‖y‖2 > ‖Ag0w0 − y‖2.

Part II. If c = 0 and A is orthogonal, i.e., AAT = I , then wt → w∗. If A is not orthogonal, then
the flow still converges to a point w̃0 in the row space of A (i.e, w̃⊥0 = 0). When restarting
the WN flow with c > 0 from g0, w̃0, then (g0, w̃0)→ (g∗, w∗).

We defer the proofs of Lemmas 2.4, 2.5 and Theorem 2.6 to Appendix C. Part I of Theorem 2.6
shows that, if we initialize with g20 ≤ g∗2 and we are not stuck at S , the WN flow will converge to a
solution that is close to the minimum norm solution. Compared with GD where the final solution is
xt = x∗ + g∗w⊥0 , WN flow has smaller component in the orthocomplement of the row space of A.
In contrast, if g20 > g∗2, then WN flow can converge to a solution that is farther from x∗ than GD.

Part II in Theorem 2.6 shows a distinction between orthogonal and general A. For orthogonal A,
even fixing the scale g0 we can converge to the direction of the minimum norm solution. Although
we do not directly recover g∗ in the flow, this can be recovered as |g∗| = ‖y‖. For general A with
fixed g, we do not necessarily converge to the right direction, only to the row span of A. However, if
we run the flow with c = 0 until convergence, and then turn on the flow for g (i.e. set c > 0), we
converge to the minimum norm solution. The results for discrete time presented later mirror this. See
Figure 2 for an illustration. We mention that the flow for the fixed g case is well known [See e.g.
Helmke and Moore, 2012, Section 1.6]), in the special case that the matrix A is square.

Theorem 2.6 provides no rate of convergence. By our results on the rate of ‖rt‖, and by controlling
gt using the invariant, we can provide a convergence rate below. The following theorem has two
convergence rates, depending on the magnitude of g0 and on whether we initialize g0 and w0 with
the initial loss smaller than the loss at zero or not. If both rates are valid for a certain parameter
configuration, then the faster of the two applies.
Theorem 2.7 (Convergence Rate). Assume Condition 2.1, c > 0 with ‖w0‖ = 1 and the smallest
eigenvalue λmin of AAT is strictly positive.

• If g20 > 2c log(1/‖w⊥0 ‖), the loss along the WN flow path (gt, wt) decreases geometrically,
satisfying f(wT , gT ) ≤ ε after time

T =
log(f(w0, g0)/ε)

λmin min
{

2c log ‖w⊥0 ‖+ g20 , c
} .

• If the initial loss smaller than the loss at zero, δ = (‖y‖2 − ‖Ag0w0 − y‖2)/λmax > 0,
then f(wT , gT ) ≤ ε, after time

T =
log(f(w0, g0)/ε)

λmin min {δ, c}
+

1

λmax
log
(

2− g0
δ

)
1{g0<δ}.

The two convergence rates apply to somewhat complementary cases. In the first case, it follows from
the invariant that as long as g0 is above the required threshold 2c log(1/‖w⊥0 ‖), the loss converges
geometrically. Otherwise, if we have δ > 0 (that is, we initialize below the loss at zero), the
dynamics of g2t turn out to have a favorable "self-balancing" geometric property, i.e., they start to
increase when they get sufficiently small (c.f. equation (14) in Lemma C.1), and we can also get
the geometric convergence, instead of being stuck at S. The theorem only shows convergence, not
implicit regularization. As described above, the regularization is favorable if |g0| < |g∗|.
A Concrete Example. To gain more insight, we provide here a simple example (see also Figure 2).
Suppose we have a two-dimensional parameter w, and we make a 1-dimensional observation using
the matrix A = [1, 0], and y = 1. Then, the equation we are solving is gw[1] = 1 (where square
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Figure 2: Consider the function f(w1, w2, g) with A =
a ∈ R1×2. Then GD converges to d, while rPGD and
WN could result in a point (e or c) closer to minimum
norm c depending on the stepsize schedule of g. Part I
in Theorem 2.6 suggests that rPGD and WN will follow
the path a→ e if γt and ηt converge to zero at the same
rates, and Part II implies the red path a → b → c to the
minimum norm solution (if g0 is fixed for a certain time,
and updated later). The optimal path a→ c is taken when
g is updated in a careful way. On the other hand, starting
with g0 > g∗, for instance at f , (7) shows the limit is g,
further away from g∗w∗.

