Riemannian Continuous Normalizing Flows

Emile Mathieu†∗, Maximilian Nickel‡
emile.mathieu@stats.ox.ac.uk, maxn@fb.com
† Department of Statistics, University of Oxford, UK
‡ Facebook Artificial Intelligence Research, New York, USA

Abstract

Normalizing flows have shown great promise for modelling flexible probability distributions in a computationally tractable way. However, whilst data is often naturally described on Riemannian manifolds such as spheres, tori, and hyperbolic spaces, most normalizing flows implicitly assume a flat geometry, making them either misspecified or ill-suited in these situations. To overcome this problem, we introduce Riemannian continuous normalizing flows, a model which admits the parametrization of flexible probability measures on smooth manifolds by defining flows as the solution to ordinary differential equations. We show that this approach can lead to substantial improvements on both synthetic and real-world data when compared to standard flows or previously introduced projected flows.

1 Introduction

Learning well-specified probabilistic models is at the heart of many problems in machine learning and statistics. Much focus has therefore been placed on developing methods for modelling and inferring expressive probability distributions. Normalizing flows (Rezende and Mohamed, 2015) have shown great promise for this task as they provide a general and extensible framework for modelling highly complex and multimodal distributions (Papamakarios et al., 2019).

An orthogonal but equally important aspect of well-specified models is to correctly characterize the geometry which describes the proximity of data points. Riemannian manifolds provide a general framework for this purpose and are a natural approach to model tasks in many scientific fields ranging from earth and climate science to biology and computer vision. For instance, storm trajectories may be modelled as paths on the sphere (Karpatne et al., 2019), the shape of proteins can be parametrized using tori (Hamelryck et al., 2006), cell developmental processes can be described through paths in hyperbolic space (Klimovskia et al., 2020), and human actions can be recognized in video using matrix manifolds (Lui, 2012). If appropriately chosen, manifold-informed methods can lead to improved sample complexity and generalization, improved fit in the low parameter regime, and guide inference methods to interpretable models. They can also be understood as a geometric prior that encodes a practitioner’s assumption about the data and imposes an inductive bias.

However, conventional normalizing flows are not readily applicable to such manifold-valued data since their implicit Euclidean assumption makes them unaware of the underlying geometry or borders of the manifold. As a result they would yield distributions having some or all of their mass lying
We also apply our method to density estimation on earth-sciences data (e.g., locations of earthquakes). We empirically demonstrate the advantages of our method on constant curvature manifolds—i.e., the Poincaré disk and the sphere—and show the benefits of the proposed approach compared to non-Riemannian and projected methods for maximum likelihood estimation and reverse KL minimization. We also apply our method to density estimation on earth-sciences data (e.g., locations of earthquakes, floods and wildfires) and show that it yields better generalization performance and faster convergence.

2 Continuous Normalizing Flows on Riemannian Manifolds

Normalizing flows operate by pushing a simple base distribution through a series of parametrized invertible maps, referred as the flow. This can yield a highly complex and multimodal distribution which is typically assumed to live in a Euclidean vector space. Here, we propose a principled approach to extend normalizing flows to manifold-valued data, i.e., Riemannian continuous normalizing flows (RCNFs). Following CNFs (Chen et al., 2018; Grathwohl et al., 2019; Salman et al., 2018) we define manifold flows as the solutions to ODEs. The high-level idea is to parametrize flows through the time-evolution of manifold-valued particles z—in particular via their velocity $\dot{z}(t) = f_\theta(z(t), t)$ where f_θ denotes a vector field. Particles are first sampled from a simple base distribution, and then their evolution is integrated by a manifold-aware numerical solver, yielding a new complex multimodal distribution of the particles. This Riemannian and continuous approach has the advantages of allowing almost free-form neural networks and of not requiring any mapping from a Euclidean space which would potentially lead to numerical challenges.

