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Figure 3: Sample exchange graph with a 3-chain (dashed edges) and two 2-cycles (solid edges). The
NDD is denoted by n, and each patient (and associated donor) is denoted by pi (di). If edge e1 is not
queried, or queried and accepted, then the chain may be included in the final matching. However if
edge eA is queried and rejected, then only the 2-cycles may be included in the final matching.

A Kidney Exchange and Edge Failures414

Brief history. Rapaport [25] proposed the initial idea for kidney exchange, while the first organized415

kidney exchange, the New England Paired Kidney Exchange (NEPKE), started in 2003–04 [27, 28,416

29]. NEPKE has since ceased to operate; at the point of cessation, its pool of patients and donors was417

merged into the United Network for Organ Sharing (UNOS) exchange in late 2010. That exchange418

now contains over 60% of transplant centers in the US, and performs matching runs via a purely419

algorithmic approach (as we discuss in Sections 1 and 2, and in much greater depth by UNOS [30],420

which is mandated to transparently and publicly reveal its matching process).421

There are also two large private kidney exchanges in the US, the National Kidney Registry (NKR)422

and the Alliance for Paired Donation (APD). They typically only work with large transplant centers.423

NKR makes their matching decisions manually and greatly prefers matching incrementally through424

chains. APD makes their decisions through a combination of algorithmic and manual decision425

making. There are also several smaller private kidney exchanges in the US. They typically only426

involve one or a couple of transplant centers. These include an exchange at Johns Hopkins University,427

a single-center exchange at the Methodist Specialty and Transplant Hospital in San Antonio, and a428

single-center exchange at Barnes-Jewish Hospital affiliated with the Washington University in St.429

Louis. Largely, these exchanges also make their matching decisions via a combined algorithmic and430

manual process. These exchanges compete in a variety of ways (e.g., by allowing patient-donor pairs431

to register in multiple exchange programs); this competition can lead to loss in efficiency [2] as well432

as sub-optimal changes to individual exchanges’ matching polices [20].433

There are now established kidney exchanges in the UK [21], Italy, Germany, Netherlands, Canada,434

England, Portugal, Israel, and many other countries. European countries are also explicitly exploring435

connecting their individual exchanges together in various ways [8].436

Edge failures. The dilemma of edge failures is illustrated in the example exchange graph shown in437

Figure 3. This exchange consists of a 3-chain (dashed edges) and two 2-cycles (solid edges). Suppose438

the decision-maker queries edge eA: if eA is accepted, then the chain from the NDD (n) through pairs439

(d1, p1), (d2, p2), and (d3, p3), i.e., the dashed edges, can be included in the matching. However440

if eA is queried and rejected, then the NDD cannot initiate the chain, and only the cycles may be441

matched. In our model, if eA is not queried then it may still be matched.442

B Estimating The Objective of Problem 1443

The objective of the single-stage edge selection problem requires evaluating all rejection scenarios444

r ⇠ PR(q), and the support of this distribution grows exponentially in the number of edges |q|. In445

computational experiments, to estimate the objective of Problem 1, we sample up to 1000 scenarios446

from PR(q). More explicitly: we exactly evaluate the objective of edge sets with fewer than 10 edges;447

for larger edge sets, we sample the objective using 1000 draws from PR(q).448

Using bootstrapping experiments we demonstrate that our sampling approach is sufficient to449

accurately estimate the true objective, even for large edge sets. For 152 UNOS graphs, we computed450

edge sets by running Greedy with edge budgets ranging from 1 to 100. For each edge set, we then451

sample a subset of N 2 {10, 30, 50, 100, 1000} rejection scenarios, with replacement, from the set452

of all sampled edge outcomes. For each edge set and choice of N we repeat 200 times and calculate453

the sample mean for each replication. We then compute the standard deviations of these bootstrap454
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Edge budgets N = 10 N = 30 N = 50 N = 100 N = 1000

