
Supplementary Material for Robust Recursive
Partitioning for Heterogeneous Treatment Effects

with Uncertainty Quantification

A Preliminaries of Conformal Prediction

Here, we provide a basic idea of conformal prediction to help understanding. To this end, we introduce
the following example in [1]. Let z1, ..., zn, z be samples of a scalar random variable exchangeably
drawn from a distribution PZ and z(1), ..., z(n) denote the order statistics of z1, ..., zn. We denote the
1− α-th quantile of z(1), ..., z(n) as

Q̂1−α =

{
z(d(n+1)(1−α)e, if d(n+ 1)(1− α)e ≤ n
∞, otherwise

The rank of z among zi, ..., z is uniformly distributed over the set {1, ..., n+ 1} under the exchange-
ability assumption that the joint distribution of z1, ..., zn, z is invariant of the sampling order zi, ..., z.
Thus, for a given miscoverage level α ∈ [0, 1], we have P[z ≤ Q̂1−α] ≤ 1 − α by summing the
uniform distribution up to Q̂1−α.

This idea can be used in a regression problem with covariates x ∈ X , where d is the dimension of the
covariate vector, and outcomes y ∈ Y . Specifically, with the regressor µ̂, the confidence interval for
y is given as

Ĉ(x) =
[
µ̂(x)−G−11−α, µ̂(x) +G−11−α

]
,

where G is the empirical distribution of the fitted residuals on the training samples (i.e., |yi − µ̂(xi)|,
i = 1, ..., n) and G−11−α is the 1− α-th quantile of G. However, this method may undercover y since
the residuals on the training samples typically smaller than those on the test samples due to overfitting.
To avoid this, Split Conformal Regression (SCR) is introduced which separates the samples for
training and computing the residuals. In SCP, the training samples is split into two equal-size subsets
I1 and I2, and one subset I1 is used to fit the regressor µ̂I1 and another one I2 is used to compute
the residuals for µ̂I1 , RI2 = {|yi − µ̂I1(xi)| : (xi, yi) ∈ I2}. Based on the regressor and residuals,
the confidence interval for y with the regressor µ̂I1 is given as

ĈSCR =
[
µ̂I1(x)− Q̂

I2
1−α, µ̂I1(x) + Q̂I21−α

]
,

where Q̂I21−α is defined to be (1− α)(1 + 1/|I2|)-th quantile of RI2 (i.e., d(|I2|+ 1)(1− α)e-the
smallest residual on I2). Under the only one assumption of the exchangeability of the training
samples {(xi, yi)}ni=1 and the testing sample (x, y), it satisfies the following theorem.

Theorem A.1 [1] If the samples {(xi, yi)}ni=1 are exchangeable, then for a new sample
(xn+1, yn+1) drawn from PX,Y ,

P[y ∈ ĈSCR(x)] ≥ 1− α.

B Proof of Theorem 1

For subgroup l, let P lX,Y be the distribution on l×Y , which is the conditional distribution PX,Y |X∈l.
According to Algorithm 1, we have the samples of subgroup l from the entire samples consisting of
two disjoint subsets as Dl = Il1 ∪ Il2, where Il1 is the samples that are used for training the estimator
µ̂X and Il2 is the samples that are used for constructing the confidence interval Ĉl. The samples in
Dl are exchangeable since they are i.i.d. Thus, for a new sample (xn+1, yn+1) drawn from P lX,Y ,
we have P[yn+1 ∈ Ĉl] ≤ 1− α from Theorem A.1.
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C Proof of Theorem 2

We have the samples of subgroup l from the entire samples consisting of two disjoint subsets as
DHTE,l = Il1 ∪ Il2. For training the estimators µ̂1

X and µ̂0
X , the samples in Il1 are used. Also, the

samples in Il2 are used to construct the confidence intervals Ĉ1
l and Ĉ0

l with the miscoverage rate√
1− α according to the treatment indicator of the samples. Since the samples are i.i.d., for a new

sample with each potential outcome, the corresponding confidence interval satisfies the miscoverage
rate
√
1− α from Theorem A.1 as

P[Y (1) ∈ Ĉ1
l (x)] ≥

√
1− α and P[Y (0) ∈ Ĉ0

l (x)] ≥
√
1− α.