brackets index coordinates of vectors), and the minimum norm solution is w = [1, 0]T , with g∗ = 1.
Our results guarantee that the WN flow converges to either (1) a zero of the loss, or (2) to a stationary
point such that g = 0 and wTAT y = 0. The second condition reduces to w[1] · y = 0. Now, if y 6= 0
(which is the typical case), then this reduces to w[1] = 0, and since ‖w‖ = 1, we have two solutions
w[2] = ±1. So this leads to two spurious stationary points (g, w) = (0, [0,±1]T ), which are not
global minima. The loss value at these points is 1, and so if we start at any point such that the loss
is less than one, then we converge to a global mininum. If y = 0, then this leads to infinitely many
stationary points, i.e. all of those with g = 0, but these turn out to be global minima.

Suppose moreover that we start with w0 = [0, 1]T and set c = 1. Suppose now that we start with
some g0 6= 0. Then WN flow converges to a solution gw = [1, exp([g20 − 1]/2)]>. If g0 is relatively
small, this quantity is close to x∗ = [1, 0]>, closer than the gradient flow solution [1, 1].

3 Discrete Time Analysis

In this section, we switch to discrete time. It turns out that analyzing rPGD is more tractable than
WN, so we will focus on rPGD. Since the two algorithms collapse to the same flow in continuous
time, their dynamics should be “close" in finite time, especially in the small stepsize regime. We
show that rPGD with properly chosen learning rates converges close to the min norm solution even
when the initialization is far away from the origin. We study rPGD based on the intuition that ‖w⊥t ‖
decreases after the normalization step.

Orthogonal Data Matrix. Consider first the simple case where the feature matrix A has orthonor-
mal rows, i.e., AA> = I . Our strategy for rPGD to reach the minimum `2-norm solution is to use
the optimal stepsize for w and a small stepsize for g such that g2t < g∗2 for all iterations. The key
intuition is that with a small stepsize, the loss stays positive and ensures the direction wt has sufficient
time to find w∗. On the contrary, if we use a large stepsize for g, then it is possible for gt to be greater
than g∗ so that wt can potentially converge to the wrong direction.
Condition 3.1. (Two-stage learning rates) We update w with its optimal step-size ηt = 1/g2t .2 For
the stepsize of gt, we use two constant values: (a) γt = γ(1) when 0 ≤ t ≤ T1; (b) γt = γ(2) when
t ≥ T1 + 1, for a T1 specified below.

Theorem 3.2 (Convergence for Orthogonal Matrix A). Suppose the initialization satisfies 0 < g0 <
g∗, and that w0 is a vector with ‖w0‖ = 1. Let δ0 = (g∗)2 − (g0)2. Set an error parameter ε > 0
and the stepsize given in Condition 3.1 with a hyper-parameter ρ ∈ (0, 1] for γ(1). Running the
rPGD algorithm, we can reach ‖w⊥T1

‖ ≤ ε and g2T1
≤ g∗2 − ρδ0 after T1 iterations, and ‖w⊥T ‖ ≤ ε

and ‖AgTwT − b‖2 ≤ 3εg∗2 after T = T1 + T2 iterations, if we set stepsizes as follows.

(a) Set γ(1) = O
(

ρ
log(1/ε)

(
g0
g∗

)2
log
(

(1− ρ) g
∗

g0
+ ρ
))

and γ(2) ≤ 1
4 . Then we have

T1 = O
(

(g∗)2

ρδ0
log

(
1

ε

))
; T2 = O

(
1

γ(2)
log

(
(ρδ0/g

∗2)2

ε

))
.