For practical purposes, we focus our theoretical and experimental discussion on constant curvature manifolds (see Table 1). In addition to being widely used in the literature (Nickel and Kiela, 2017; Davidson et al., 2018; Mardia and Jupp, 2000; Hasnat et al., 2017), these manifolds are convenient to work with since most related geometrical quantities are available in closed-form. However, our

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Model</th>
<th>Curvature</th>
<th>Coordinates</th>
<th>$\sqrt{\det g} = d \text{ Vol}/d\text{ Leb}_{g}$</th>
<th>Compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>\mathbb{R}^d</td>
<td>$K = 0$</td>
<td>Cartesian z</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>Hyperbolic</td>
<td>\mathbb{H}^d_k</td>
<td>$K < 0$</td>
<td>Cartesian z</td>
<td>$\left(2 / 1 + K |z|^2\right)^{d/2}$</td>
<td>No</td>
</tr>
<tr>
<td>Elliptic</td>
<td>S^d_k</td>
<td>$K > 0$</td>
<td>n-spherical φ</td>
<td>$K^{\frac{d-1}{2}} \prod_{i=1}^{d-1} \sin(\varphi)^{d-i-1}$</td>
<td>Yes</td>
</tr>
</tbody>
</table>
proposed approach is generic and could be used on a broad class of manifolds such as product and matrix manifolds like tori and Grassmanians. For a brief overview of relevant concepts in Riemannian geometry please see Appendix A.1 or Lee (2003) for a more thorough introduction.

In the following, we develop the key components which allow us to define continuous normalizing flows that are aware of the underlying Riemannian geometry: flow, likelihood, and vector field.

Vector flows Flows in conventional normalizing flows are defined as smooth mappings \(\phi : \mathbb{R}^d \to \mathbb{R}^d \) which transform a base distribution \(z \sim P_0 \) into a complex distribution \(P_\theta \). For normalizing flows to be well-behaved and convenient to work with, the flow is required to be bijective and differentiable which introduces significant structural constraints on \(\phi \). Continuous normalizing flows overcome this issue by defining the flow \(\phi : \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d \) generated by an ordinary differential equation, allowing for unrestricted neural network architectures. Here we show how vector fields can be used to define similar flows \(\phi : M \times \mathbb{R} \to M \) on general Riemannian manifolds.

Consider the temporal evolution of a particle \(z(t) \) lying on a \(d \)-dimensional manifold \(M \), whose velocity is given by a vector field \(f_\theta(z(t), t) \). Intuitively, \(f_\theta(z(t), t) \) indicates the direction and speed along which the particle is moving on the manifold’s surface. Classic examples for such vector fields include weathervanes giving wind direction and compasses pointing toward the magnetic north pole of the earth. Formally, let \(T_z M \) denote the tangent space at \(z \) and \(TM = \bigcap_{z \in M} T_z M \) the associated tangent bundle. Furthermore, let \(f_\theta : M \times \mathbb{R} \to TM \) denote a vector field on \(M \). The particle’s time-evolution according to \(f_\theta \) is then given by the following ODE

\[
\frac{dz(t)}{dt} = f_\theta(z(t), t).
\]

To transform a base distribution using this vector field, we are then interested in a particle’s position after time \(t \). When starting at an initial position \(z(0) = z_0 \), the flow operator \(\phi : M \times \mathbb{R} \to M \) gives the particle’s position at any time \(t \) as \(z(t) = \phi(z_0, t) \). Leveraging the fundamental theorem of flows (Lee, 2003), we can show that under mild conditions, this flow is bijective and differentiable. We write \(C^1 \) for the set of differentiable functions whose derivative are continuous.

Proposition 1 (Vector flows). Let \(M \) be a smooth complete manifold. Furthermore, let \(f_\theta \) be a \(C^1 \)-bounded time-dependent vector field. Then there exists a global flow \(\phi : M \times \mathbb{R} \to M \) such that for each \(t \in \mathbb{R} \), the map \(\phi(\cdot, t) : M \to M \) is a \(C^1 \)-diffeomorphism (i.e. \(C^1 \) bijection with \(C^1 \) inverse).

Proof. See Appendix E.1 for a detailed derivation.

Note that scaling the vector field as \(f_\theta \| = \alpha f_\theta \) results in a time-scaled flow \(\phi^\alpha(z, t) = \phi(z, \alpha t) \). The integration duration \(t \) is therefore arbitrary. Without loss of generality we set \(t = 1 \) and write \(\phi \| = \phi(\cdot, 1) \). Concerning the evaluation of the flow \(\phi \), it generally does not accept a closed-form solution and thus requires to be approximated numerically. To this extent we rely on an explicit and adaptive Runge-Kutta (RK) integrator of order 4 (Dormand and Prince, 1980). However, standard integrators used in CNFs generally do not preserve manifold constraints (Hairer, 2006). To overcome this issue we rely on a projective solver (Hairer, 2011). This solver works by conveniently solving the ODE in the ambient Cartesian coordinates and projecting each step onto the manifold. Projections onto \(S^d \) are computationally cheap since they amount to \(F \) norm divisions. No projection is required for the Poincaré ball.