For the definitions of the ITE estimation τ̂l(x) and Ĉτl (x), the events that the potential outcomes and
ITE estimation belong to their corresponding confidence intervals satisfy the following relation:

{Y (1) ∈ Ĉ1
l (x)} ∩ {Y (0) ∈ Ĉ0

l (x)} ⊂ {τ ∈ Ĉτl (x)},

which implies that

P[τ ∈ Ĉτl (x)] ≥ P[Y (1) ∈ Ĉ1
l (x)]× P[Y (0) ∈ Ĉ0

l (x)] ≥ 1− α.

D Related Works in Subgroup Analysis with Recursive Partitioning

Subgroup analysis methods with recursive partitioning have been widely studied based on regression
trees (RT) [2–5]. In these methods, the subgroups (i.e., leaves in the tree structure) are constructed;
the treatment effects are estimated by the corresponding sample mean estimator on the leaf of the
given covariates. To represent the non-linearity such as interactions between treatment and covariates
[6], a parametric model is integrated into regression trees for subgroup analysis [7]. However, such
approach can be used only for the limited types of models, which is not particularly satisfying given
the fact that advanced causal inference models based on deep neural networks or multi-task Gaussian
processes have been studied which outperform the traditional estimators [8–11]. The global model
interpretation method in [12] can analyze the subgroup structure of arbitrary models but it depends
on local model interpreters and does not consider the treatment effects.

Table 1: Comparison of related works

Method Estimator Partitioning Criterion Treatment effect
Type Homogeneity CI widths

[2] Sample mean Honest criterion × ×
√

[4] Sample mean Adaptive criterion with
generalization cost × ×

√

[5] Sample mean Adaptive criterion × × ×
[3] Sample mean Interaction measure × ×

√

[7] Parametric model Parameter instability × ×
√

[12] Arbitrary estimator Feature contribution × × ×

Our work Arbitrary estimator Confident criterion
√ √ √

For recursive partitioning, various criteria have been proposed. In the traditional RT, the criterion
based on the mean squared error of the estimated means on the training samples and the test samples
is used [5], and it is referred to as the adaptive criterion. Basically, this adaptive criterion identifies
subgroups with heterogeneous treatment effects by trying to maximize the heterogeneity across the
identified subgroups. Based on the adaptive criterion, in [2], an honest criterion is proposed. In
the criterion, the training samples are split into two subsets; One is used to build a tree structure
and another one is used to estimate the treatment effects. By doing this, the honest criterion can
eliminate the bias of the adaptive criterion. In [4], a generalization cost is introduced to encourage
generalization of the analysis. It is defined by using another subset of the training samples and
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adopted to the adaptive or honest criterion. The interaction measure between the treatment and
covariates is used as a partitioning criterion in [3] and the parameter instability of the parametric
models is used in [7]. In [12], the contribution matrix of the samples from local model interpreters
is used for partitioning. These criteria focus on the heterogeneity across the subgroups, but the
variant of the treatment effects within each subgroup (i.e., the homogeneity within each subgroup)
is neglected. Besides, some of these criteria construct the confidence intervals using the estimated
variances, but most of these intervals fail to achieve the coverage guarantee for each subgroup in finite
samples. In [5], a conformal regression method for constructing confidence intervals using regression
trees is proposed. The adaptive criterion they use for partitioning does not take into account the
confidence interval. The confident criterion in R2P is different from these criteria by considering both
heterogeneity and homogeneity of subgroups and constructing subgroups with confidence intervals.