2The Hessian for w in problem 3 is∇2
wf(w, g) = g2A>A. For orthogonal A, λmax(∇2

wf(w, g)) = g2.
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(b) Set γ(1) = 0 and γ(2) < 1
4 . Then we have

T1 = O
(
g20
δ0

log

(
1

ε

))
; T2 = O

(
1

γ(2)
log

(√
δ0/g∗2

ε

))
.

We restate the theorem with the explicit forms of T1 and T2, along with the proof, in Appendix E.1
and E.2. The theorem requires knowing g∗, which can be approximated by ‖y‖ (as g∗ = ‖y‖). When
all parameters other than ε are treated as constants, this shows that rPGD converges to the minimum
norm solution with the same rate log(1/ε) as standard GD starting from the origin. However, the
constants in front the log(1/ε) can be large: e.g., in case (a), (g∗)2/ρδ0 can be� 1 if ρ is small or
if |g0|/|g∗| ≈ 1. This first T1 iterations allow wt to "find" w∗, while the remaining T2 allow gt to
converge to g∗. Both cases show an intrinsic tradeoff between T1 and T2: a larger δ0 (being far from
g∗) leads to faster convergence in the first phase for ‖w⊥t ‖ (i.e. smaller T1), but slower convergence
in gt and loss (i.e. larger T2). Specifically, notice that δ0 is in the denominator of T1 but in the
numerator of T2.

Our proof shows that gt is always increasing for any g0 > 0 (c.f. Lemma E.4). Moreover, ‖w⊥t ‖
decreases at a geometric rate, ‖w⊥t+1‖2 ≤ (g2t /g

∗2)‖w⊥t ‖2, as long as |gt| is not too close to |g∗|
(c.f. Lemma E.6 or Equation (19)). This is why the condition g2T1

≤ g∗2 − ρδ0 is needed, ensuring
that gt is far away from g∗ in all steps before T1. This is also why we require a stepsize for gt of
order 1/ log(1/ε) (c.f. Equation 20), which is smaller than the constant stepsize in usual GD. Here
ρ leads to a tradeoff between T1 and T2: a smaller ρ results in larger T1 but smaller T2, vice versa.
When ρ ≈ ε, we have T1 = O(1/ε) up to log factors, (a slower rate) and T2 = O (1). 3 A constant
order ρ leads to a faster log(1/ε) rate. However, we choose to state the result for the entire range of
ρ ∈ (0, 1] for completeness. When ρ = 1, the stepsize γ(1) becomes zero, hence gt does not change.
In this case, we can get a stronger result for T1 (stated in (b)) using a slightly different method of
proof, improving the bounds of case (a) respectively with a factor of (g∗/g0)2 > 1 for T1.

We remark that for orthogonal A with the optimal stepsize (1/g2t ) for wt and g0 6= 0, we have
Awt+1 = Ag∗w∗/(gt‖vt‖) 6= 0 (c.f. Lemma E.2). Thus we can escape the saddle points and reach
the global minimum, unlike in continuous time where we can be stuck at the stationary points S.

We reiterate that our motivation is not to outperform other methods (e.g. GD starts from zero)
in search of the minimum norm solution, but to characterize the regularization effect of weight
normalization and shed light on the empirical observation that fixing the scalar g and only optimizing
the directions w in training the last layer of neural networks can improve generalization [Goyal et al.,
2017, Xu et al., 2019]. This is, to our knowledge, the first kind of theory on how to control the
learning rates of parameters in weight normalization such as to converge to minimum norm solutions
for initialization not close to origin, which may have beneficial generalization properties.