1-10 0.10 0.06 0.04 0.03 0.01
11-20 0.12 0.07 0.05 0.04 0.01
21-30 0.13 0.08 0.06 0.04 0.01
31-40 0.14 0.08 0.06 0.04 0.01
41-50 0.14 0.08 0.06 0.04 0.01
51-60 0.15 0.08 0.07 0.05 0.01
61-70 0.15 0.09 0.07 0.05 0.02
71-80 0.16 0.09 0.07 0.05 0.02
81-90 0.17 0.10 0.08 0.05 0.02
91-100 0.18 0.10 0.08 0.06 0.02

Table 2: Median normalized standard deviation of the bootstrap mean, over 200 bootstrap samples
for each sample size N , binned by edge budget.

Table 3: Single-stage results on random graphs with the Simple edge distribution, using the variable
IIAB edge budget (top rows), and the failure-aware method (bottom row). Columns PX indicates the
Xth percentile of �MAX over all 30 random graphs, for graphs with N = 50, 75, and 100 vertices.

N = 50 N = 75 N = 100

Method P10 P50 P90 P10 P50 P90 P10 P50 P90

MCTS 0.22 0.30 0.38 0.11 0.33 0.46 0.23 0.33 0.38
Greedy 0.21 0.30 0.38 0.12 0.32 0.48 0.27 0.39 0.43
Random 0.12 0.19 0.23 0.10 0.19 0.28 0.12 0.19 0.23
IIAB 0.07 0.24 0.34 0.11 0.22 0.41 0.07 0.24 0.34

Fail-Aware 0.00 0.02 0.10 0.00 0.06 0.18 0.00 0.02 0.10

sample means to estimate the variance due to sampling. For each N , we calculate the mean sample455

standard deviation, normalized by the sample mean. Table 2 shows the median normalized standard456

deviation for all experiments under each N , with edge budgets aggregated into 10 bins. We find that457

with N = 1000 samples, the standard deviation was on average only about 2% of the overall mean458

value, even for large edge budgets.459

C Additional Computational Results460

First we show results for both single-stage and multi-stage edge selection on random graphs (see461

§ 4 for a description of these graphs). For N = 50, 75, and 100, we generate 30 random graphs with462

N vertices and p = 0.01. For each graph we run single-stage experiments with � = 1, . . . , 10 and463

multi-stage experiments with � = 1, . . . , 15. Unlike experiments on UNOS graphs we use a time464

limit of 20 minutes per edge; all other parameters are the same. Figure 4a and 4b show single-stage465

and multi-stage results for all random graphs, respectively. Table 3 shows comparisons to IIAB and466

Fail-Aware for random graphs with N = 50, 75, and 100.467

As with UNOS graphs, results for MCTS and Greedy are quite similar, and both methods achieve468

larger �MAX than Random, IIAB, and Fail-Aware. We make two observations: (1) Greedy appears to469

achieve larger �MAX than MCTS in the single-stage setting, likely because of insufficient training time470

for MCTS; (2) in the multi-stage setting, MCTS performs at least as well as Greedy, and often better.471

Observation (2) is consistent with our experiments on UNOS graphs, and is somewhat surprising given472

that MCTS used less training time in these experiments. This suggests that MCTS may substantially473

improve over Greedy in the multi-stage setting; we leave further investigation to future work.474

D Proofs for Section 2475

In the proofs of Proposition 2.1 and Proposition 2.2 we consider a setting where all edges’ pre-476

match rejections and post-match failures are i.i.d., where PR = 0.5 is the pre-match rejection477

probability, PQ = 1.0 is the post-match success probability if the edge is queried-and-accepted,478
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Figure 4: Results for 30 random graphs with edge probability p = 0.01 and N = 50 vertices (top
row), N = 75 (middle row), and N = 100 (bottom row). All experiments use the Simple edge
distribution. In all plots, a solid line indicates median �MAX over all 30 random graphs, and shading is
between the 10th and 90th percentiles; a dotted line indicates the baseline.