Likelihood Having a flow at hand, we are now interested in evaluating the likelihood of our pushforward model \(P_\theta = \phi_\theta P_0 \). Here, the pushforward operator \(\sharp \) indicates that one obtains samples \(z \sim \phi_\theta P_0 \) as \(z = \phi(z_0) \) with \(z_0 \sim P_0 \). For this purpose, we derive in the following the change in density in terms of the geometry of the manifold and show how to efficiently estimate the likelihood.

Change in density In normalizing flows, we can compute the likelihood of a sample via the change in density from the base distribution to the pushforward. Applying the chain rule we get

\[
\log p_\theta(z) - \log p_0(z_0) = \log \left| \det \left(\frac{\partial \phi^{-1}(z)}{\partial z} \right) \right| = -\log \left| \det \left(\frac{\partial \phi(z_0)}{\partial z} \right) \right|.
\]

In general, computing the Jacobian’s determinant of the flow is challenging since it requires \(d \) reverse-mode automatic differentiations to obtain the full Jacobian matrix, and \(O(d^3) \) operations to
We note that the variance of this estimator can potentially be high since it scales with the inverse of the determinant term. In particular, let $G(z)$ denote the matrix representation of the Riemannian metric for a given manifold M, then $G(z)$ endows tangent spaces $T_z M$ with an inner product. For instance in the Poincaré ball \mathbb{B}^d, it holds that $G(z) = (2 / (1 + K \|z\|^2)) I_d$, while in Euclidean space \mathbb{R}^d we have $G(z) = I_d$, where I_d denotes the identity matrix. Using the Liouville equation, we can then show that the instantaneous change in variable is defined as follows.

Proposition 2 (Instantaneous change of variables). Let $z(t)$ be a continuous manifold-valued random variable given in local coordinates, which is described by the ODE from Equation 1 with probability density $p_0(z(t))$. The change in log-probability then also follows a differential equation given by

$$\frac{\partial \log p_0(z(t))}{\partial t} = -\text{div}(f_\theta(z(t), t)) = -|G(z(t))|^{-1} \text{tr} \left(\frac{\partial \sqrt{|G(z(t))|} f_\theta(z(t), t)}{\partial z} \right)$$

$$= -\text{tr} \left(\frac{\partial f_\theta(z(t), t)}{\partial z} \right) - |G(z(t))|^{-1} \left\{ f_\theta(z(t), t), \frac{\partial}{\partial z} \sqrt{|G(z(t))|} \right\}.$$ \(\text{(3)}\)

Proof. For a detailed derivation of Equation 3 see Appendix C. \qed

Note that in the Euclidean setting $\sqrt{|G(z)|} = 1$ thus the second term of Equation 4 vanishes and we recover the formula from Grathwohl et al. (2019); Chen et al. (2018).

Estimating the divergence Even though the determinant of Equation 2 has been replaced in Equation 3 by a trace operator with lower computational complexity, we still need to compute the full Jacobian matrix f_θ. Similarly to Grathwohl et al. (2019); Salman et al. (2018), we make use of Hutchinson’s trace estimator to compute the Jacobian efficiently. In particular, Hutchinson (1990) showed that $\text{tr}(A) = E_{\epsilon}[\epsilon^\top A \epsilon]$ with ϵ being a d-dimensional random vector such that $E[\epsilon] = 0$ and $\text{Cov}(\epsilon) = I_d$. Leveraging this trace estimator to approximate the divergence in Equation 3 yields

$$\text{div}(f_\theta(z(t), t)) = |G(z(t))|^{-\frac{1}{2}} E_{\epsilon}[\epsilon^\top \frac{\partial \sqrt{|G(z(t))|} f_\theta(z(t), t)}{\partial z}]$$

\(\text{(5)}\)

We note that the variance of this estimator can potentially be high since it scales with the inverse of the determinant term $\sqrt{|G(z(t))|}$ (see Appendix D.2). By integrating Equation 3 over time with the stochastic divergence estimator from Equation 5, we get the following total change in log-density between the manifold-valued random variables z and z_0

$$\log \left(\frac{p_0(z)}{p_0(z_0)} \right) = -\int_0^1 \text{div}(f_\theta(z(t), t)) \, dt = -E_{\epsilon}[\epsilon^\top \int_0^1 |G(z(t))|^{-\frac{1}{2}} \epsilon^\top \frac{\partial \sqrt{|G(z(t))|} f_\theta(z(t), t)}{\partial z} \epsilon \, dt].$$