General Data Matrix. Inspired by the analysis for orthogonal A, we now study general data
matrices. As we have seen from the orthogonal A case, the stepsize for the scale parameter should
be extremely small or even 0 to make ‖w⊥t ‖ small. Thus, for simplicity, we focus on fixing g := g0
and update only w using rPGD so that the orthogonal component w⊥ decreases geometrically until
‖w⊥T1

‖ ≤ ε. In addition, we notice from the analysis in Theorem 3.2 that updating gt and wt
separately after t > T1 (i.e., reaching small ‖w⊥t ‖) shows no advantage over GD using x = gw.
Thus, the best strategy to find g∗w∗ is to use rPGD only updating wt (so gt = g0 < g∗) and then
apply standard GD after T1 once we have ‖w⊥T1

‖ ≤ ε. We focus on the complexity of T1 in the
remainder, as the remaining steps are standard GD, which is well understood.

Even though we fix g, the problem is still non-convex because the projection is on the sphere (rather
than the ball), a non-convex surface. However, suppose we can ensure that after each update, the
gradient step vt = wt − ηt∇wf(wt, gt) has norm ‖vt‖ ≥ 1. Then the following two constrained
non-convex problems are equivalent:

min
w∈Rd

‖Ag0w − y‖2 s.t. w ∈ {w, ‖w‖ = 1} ⇔ min
w∈Rd

‖Ag0w − y‖2 s.t. w ∈ {w, ‖w‖ ≤ 1}

Thus our analysis will focus on showing that ‖vt‖ ≥ 1. Note that, without loss of generality we can
always scale A so that its largest singular value is one.

3Note that the bound for T1 could be tightened, possibly to log(1/ε), by using refined analysis at the step
from (18) to (19).
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Proposition 3.3 (General Matrix A). Fix δ > 0, and fix a full rank matrix A with λmax(AA>) = 1.
With a fixed g = g0 satisfying g0 ≤ [g∗λmin(AA>)]/(2+δ), we can reach a solution with ‖w⊥T1

‖ ≤ ε
in a number of iterations

T1 = log

(
‖w⊥0 ‖
ε

)
/ log(1 + δ).

The proof is in Appendix E.3. The proposition implies that if we set a small g0 = O(g∗λmin(AA>))
for general A and w∗, running rPGD with fixed g0 helps regularize the iterates. After starting from
wT1 , we can converge close to the minimum norm solution using standard GD. If the eigenvalues of
A are "not too spread out", we can get a better condition for g0 using concentation inequalities for
eigenvalues. See inequality (50) in Proposition E.9 for more details.

4 Discussion

Limitation of our work. It is important to recognize the limitations of our work. First, our theoretical
work only addresses weight normalization (not batch, layer, instance or other normalization methods),
and only concerns the setting of linear least squares regression. While this may seem limiting,
it is still significant: even in this setting, the problem is not understood, and leads to intriguing
insights. In fact there is some recent work on Neural Tangent Kernels arguing overparametrized
NNs can be equivalent to linear problems, see e.g., [Jacot et al., 2018, Du et al., 2018, Lee et al.,
2019], etc. Second, the continuous limit is only an approximation; however it leads to elegant and
interpretable results, which are moreover also reflected in simulations. Third, some of our results
concern a two-stage algorithm where the scale is fixed for the first stage; nevertheless, our results on
the standard “one-stage" algorithm in continuous time suggest such discrete-time results extend to
the situation where the scale is not fixed, but slowly-varying for the first stage.

Related Work. While there is a large literature on weight normalization and implicit regularization
(see Sec 4), our work differs in crucial ways. We study the overparametrized case and characterize
the implicit regularization for a broad range of initializations (unlike works that study initialization
with small norm). Also, we prove convergence and characterize the solution explicitly (unlike works
such as [Gunasekar et al., 2018] that assume convergence to minimizers). Below we can only discuss
a small number of related works.

Implicit regularization. It has been recognized early that optimization algorithms can have an implicit
regularization effect, both in applied mathematics [Strand, 1974], and in deep learning [Morgan and
Bourlard, 1990, Neyshabur et al., 2014]. It has been argued that “algorithmic regularization" can be
one of the main differences between the perspectives of statistical data analysis and more traditional
computer science [Mahoney, 2012].