A B C D

E F

e1 e2

w(E,B) = 1.5

e3

Figure 5: Exchange graph for Propositions 2.1 and 2.2. All edges have weight 1 except for edge
(E, B), which has weight 1.5.

and PN = 0.5 is the success probability if e is not queried. That is, queried edges have rejection479

probability 0.5, accepted edges have zero failure probability, and non-queried edges have failure480

probability 0.5.481

D.1 Proof of Proposition 2.1482

(Proof by counterexample.) We provide an example where querying a single edge results in a lower483

objective value in Problem 1 (i.e., final expected matching weight) than querying no edges–when484

using the max-weight matching policy MMAX(·).485

Consider the exchange graph in Figure 5; edge (E, B) has weight 1.5, while all other edges have486

weight 1. First we consider the objective due to querying no edges, V S(0). In this case, no edges487

can be rejected pre-match, the max-weight matching includes cycle (C, D, F ) (expected weight488

3 ⇥ (1/2)3 = 3/8) and cycle (A, B) (expected weight 2 ⇥ (1/2)2 = 1/2), with total expected489

matching weight 7/8. That is, V S(0) = 7/8.490

Next consider the objective due to querying only edge e3 = (C, D), and let q0 denote edge set491

{e3}. With probability 1/2, e3 is rejected and cycle (B, C,E) is the max-weight matching – with492
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expected weight 3.5/8. With probability 1/2, e3 is accepted and the max-weight matching includes493

cycles (A, B) (with expected weight 1/2) and (C, D, F ) (with expected weight 3/4); this matching494

has total expected weight 5/4. Thus, V S(q) = 27/32 < 7/8 = V S(0), which concludes the proof.495

D.2 Proof of Proposition 2.2496

(Proof by counterexample.) We provide an example where the objective value in Problem 1 (i.e.,497

final expected matching weight) is non-submodular–when using the max-weight matching policy498

MMAX(·). We use the same rejection and failure distribution as in the proof of Proposition 2.1.499

Consider the exchange graph in Figure 5; edge (E, B) has weight 1.5, while all other edges
have weight 1. With some abuse of notation, we will denote by V S({ea, . . . , eN}) the objective
of Problem 1 due to edge set {ea, . . . , eN}. Our counterexample for submodulartiy is that, for this
graph,

V S(X [ {e1, e2}) + V S(X) > V S(X [ {e1}) + V S(X [ {e2}),
with set X ⌘ {e3}. That is, the objective increase due to of querying both edges e1 and e3 is greater500

than the combined increase due to querying both edges separately. Next we explicitly calculate each501

of the above terms.502

V S(X) = V S({e3}). There are two cases to consider:503

• e3 is accepted, with probability 1/2. The max-weight matching is cycles (A, B) and504

(C, D, F ), with expected weight (1/2 + 3/4),505

• e3 is rejected, with probability 1/2. The max-weight matching is cycle (B, C,E), with506

expected weight 3.5/8.507

Thus, V S(X) = (1/2)(1/2 + 3/4) + (1/2)(3.5/8) = 27/32.508

V S(X [ {e1}) = V S({e1, e3}). There are four cases to consider:509

• e1 and e3 are accepted, with probability 1/4. The max-weight matching is cycles (A, B)510

and (C, D, F ), with expected weight (1 + 3/8),511

• e1 is rejected and e3 is accepted, with probability 1/4. The max-weight matching is cycle512

(B, C,E), with expected weight 3.5/8.513

• e1 is accepted and e3 is rejected, with probability 1/4. The max-weight matching is cycle514

(B, C,E), with expected weight 3.5/8.515

• e1 and e3 are rejected, with probability 1/4. The max-weight matching is cycle (B, C, E),516

with expected weight 3.5/8.517

Thus the objective is V S(X [ {e3}) = (1/4)(1 + 3/8) + (3/4)(3.5/8) = 43/64.518

V S(X [ {e2}) = V S({e2, e3}). There are three cases to consider519

• e3 is accepted, with probability 1/2. The max-weight matching is cycles (A, B) and520

(C, D, F ), with expected weight (1/2 + 3/4),521

• e3 is rejected and e3 is accepted, with probability 1/4. The max-weight matching is cycle522

