1

© 0 N o O

10

11

12
13
14
15
16

A Model Details

Al

The Hyper-parameters we tested and the best parameter we selected for each model.

Model Parameters

Table 1: Summary of model hyperparameters tested in hyperparameter search and the value used in

the final model.

Table Lift Task

Model Parameters Searched Planning Model =~ Dynamics Model - Single Dynamics Model - Multi
Encoder LR 2x107%-1x107° 5x107° 2x 1074 1x107°
Decoder LR 2x107*-1x107° 5x 1075 4x1075 4x1075

Hidden Dimensions 100 - 1024 512 512 512
Encoder FC Layers 3-18 3 18 3
Decoder FC Layers 3-19 4 19 5
GAT attention layers 1,2 1 1 1

Peg-In-Hole Task

Model Parameters Searched Planning Model =~ Dynamic Model - Single =~ Dynamic Model - Multi
Encoder LR 2x107%-1x107° 1x107° 5x 107" 5x 107"
Decoder LR 2x107%-8x 1077 8x 1077 5x 107° 5x 107°

Hidden Dimensions 100 - 1024 512 1024 512
Encoder FC Layers 3-20 9 20 3
Decoder FC Layers 3-21 8 21 5
GAT attention layers 1,2 1 1 1
GAT attention heads 1,2 1 1 1

A.2 Data Pre-processing

For the table lift task, we used 2,500 training demonstrations, with starting locations distributed
uniformly over displacement range of 20cm by 60 cm. The testing was done on 127 random starting
locations with displacements within the range of the training dataset. For the peg-in-hole task we
used 4,700 randomly selected demonstrations for training and 281 random locations for testing. In
data pre-processing, we removed demonstrations that were not successful in completing the tasks.

A.3 Dynamic Model Details

A.3.1 Encoder

> Zp~ N(uztr Uzt)

S(demo) (demo) (demo)
|t Ic+1 St|+M
GRU Hidden
State II//'
' GAT GRU (table) |
Layer Layer St
Fully Mean
Concat Connected Variance
Layers Split
Encoder

Figure 1: Encoder training set-up details with graph structure and skip connection.

The baseline encoder consists of a GRU which takes the initial state as the input. The number of
layers in the GRU corresponds to the number of states being projected. The initial state is a vector
consisting of the x-, y-, and z-coordinates of each object concatenated with the quaternions for that
object. During training, we use teacher forcing so that the input in each layer of the GRU take the
states from the simulation. During testing, the inputs in layers besides the first come from the output

17
18
19
20
21
22

23
24
25

26
27
28

29
30

31

32
33

of the previous layer. The hidden state of the GRU at the last time point is passed through the fully
connected layers. The number of fully connected layers vary based on whether the model is part of a
multi-model framework as outlined in the Model Parameters section. We modified the number of
linear layers such that our single and multi-model designs have comparable number of parameters.
The final layer doubles the dimensionality of the fully connected layers, splitting the hidden state into
mean and variances for the decoder.

Relational Model Int Models that use relational features use graph attention layers (GAT). We
use one attention head in the GAT layers.

A node corresponds to an object feature in the state, one node for each of the x, y, z coordinates and

for the four quaternions. We will index the layer with a superscript. The initial node feature h&o) is

the value of that feature. For each layer, the edge attention coefficient !, between nodes u and v is
given by
el) = a (WORD, WORD) (1)

for learned layer weight matrix W), The attention mechanism a concatenates the inputs and
multiplies them by a learned weight vector a(") and applies a nonlinearity, i.e.

) = LeakyReLU (a<l>(w<l>h§j>||W<l>h,§}>)))
Attention weights are computed by normalizing edge attention coefficients with the softmax function

Qi = softmax(ey,). 3)

Node features are aggregated by neighborhood. For node u and the set of its connected neighbors
N, node features are updated by the GAT update rule,

R = 3" aWOR{. (4)
vEN,,

Figure 2: A graphical visualization of the attention weights learned in the 2nd layer of the GRU for
the table lifting task. Node colors represent different objects in the environment. In this graph, 'R’
and 'L’ stand for left and right grippers, and "T” for table. The visible edges are those with attention
weights greater than 8%. A graph convolution network (GCN) without learned weights would
assume uniform attention weights of 4.77% for all 21 nodes. This supported our decision to use GAT
over GCN for modeling the interactions. The two nodes receiving the largest weights are the right
gripper y coordinate and a quaternion on the left gripper.

34
35

36

37
38
39
40
41

42
43
44

45

Residual Connection Res Models that have the residual connection concatenate the table features
to the final hidden state from the GRU, prior to the linear layers.

A.3.2 Decoder

Decoder
Output and
Hidden
State aas
Zy
GRU Layer
Fully
Connected
Layers
1 v ¥
(pred) S(P"’ed) S(PTEd)
t+1 t+2 t+M

Figure 3: Decoder training set-up details.