\(\text{(6)}\)

It can been seen that Equation 6 accounts again for the underlying geometry through the metric $G(z(t))$. Table 1 lists closed-form solutions of its determinant for constant curvature manifolds. Furthermore, the vector-Jacobian product can be computed through backward auto-differentiation with linear complexity, avoiding the quadratic cost of computing the full Jacobian matrix. Additionally, the integral is approximated via the discretization of the flow returned by the solver.

Choice of base distribution P_0 The closer the initial base distribution is to the target distribution, the easier the learning task should be. However, it is challenging in practice to incorporate such prior knowledge. We consequently use a uniform distribution on \mathbb{S}^d since it is the most “uncertain” distribution. For the Poincaré ball \mathbb{B}^d, we rely on a standard wrapped Gaussian distribution \mathcal{N}^W (Nagano et al., 2019; Mathieu et al., 2019) because it is convenient to work with.

Vector field Finally, we discuss the form of the vector field $f_\theta : M \times \mathbb{R} \to TM$ which generates the flow ϕ used to pushforward samples. We parametrize f_θ via a feed-forward neural network which takes as input manifold-valued particles, and outputs their velocities. The architecture of the vector field has a direct impact on the expressiveness of the distribution and is thus crucially important. In order to take into account these geometrical properties we make use of specific input and output layers that we describe below. The rest of the architecture is based on a multilayer perceptron.
When the loss L is expressed as an expectation over the model P_{θ}, one aims to learn a model P_{θ} with parameters θ by minimising a divergence $\mathcal{L}(\theta) = D(P_{\theta} \parallel P_D)$ w.r.t. a target distribution P_D. In our case, the parameters θ refer to the parameters of the vector field f_{θ}. We minimize the loss $\mathcal{L}(\theta)$ using first-order stochastic optimization, which requires Monte Carlo estimates of loss gradients $\nabla_{\theta} \mathcal{L}(\theta)$. We back-propagate gradients through the explicit solver with $O(1/h)$ memory cost, h being the step size.

Additionally, regularization terms can be added in the hope of improving training and generalization. See Appendix D for a discussion and connections to the dynamical formulation of optimal transport.

3 Related work

Here we discuss previous work that introduced normalizing flows on manifolds. For clarity we split these into projected vs Riemannian methods which we describe below.

Projected methods These methods consist in parametrizing a normalizing flow on \mathbb{R}^d and then pushing-forward the resulting distribution along an invertible map $\psi : \mathbb{R}^d \rightarrow \mathcal{M}$. Yet, the existence of such an invertible map is equivalent to \mathcal{M} being homeomorphic to \mathbb{R}^d (e.g. being “flat”), hence limiting the scope of that approach. Moreover there is no principled way to choose such a map, and different choices lead to different numerical or computational challenges which we discuss below.

Exponential map The first generic projected map that comes to mind in this setting is the exponential map $\exp_{\mu} : T_{\mu} \mathcal{M} \cong \mathbb{R}^d \rightarrow \mathcal{M}$, which parameterizes geodesics starting from μ with velocity $v \in T_{\mu} \mathcal{M}$. This leads to so called wrapped distributions $P_{\psi_{\mu}}^v = \exp_{\mu} \mathcal{P}$, with \mathcal{P} a probability measure on \mathbb{R}^d. This approach has been taken by Falorsi et al. (2019) to parametrize probability distributions on Lie groups. Yet, in compact manifolds – such as spheres or the $SO(3)$ group – computing the density of wrapped distributions requires an infinite summation, which in practice needs to be truncated.

Stereographic map Alternatively to the exponential map, Gemici et al. (2016) proposed to parametrize probability distributions on \mathbb{S}^d via the stereographic projection defined as $\rho(z) = z_{2:d} / (1 - z_1)$ with projection point $-\mu_0 = (-1, 0, \ldots, 0)$. Gemici et al. then push a probability measure \mathcal{P} defined on \mathbb{R}^d along the inverse of the stereographic map ρ, yielding $P_{\psi_{\mu}}^{\rho} = \rho_{\mu}^{-1} \mathcal{P}$.
Figure 2: Probability densities on \mathbb{B}^2. Models have been trained by maximum likelihood to fit $\mathcal{N}^{W}(\exp_0(2 \partial x), \Sigma)$. The black semi-circle indicates the disk’s border. The best run out of twelve trainings is shown for each model.