(B, C,E), with expected weight 3.5/4,523

• e3 and e2 are rejected, with probability 1/4. The max-weight matching is cycle (A, B),524

with expected weight 1/2.525

Thus the objective is V S(X [ {e2}) = (1/2)(1/2 + 3/4) + (1/4)(3.5/4) + (1/4)(1/2) = 31/32.526

V S(X [ {e1, e2}) = V S({e1, e2, e3}). There are four cases to consider:527

• e1 and e3 are accepted, with probability 1/4. The max-weight matching is cycles (A, B)528

and (C, D, F ), with expected weight (1 + 3/4),529

• e1 is accepted and e2 is rejected, with probability 1/4 (the response from e3 is irrelevant).530

The max-weight matching is (A, B) and (C, D, F ), with expected weight 1 + 3/8.531

• e1 is rejected and e2 is accepted (the response from e3 is irrelevant), with probability 1/4.532

The max-weight matching is cycle (B, C,E), with expected weight 3.5/4.533

• e1 and e2 are rejected (the response from e3 is irrelevant), with probability 1/4. The534

max-weight matching is cycle (C, D, F ), with expected weight 3/8.535
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Thus the objective is V S(X [ {e1, e2}) = (1/4)(1 + 3/4) + (1/4)(1 + 3/8) + (1/4)(3.5/4) +536

(1/4)(3/8) = 35/32.537

Finally, we have:538

V S(X [ {e1, e2}) + V S(X) = 35/32 + 27/32

= 1.9375

and539

V S(X [ {e1}) + V S(X [ {e2}) = 43/64 + 31/32

= 1.640625

Therefore, V S(X [ {e1, e2}) + V S(X) > V S(X [ {e1}) + V S(X [ {e2}), which concludes the540

proof.541

D.3 Proof of Proposition 2.3542

For the proof of Proposition 2.3 we make one assumption about the distribution of edge rejections543

and failures: querying additional edges cannot increase the overall probability of rejection or failure544

for any edge.545

Assumption D.1. Let q, r 2 {0, 1}|E|
denote initial edge queries and responses. Let q0

be additional546

edges, such that q + q0 2 {0, 1}|E|
denotes an augmented edge set; let r0 2 {0, 1}|E|

denote the547

responses to edges q0
only. We assume that for any such q, r, and q0

,548

E [r + f | q, r] � E [r + r0 + f | q + q0, r] .

Intuitively, Assumption D.1 excludes distributions where queries arbitrarily increase edge failure549

or rejection. For example, Assumption D.1 disallows the following distribution: suppose all edges550

are independent; all queried edges are accepted (P (re = 1 | q) = 0 for all q), all accepted edges551

have failure probability 0.5 (P (fe = 1 | qe = 1, re = 0) = 0.5), and all non-queried edges have552

failure probability 0.1 (P (fe = 1 | qe = re = 0) = 0.1). In this case, if an edge is not queried, then553

it has overall rejection or failure probability 0.1 (i.e., E[re + fe | q, r] = 0.1 with qe = 0); if this554

edge is queried, then it has rejection or failure probability 0.5 (i.e., E[re + r0
e
+ fe | q + q0, r] = 0.5555

with q0
e

= 1).556

First we prove a handful of useful results.557

Definition D.2 (Edge Independence). Two edges e, e0 2 E are independent if (a) their rejection

distributions are conditionally independent, given whether or not they were queried:

re ?? re0 | qe and re ?? re0 | qe0

and (b) their failure distributions are conditionally independent, given whether or not they were

queried and rejected:

fe ?? fe0 | qe, re and fe ?? fe0 | qe0 , re0 .