The decoder takes a sample latent space from the encoder. The sample is the initial hidden state
going into the GRU of the decoder. The initial input of the first layer is a tensor of zeros. In the
remaining layers, the input to the layer is the output from the previous layer. At each layer, the output
of the GRU goes through a series of fully connected layers to get the final output of the model which
represent the states at each time point.

ODE Model In the ODE model, the latent state is passed to the ODE Solver, which replaces the
GRU. The ODE solver solves for the time invariant gradient function, which used to generate the
output at each time step.

A.4 Planning Model Details

-

S0,S1, - St -

Final
Layer
Zp p(zt|st) Output — ke
> Dt+1 = P
GRU

Fully Softmax

Full
GAT GRU Y Connected
Connected
Layers
Layers
Encoder Decoder

Planning Model

Figure 4: Planning Models take a sequence of observed states and determines a primitive for the
next step. The encoder setup is the same as the dynamics model, with the graph structure but no skip
connection. The latent state in fixed rather than a distribution in the dynamic model. In the decoder,
the output of the GRU and fully connected layers are fed through an additional softmax layer to get
the primitive label.

46

47

48
49

50
51

52
53

54
55
56
57
58
59

60
61

B Additional Results

Right Gripper Y Coordinate Right Gripper Y Coordinate Right Gripper Y Coordinate

=030 arget y Coordinate

035

~0.45 N TETget y Coordinate

Coordinate (m)
3
Coordinate (m)

Lol
Coordinate (m)

-0.32 --- Ground Truth

HDR-IL ODE
~ 034

-0.50 . B HDR-IL

grasp move grasp move grasp move
Primitive Primitive Primitive

Figure 5: RNN vs ODE Model Introducing continuous time dynamics through the ODE model did
not improve upon the predictions. This is due to the transitions of different primitives in this task
being discrete.

Table 2: Breakdown of average Euclidean distance (cm) by primitives of table lift task. Errors are
one standard deviation.

Model Grasp Move Lift Extend Place Retract
GRU-GRU 7.03+545 9.34+6.59 267+£1.66 1420£994 4.65+291 1.39+0.39
Res 833+564 9.62+6.69 444+1.35 1390774 530+0.75 4.94=+1.41
Int 7.73+520 9.66+6.37 3.44+1.19 1257+6.91 4.23+240 2.61+0.71
ResInt 3.80£1.89 328+136 387+1.55 1346x£8.09 5724234 3.45=£0.69
GRU-GRU Multi 7.03£5.45 9.35+6.59 268 £1.65 1420994 4.65+2.92 1.40=£0.38
Res Multi 3.76 £1.63 3.59+1.49 3.09+1.87 13.534+9.62 4.08+£222 1.54+0.61
Int Multi 10.99+9.20 10.01£8.06 3.35+£2.34 18.04£10.42 6.944+4.24 20.68+10.78
HDR-IL 2.86+151 329+£1.34 298+1.87 12.78+871 3.73£2.85 4.03£0.85

Table 3: Breakdown of average Euclidean distance (cm) by phase for the peg-in-hole task. Errors are
one standard deviation.

Model Phase 1 Phase 2 Phase 3
GRU-GRU 1.89+1.08 251+1.22 1.79+0.67
ResInt 1.93+0.85 1.49+0.86 1.18+0.42

HDR-IL 1.45+1.24 1.794+1.30 1.29+£0.66

C Simulations

All tasks used to train and test our framework were designed using the PyBullet physics simulator.
Our goal when designing tasks was two-fold:

e Design tasks that could be easily decomposed into a sequence of simpler, low-level primi-
tives.

e Design tasks that could not be performed using only one arm, and thus would fall under the
domain of bimanual manipulation.

Task Design Designing both tasks used for our experiments followed the same process. We first
decided which low-level primitives the task should be decomposed into. Then we manually coded the
primitives required and put them together sequentially. We made sure that if the robot used only one
arm for either of the tasks it would fail, to ensure that learning to do the task successfully required
true bimanual manipulation. We used the final position of the center of mass of the table or tables to
measure task success.

Primitive Design The process of designing the primitives was iterative. We first built the primitive
movements and test them on the simulation of the task with the table at various starting locations

62
63
64
65

66
67
68

and observe the performance and success rates. We observe where the simulations failed and adjust
the primitives parameters as necessary. This including modifying the number of time steps and the
trajectory of the primitive to avoid accidental interactions. All code used for our simulations will be
made publicly available.

Datasets All data was collected using the two scripts designed for the place-and-lift and peg-in-hole
tasks. Both tasks had noise introduced to them in order to make the training data more robust. Our
code is included to run our simulations and generate datasets.