Figure 3: Ablation study of the vector field architecture for the Riemannian model. Models have been trained to fit a $\mathcal{N}^{W}(\exp_0(\partial x), \Sigma)$.

Figure 4: Negative Log-likelihood of CNFs trained to fit a $\mathcal{N}^{W}(\exp_0(\alpha \partial x), \Sigma)$ target on \mathbb{B}^2.

However, the stereographic map ρ is not injective, and projects $-\mu_0$ to ∞. This implies that spherical points close to the projection point $-\{\mu_0\}$ are mapped far away from the origin of the plane. Modelling probability distributions with mass close to $\{-\mu_0\}$ may consequently be numerically challenging since the norm of the Euclidean flow would explode. Similarly, Rezende et al. (2020) introduced flows on hyperspheres and tori by using the inverse tangent function. Although this method is empirically shown to perform well, it similarly suffers from numerical instabilities near singularity points.

Riemannian methods In contrast to projected methods which rely on mapping the manifold to a Euclidean space, Riemannian methods do not. As a consequence they side-step any artefact or numerical instability arising from the manifold’s projection. Early work (Sei, 2011) proposed transformations along geodesics on the hypersphere by evaluating the exponential map at the gradient of a scalar manifold function. Recently, Rezende et al. (2020) introduced ad-hoc discrete Riemannian flows for hyperspheres and tori based on Möbius transformations and spherical splines. We contribute to this line of work by introducing continuous flows on general Riemannian manifolds. In contrast to discrete flows (e.g. Bose et al., 2020; Rezende et al., 2020), time-continuous flows as ours alleviate strong structural constraints on the flow by implicitly parametrizing it as the solution to an ODE (Grathwohl et al., 2019). Additionally, recent and concurrent work (Lou et al., 2020; Falorsi and Forré, 2020) proposed to extend neural ODEs to smooth manifolds.

4 Experimental results

We evaluate the empirical performance of the above-mentioned models on hyperbolic and spherical geometry. We will first discuss experiments on two synthetic datasets where we highlight specific pathologies of the naive and projected methods via unimodal distributions at the point (or the limit) of the pathology. This removes additional modelling artefacts that would be introduced through more complex distributions and allows to demonstrate advantages of our approach on the respective manifolds. We further show that these advantages also translate to substantial gains on highly multi-modal real world datasets.

For all projected models (e.g. stereographic and wrapped cf Section 3), the vector field’s architecture is chosen to be a multilayer perceptron as in Grathwohl et al. (2019), whilst the architecture described in Section 2 is used for our Riemannian (continuous normalizing flow) model. For fair comparisons,
we also parametrize projected models with a CNF. Also, all models are chosen to have approximately the same number of parameters. All models were implemented in PyTorch (Paszke et al., 2017) and trained by stochastic optimization with Adam (Kingma and Ba, 2015). All 95% confidence intervals are computed over 12 runs. Please refer to Appendix G for full experimental details.

Hyperbolic geometry and limits of conventional and wrapped methods First, we aim to show that conventional normalizing flows are ill-suited for modelling target manifold distributions. These are blind to the geometry, so we expect them to behave poorly when the target is located where the manifold behaves most differently from a Euclidean space. We refer to such models as naive and discuss their properties in more detail in Appendix B.1. Second, we wish to inspect the behaviour of wrapped models (see Section 3) when the target is away from the exponential map origin.