Lemma D.3. If all edges are independent, then additional edge queries cannot decrease expected558

post-match cycle and chain weights. Formally,559

E [F (c, r + f) | q, r]  E [F (c, r + r0 + f) | q + q0, r]

for any q, q0 2 {0, 1}|E|
such that q + q0 2 {0, 1}|E|

, for any r 2 {0, 1}|E|
, and for all c 2 C.560

Proof. We address cycles and chains separately.561

Cycles. Conditional on fixed q and r, the expected weight of cycle c = (e1, . . . , eL) is expressed562

as563

E [F (c, r + f) | q, r] =

 
X

e2c

we

!
E
"
Y

e2c

(1 � re � fe) | q, r

#

=

 
X

e2c

we

!
Y

e2c

(1 � E [re + fe | q, r])
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where the second step is due to the fact that all fe are independent. Similarly, for fixed q0,564

E [F (c, r + r0 + f) | q + q0, r] =

 
X

e2c

we

!
Y

e2c

(1 � E [re + r0
e
+ fe | q + q0, r]) .

Due to Assumption D.1, the following inequality holds for all edges e 2 E

E [re + fe | q, r] � E [re + r0
e
+ fe | q + q0, r] ,

and it follows that
E [F (c, r + f) | q, r]  E [F (c, r + r0 + f) | q + q0, r] .

Chains. Similarly, the expected weight of chain c = (e1, . . . , eL) is expressed as565

E [F (c, r + f) | q, r] =
LX

k=1

0

@
kX

j=1

wj

1

AE

2

4
kY

j=1

(1 � rej � fej ) | q, r

3

5

=
LX

k=1

0

@
kX

j=1

wj

1

A
kY

j=1

�
1 � E

⇥
rej + fej | q, r

⇤�
,

where the second step is due to the fact that fe are independent. Similarly,566

E [F (c, r + r0 + f) | q + q0, r] =
LX

k=1

0

@
kX

j=1

wj

1

A
kY

j=1

⇣
1 � E

h
rej + r0

ej
+ fej | q + q0, r

i⌘
.

as before, due to Assumption D.1 it follows that
E [F (c, r + f) | q, r]  E [F (c, r + r0 + f) | q + q0, r] .

567

Lemma D.4. With a failure-aware matching policy, and if all edges are independent, adding a

single edge to any edge query set weakly improves the objective of Problem 1. Formally, for any

q, q0 2 {0, 1}|E|
with q + q0 2 {0, 1}|E|

and |q0| = 1, and M(r) ⌘ MFA(r),

V S(q)  V S(q + q0)

Proof. The objective of Problem 1 for edge set q is expressed as568

V S(q) = E
r|q

"
E

f |q,r

"
X

c2C
MFA

c
(r)F (c, r + f)

##

=
X

r2{0,1}|q|

Pq(r) E
f |q,r

"
X

c2C
MFA

c
(r)F (c, r + f)

#

=
X

r2{0,1}|q|

Pq(r)
X

c2C
MFA

c
(r) E

f |q,r
[F (c, r + f)]

For edge set q + q0 we partition response variables into r, r0 2 {0, 1}|E|, where re is the response569

variable for all edges e 2 q, and re = 0 for all other edges (including the edge in q0). Similarly, r0
e

is570

the response variable for edge q0, and r0
e

= 0 for all other edges. The objective of q + q0 is expressed571

as572

V S(q + q0) = E
r,r0|q+q0

"
E

f |q+q0,r+r0

"
X

c2C
MFA

c
(r + r0)F (c, r + r0 + f)

##

=
X

r2{0,1}|q|

Pq+q0(r) E
r0|q+q0

"
E

f |q+q0,r+r0

"
X

c2C
MFA

c
(r + r0)>F (c, r + r0 + f)

##

=
X

r2{0,1}|q|

Pq(r) E
r0|q+q0

"
E

f |q+q0,r+r0

"
X

c2C
MFA

c
(r + r0)F (c, r + r0 + f)

##
,
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where in the final line we replace Pq+q0(r) with Pq(r), because each re is conditionally independent,573

given qe.574

Next, by definition

E
f |q+q0,r+r0

"
X

c2C
MFA

c
(r + r0)F (c, r + r0 + f)

#
� E

f |q+q0,r+r0

"
X

c2C
xcF (c, r + r0 + f)