Theoretical work has shown that gradient descent is a form of regularization for exponential-type
losses such as logistic regression, converging to the max-margin SVM for separable data [Soudry
et al., 2018, Poggio et al., 2019], as well as for non-separable data [Ji and Telgarsky, 2019]. Similar
results have been obtained for other optimization methods [Gunasekar et al., 2018], as well as for
matrix factorization [Gunasekar et al., 2017, Arora et al., 2019], sparse regression [Vaškevičius et al.,
2019], and connecting to ridge regression [Ali et al., 2018]. For instance, [Li et al., 2018] showed that
GD with small initialization and small step size finds low-rank solutions for matrix sensing. There
have also been arguments that neural networks perform a type of self-regularization, some connecting
to random matrix theory [Martin and Mahoney, 2018, Mahoney and Martin, 2019]. Popular methods
for regularization include weight decay (a.k.a., ridge regression) [Dobriban and Wager, 2018, Liu
and Dobriban, 2019], dropout [Wager et al., 2013], data augmentation [Chen et al., 2019], etc.

Convergence of normalization methods. [Salimans and Kingma, 2016] argued that their proposed
weight normalization (WN) method, optimizing x = gw/‖w‖2 over g ≥ 0 and w ∈ Rd, increases
the norm of w, and leads to robustness to the choice of stepsize. [Hoffer et al., 2018] studied
normalization with weight decay and learning-rate adjustments. [Du et al., 2018] proved that GD with
WN from randomly initialized weights could recover the right parameters with constant probability
in a one-hidden neural network with Gaussian input. [Ward et al., 2019] connected the WN with
adaptive gradient methods and proved the sub-linear convergence for both GD and SGD. [Cai et al.,
2019] showed that for under-parametrized least squares regression (which is different from our over-
parametrized setting), batch normalized GD converges for arbitrary learning rates for the weights,
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with linear convergence for constant learning rate. Similar results for scale-invariant parameters
can be found in [Arora et al., 2018] with more general models, extending to the non-convex case.
[Kohler et al., 2019] proved linear convergence of batch normalization in halfspace learning and
neural networks with Gaussian data, using however parameter-dependent learning rates and optimal
update of the length g. [Luo et al., 2019] analyzed batch normalization by using a basic block of
neural networks and concluded that batch normalization has implicit regularization. [Dukler et al.,
2020] discussed the convergence of two-layer ReLU network with weight normalization under the
NTK regime. However, none of the above give the invariants we do.

Nonlinear Least Mean Squares (NLMS) . Normalization methods are possibly related to the Nonlinear
Least Mean Squares (NLMS) methods from signal processing [see e.g. Proakis, 2001, Haykin and
Widrow, 2002, Haykin, 2005, Hayes, 2009]. NLMS can be viewed as an online algorithm where
the samples at, yt (at are the rows of A, yt are the entries of y) arrive in an online fashion, and we
update the iterates as xt+1 = xt − ηrtat/‖at‖2, where rt = yt − x>t at are the residuals. There is a
connection to randomized Kaczmarcz methods Strohmer and Vershynin [2009]. However, it is not
obvious how they are related to weight normalization or rPGD/WN, e.g., these methods are under
online setting, while rPGD/WN are offline.

Broader Impact

Our work is on the foundations and theory of machine learning. One of the distinctive characteristics
of contemporary machine learning is that it relies on a large number of "ad hoc" techniques, that have
been developed and validated through computational experiments. For instance, the optimization
of neural networks is in general a highly nonconvex problem, and there is no complete theoretical
understanding yet as to how exactly it works in practice. Moreover, there a large number of practical
"hacks" that people have developed that help in practice, but lack a solid foundation. Our work is
about one of these techniques, weight normalization. We develop some nontrivial theoretical results
about it in a simplified "model". This work does not directly propose any new algorithms. But we
hope that our work will have an impact in practice, namely that it will help practitioners understand
what the WN method is doing (important, as people naturally want to understand and know "why"
things work), and possibly in the future, help us develop better algorithms (here the principle being
that "if you understand it you can improve it", which has been useful in engineering and computer
science for decades).
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