To this extent we parametrize a wrapped Gaussian target distribution \(N^W(\exp_0(\alpha \partial x), \Sigma) \) defined on the Poincaré disk \(\mathbb{D}^2 \) (Nagano et al., 2019; Mathieu et al., 2019). The scalar parameter \(\alpha \) allows us to locate the target closer or further away from the origin of the disk. We put three CNFs models on the benchmark; our Riemannian (from Section 2), a conventional naive and a wrapped model. The base distribution \(P_0 \) is a standard Gaussian for the naive and wrapped models, and a standard wrapped Gaussian for the Riemannian model. Models are trained by maximum likelihood until convergence. Throughout training, the Hutchinson’s estimator is used to approximate the divergence as in Equation 5. It can be seen from Figure 4 that the Riemannian model indeed outperforms the naive and wrapped models as we increase the values of \(\alpha \) – i.e., the closer we move to the boundary of the disk. Figure 2 shows that qualitatively the naive and wrapped models seem to indeed fail to properly fit the target when it is located far from the origin. Additionally, we assess the architectural choice of the vector field used in our Riemannian model. In particular, we conduct an ablation study on the rescaling of the output layer, by training for 10 iterations a rescaled and an unscaled version of our model. Figure 3 shows that the number of function evaluations (NFE) tends to be large and sometimes even dramatically diverges when the vector field’s output is unscaled. In addition to increasing the computational cost, this in turns appears to worsen the convergence’s speed of the model. This further illustrates the benefits of our vector field parameterization.

Spherical geometry and limits of the stereographic projection model Next, we evaluate the ability of our model and the stereographic projection model from Section 3 to approximate distributions on the sphere which are located around the projection point \(-\mu_0\). We empirically assess this phenomenon by choosing the target distribution to be a Von-Mises Fisher (Downs, 1972) distribution \(\text{vMF}(\mu, \kappa) \) located at \(\mu = -\mu_0 \), and with concentration \(\kappa \) (which decreases with the variance). Along with the stereographic projection method, we also consider our Riemannian model from Section 2. We neither included the naive model since it is misspecified here (leading to an undefined reverse KL divergence), nor the wrapped model as computing its density requires an infinite summation (see Section 3). The base distribution \(P_0 \) is chosen to be a standard Gaussian on \(\mathbb{R}^2 \) for the stereographic model and a uniform distribution on \(S^2 \) for the Riemannian model. Models are trained by computing the exact divergence. The performance of these two models are quantitatively assessed on both the negative log-likelihood and reverse KL criteria.

| & model & Stereographic & Riemannian |
|---|---|---|---|
| Loss & \(\mathcal{L}_{\text{Like}} \) & \(\mathcal{L}_{\text{Like}} \) |
| \(\kappa \) & \(\alpha \) & \(\alpha \) & \(\alpha \) |
| 100 & 63.60_{+3.56}^- & \(-1.78\pm0.01\) |
| 50 & 32.68_{+3.15}^- & \(-1.09\pm0.01\) |
| 10 & 6.45_{+2.42}^- & 0.52_{+0.01}^- |
| 70 & 1.56_{+0.34}^- & 0.04_{+0.02}^- |
| 50 & 0.68_{+0.16}^- & 0.05_{+0.02}^- |
| 10 & 0.12_{+0.01}^- & 0.01_{+0.00}^- |

Table 2: Performance of continuous flows on \(S^2 \) with \(\text{vMF}(\mu = -\mu_0, \kappa) \) targets (the smaller the better). When models perfectly fit the target \(P_D \), then \(\mathcal{L}_{\text{Like}} = H[P_D] \) which decreases with \(\kappa \), explaining \(\mathcal{L}_{\text{Like}} \)'s results for the Riemannian model.
We observe from Table 3 that for all datasets, the log-likelihood objective because it (e.g. Falorsi and Forré, 2020). For the Poincaré ball, no such variance behavior of the stochastic estimator exists and it can readily be applied to large-scale data. Improved performance in the hyperbolic setting but had less of an effect in the spherical setting. As

Table 3: Negative test log-likelihood of continuous normalizing flows on S^2 datasets.

<table>
<thead>
<tr>
<th></th>
<th>Volcano</th>
<th>Earthquake</th>
<th>Flood</th>
<th>Fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixture vMF</td>
<td>$-0.31_{\pm0.07}$</td>
<td>0.59$_{\pm0.01}$</td>
<td>1.09$_{\pm0.01}$</td>
<td>$-0.23_{\pm0.02}$</td>
</tr>
<tr>
<td>Stereographic</td>
<td>$-0.64_{\pm0.20}$</td>
<td>0.43$_{\pm0.04}$</td>
<td>0.99$_{\pm0.04}$</td>
<td>$-0.40_{\pm0.06}$</td>
</tr>
<tr>
<td>Riemannian</td>
<td>$-0.97_{\pm0.15}$</td>
<td>0.19$_{\pm0.04}$</td>
<td>0.90$_{\pm0.03}$</td>
<td>$-0.66_{\pm0.05}$</td>
</tr>
</tbody>
</table>