#
8x 2 M.

That is, MFA is guaranteed to maximize this expectation, and thus575

V S(q + q0) �
X

r2{0,1}|q|

Pq(r) E
r0|q+q0

"
E

f |q+q0,r+r0

"
X

c2C
MFA

c
(r)F (c, r + r0 + f)

##
(B)

=
X

r2{0,1}|q|

Pq(r)
X

c2C
MFA

v
(r) E

r0|q+q0


E

f |q+q0,r+r0
[F (c, r + r0 + f)]

�
(C)

Finally, combining (B) and (C) with Lemma D.3, the following inequality holds

V S(q)  V S(q + q0).

576

Using the above lemmas, the proof of Proposition 2.3 is straightforward:577

Proposition 2.3 With a failure-aware matching policy, if all edges are independent, the objective578

of Problem 1 is monotonic in the set of queried edges.579

Proof. Let q0, q00 2 E be two edge sets such that q0 ✓ q00. It remains to show that, with matching
policy M(r) ⌘ MFA(r),

V S(q00)  V S(q0).

First note that because E is a matroid, there is a sequence of edges (qe1 , . . . , qeL) (with each580

|qei | = 1) such that q00 + qe1 + · · · + qeL = q0. Due to Lemma D.4, the following sequence of581

inequalities hold:582

V (q00)  V (q00 + qe1)

 V (q00 + qe1 + qe2)

. . .

 V (q00 + qe1 + · · · + qeL)

= V (q0)

which concludes the proof.583

E Algorithm Descriptions584

Here we describe more explicitly the algorithms for Greedy and MCTS, for both the single-stage585

and multi-stage settings.586

E.1 UCB Value Estimates for MCTS587

Both the single- and multi-stage versions of MCTS use the method of [18] to select the next child
node to explore. The formula used to estimate a node’s UCB value is

U

N
� V min

V max � V min
+
q

NP /N

where U is the “UCB value estimate” calculated by MCTS, N is the number of visits to the node,588

NP is the number of visits to the node’s parent, and V max and V min are the largest and smallest589

node values encountered during search. In single-stage MCTS, all nodes have both a node value (the590

objective value of Problem 1) and a UCB value estimate; as described below, in multi-stage MCTS only591

query nodes have a UCB value estimate, and only leaf nodes have a node value (expected matched592

weight, after observing responses from all queried edges).593

18



ALGORITHM 3: Greedy: Greedy Search Heuristic for Single-Stage Edge Selection
(input) E : legal edge sets

qR  0 the root node (no edges)
V ⇤  objective value of qR Problem 1
while qR

has children do
q0  child node of qR with maximal objective value in Problem 1
qR  q0

return qR

E.2 Greedy Single-Stage Edge Selection594

Algorithm 3 gives a pseudocode description of Greedy for the single-stage setting.595

E.3 Multi-Stage Edge Selection596

In the following sections we describe multi-stage versions of MCTS and Greedy. Unlike in the597

single-stage setting, these algorithms take as input a set of previously-queried edges q 2 {0, 1}|E|598

and a corresponding set of observed rejections r 2 {0, 1}|E|; they output the next edge to query.599

Multi-Stage MCTS. The multi-stage search tree is somewhat more complicated than in the single-
stage setting, as each node in the search tree corresponds to both a set of queried edges and a set of
observed rejections. For this purpose we use two types of nodes: outcome nodes, and query nodes.
Outcome nodes consist of previously-queried edges q and previously-observed rejections r, and
are represented by tuple (q, r). (The root of the search tree corresponds to no queries or observed
rejections, (0,0).) The children of an outcome node are query nodes, represented by the next edge to
query from the parent (outcome), represented by tuple (q, r, e). Each outcome node has one child for
every edge that has not yet been queried:

CO(q, r) ⌘ {(q, r, e) | 8e 2 E : q + ue 2 E}

where ue is the unit vector for element e (ue

i
= 0 for all i 6= e, and ue

e
= 1). Each query node has

exactly two children: one where the queried edge is accepted, and one where the queried edge is
rejected,

CQ(q, r, e) ⌘ {(q + ue, r), (q + ue, r + ue)}

As before, the level of a node refers to the number of queried edges: |q| for outcome nodes, and600

|q| + 1 for query nodes.601

As before we refer to nodes with no children as leaf nodes; note that only outcome nodes are leaf
nodes. Unlike the single-stage version of MCTS, in the multi-stage setting we only consider the value
of leaf nodes6. The value of a leaf (outcome) is

V O(q, r) ⌘ W (M(r); q, r),

where as before M(r) denotes the matching policy, and W (x; q, r) denotes the expected matching602

weight of x, subject to q and r. The value of leaf outcome nodes is used to by QSample and OSample603

to guide multi-stage MCTS.604

6This decision was made in part because initial results indicate that edge selection is essentially monotonic.
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Algorithm 4 describes the multi-stage version of MCTS, taking previously-queried edges and605

observed responses as input. This algorithm initializes the value estimate U [·] and number of visits606

N [·] for query nodes in the next L levels–these quantities are used in the UCB calculation.607

ALGORITHM 4: Multi-Stage MCTS
(input) E : legal edge sets
(input) K: maximum size of any legal edge set
(input) T : time limit
(input) L: number of look-ahead levels
(input) qR: previously-queried edges
(input) rR: previously-observed rejections

M  min{N + L,K}
Q all query nodes which are descendants of (qR, rR), up to level M
U [(q, r, e)] 0 8(q, r, e) 2 Q UCB value estimate
N [(q, r, e)] 0 8q 2 Q number of visits
while less than time T has passed do

QSample(qR, rR M )
(qR, rR, e⇤) child node of (qR, rR) with the greatest UCB estimate
return e⇤

608

ALGORITHM 5: QSample: Function for sampling query nodes in multi-stage MCTS
(input) (q, r): outcome node
(input) M : maximum level to sample from

if (q, r) has no children then
return V O(q, r) (return the value of this outcome node)

if (q, r) has children then
if |q| < M � 1 then

(q, r, e0) child node of (q, r) with the greatest UCB estimate
OSample(q, r, e)

else
(q0, r0) random leaf node, descendant from (q, r)
return V O(q0, r0)

609

ALGORITHM 6: OSample: Function for sampling outcome nodes in multi-stage MCTS
(input) (q, r, e): query node

N [(q, r, e)] N [(q, r, e)] + 1
q0  q + ue (new query vector with edge e added)
Z  randomly sample a response to edge e (0 if accept, 1 if reject)
r0  r + Zue (updated rejection vector)
U [(q, r, e)] U [(q, r, e)] + QSample(q0, r0)

610

Algorithm 5 (QSample) samples query nodes from an outcome node, while Algorithm 6 (OSample)611

samples outcome nodes from a query node (and updates the query node’s UCB value estimate).612

Multi-Stage Greedy. Algorithm 7 gives a pseudocode description of the multi-stage version of613

Greedy. This search heuristic returns the next edge to query with the highest expected final matching614

weight, ignoring all future queries. In other words, this approach treats every edge as the last edge;615

one might call this heuristic “myopic” as well as greedy.616
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ALGORITHM 7: Greedy Heuristic for Multi-Stage Edge Selection
(input) E : legal edge sets
(input) q: previously-queried edges
(input) r: previously-observed rejections

e⇤  ; V ⇤  0
for all q0

in q’s children do
e0  the new edge queried in child node q0

rA  r
rR  r
rA

e0  0 (response scenario where e0 is accepted, and re0 = 0)
rR

e0  1 (response scenario where e0 is rejected, and re0 = 1)
pA  probability that e is accepted, conditional on previous responses
pR  probability that e is rejected, conditional on previous responses
V 0  pA ·W (M(rA); q0, rA) + pRW (M(rR); q0, qR) (value of querying edge e0)
if V 0 > V ⇤ then

e⇤  e0

V ⇤  V 0

return e⇤
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