Learning curves

<table>
<thead>
<tr>
<th></th>
<th>829</th>
<th>6124</th>
<th>4877</th>
<th>12810</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data size</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5 shows densities of the target distribution along with the base and learned distributions. We observe that the stereographic model fails to push mass close enough to the singularity point $-\mu_0$, as opposed to the Riemannian model which perfectly fits the target. Table 2 shows the negative log-likelihood and reverse KL losses of both models when varying the concentration parameter κ of the vMF target. The larger the concentration κ is, the closer to the singularity point $-\mu_0$ the target’s mass gets. We observe that the Riemannian model outperforms the stereographic one to fit the target for both objectives, although this performance gap shrinks as the concentration gets smaller. Also, we believe that the gap in performance is particularly large for the log-likelihood objective because it heavily penalizes models that fail to cover the support of the target. When the vMF target is located away from the singularity point, we noted that both models were performing similarly well.

Density estimation of spherical data Finally, we aim to measure the expressiveness and modelling capabilities of our method on real world datasets. To this extent, we gathered four earth location datasets, representing respectively volcano eruptions (NOAA, 2020b), earthquakes (NOAA, 2020a), floods (Brakenridge, 2017) and wild fires (EOSDIS, 2020). We approximate the earth’s surface (and thus also these data points) as a perfect sphere. Along our Riemannian CNF, we also assess the fitting capacity of a mixture of von Mises-Fisher (vMF) distributions and a stereographic projected CNF. The locations of the vMF components are learned via stochastic Riemannian optimization (Bonnabel, 2013; Becigneul and Ganea, 2019). The learning rate and number of components are selected by hyperparameter grid search. In our experiments, we split datasets randomly into training and testing datasets, and fit the models by maximum likelihood estimation on the training dataset. CNF models are trained by computing the exact divergence.

We observe from Table 3 that for all datasets, the Riemannian model outperforms its stereographic counterpart and the mixture of vMF distributions by a large margin. It can also be seen from the learning curves that the Riemannian model converges faster. Figure 6 shows the learned spherical distributions along with the training and testing datasets. We note that qualitatively the stereographic distribution is generally more diffuse than its Riemannian counterpart. It also appears to allocate some of its mass outside the target support, and to cover less of the data points. Additional figures are shown in Appendix H.

Limitations In the spherical setting, the stochastic estimator to approximate the divergence from Equation 5 exhibits high variance. Its variance scales with the inverse of $|G(z)| = \sin(\theta)$, which becomes too large around the north pole and thus requires the use of the exact estimator. On large-scale datasets, where the stochastic estimator has important runtime advantages, this issue could be alleviated by choosing a different vector field basis than the one induced by the exact estimator. The locations of the vMF components are learned via stochastic Riemannian optimization (Bonnabel, 2013; Becigneul and Ganea, 2019). The learning rate and number of components are selected by hyperparameter grid search. In our experiments, we split datasets randomly into training and testing datasets, and fit the models by maximum likelihood estimation on the training dataset. CNF models are trained by computing the exact divergence.

Compared to a well-optimized linear layer, the use of the geodesic distance layer (see Section 2) induces an extra computational cost as shown in Figure 7. Empirically, the geodesic layer helps to improve performance in the hyperbolic setting but had less of an effect in the spherical setting. As
such, the geodesic layer can be regarded as an optional component that can improve the quality of the model at an additional computational cost.

5 Discussion

In this paper we proposed a principled way to parametrize expressive probability distributions on Riemannian manifolds. Specifically, we introduced Riemannian continuous normalizing flows in which flows are defined via vector fields on manifolds and computed as the solution to the associated ODE. We empirically demonstrated that this method can yield substantial improvements when modelling data on constant curvature manifolds compared to conventional or projected flows.
Broader impact

The work presented in this paper focuses on the learning of well-specified probabilistic models for manifold-valued data. Consequently, its applications are especially promising to advance scientific understanding in fields such as earth and climate science, computational biology, and computer vision. As a foundational method, our work inherits the broader ethical aspects and future societal consequences of machine learning in general.

Acknowledgments

We are grateful to Adam Foster, Yann Dubois, Laura Ruis, Anthony Caterini, Adam Golinski, Chris Maddison, Salem Said, Alessandro Barp, Tom Rainforth and Yee Whye Teh for fruitful discussions and support. EM research leading to these results received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 617071 and he acknowledges Microsoft Research and EPSRC for funding EM’s studentship.

References