E Description of Datasets

E.1 Description of Synthetic Models

Synthetic dataset A We first consider the synthetic treatment effect model proposed in [2]. It
describes the potential outcome y for given treatment t ∈ {0, 1} as follows:

yi(t) = η(xi) +
1

2
(2t− 1)κ(xi) + εi,

where εi ∼ N (0, 0.01), xi,k ∼ N (0, 1), and η(·) and κ(·) are the design functions. The response
surface of outcome yi’s is determined by the design functions. The functions η(·) and κ(·) are the
mean outcome and treatment effect for some given covariates, respectively. In this synthetic model,
we consider the following design with 2-dimensional covariates, η(x) = 1

2x1 + x2 and κ(x) = 1
2x1.

There is no redundant covariate which has no effect on the outcomes. In the experiments, we generate
300 samples for training and 1000 samples for testing.

Synthetic dataset B Here, we introduce a synthetic model based on the initial clinical trial results
of remdesivir to COVID-19 [13]. The result shows that remdesivir results in a faster time to clinical
improvement for the patients with a shorter time from symptom onset to starting the trial. Since
the clinical trial data is not public, we generate a synthetic model in which the treatment effects
mainly depends on the time from symptom onset to trial based on the clinical trial setting and results
in the paper [13]. We consider the following 10 baseline covariates: age ∼ N (66, 4), white blood
cell count (×109 per L) ∼ N (66, 4), lymphocyte count (×109 per L) ∼ N (0.8, 0.1), platelet count
(×109 per L) ∼ N (183, 20.4), serum creatinine (U/L) ∼ N (68, 6.6), asparatate aminotransferase
(U/L) ∼ N (31, 5.1), alanine aminotransferase (U/L) ∼ N (26, 5.1), lactate dehydrogenase (U/L)
∼ N (339, 51), creatine kinase (U/L) ∼ N (76, 21), and time from symptom onset to starting the
trial (days) ∼ Unif(4, 14). We approximate the distribution using the patient characteristics provided
in the paper. To construct treatment/control responses, we first adopt the response surface in the
IHDP dataset [14] for the covariates except for the time. We then use a logistic function on the
time covariate to produce different effectiveness (i.e., the faster time to clinical improvement with
the shorter time from symptom onset to the trial). Specifically, the control response is defined as
Y (0) ∼ N (X−0β + (1 + e−(x0−9))−1 + 5, 0.1), and the treated response is defined as Y (1) ∼
N (X−0β+ 5 · (1 + e−(x0−9))−1, 0.1), where X−0 represents the matrix of the standardized (zero-
mean and unit standard deviation) covariate values except for the time covariate x0 and the coefficients
in the vector β are randomly sampled among the values (0, 0.1, 0.2, 0.3, 0.4) with the probability
(0.6, 0.1, 0.1, 0.1, 0.1), respectively. In this synthetic model, the response surface is consistent with
the trial result in [13] such that the time to clinical improvement (i.e., the treatment effect) becomes
faster as the shorter time from symptom onset to the trial.

E.2 Description of Semi-Synthetic Datasets

We consider two semi-synthetic datasets for treatment effect estimation: the Infant Health and
Development Program (IHDP) [14] and the Collaborative Perinatal Project (CPP) [15].

IHDP dataset The Infant Health and Development Program (IHDP) is a randomized experiment
intended to enhance the cognitive and health status of low-birth-weight, premature infants through
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intensive high-quality child care and home visits from a trained provider. Based on the real ex-
perimental data about the impact of the IHDP on the subjects’ IQ scores at the age of three, the
semi-synthetic (simulated) dataset is developed and has been used to evaluate treatment effects esti-
mation in [14, 8, 10, 16]. All outcomes (i.e., response surfaces) are simulated using the real covariates.
The dataset consists of 747 subjects (608 untreated and 139 treated), and 25 input covariates for each
subject. We generated the outcomes using the standard non-linear mean outcomes of “Response
Surface B” setting provided in [14]. A noise ε ∼ N (0, 0.1) is added to each observed outcome. In
the experiments, we use 80% samples for training and 20% samples for testing.

CPP dataset In the 2016 Atlantic Causal Inference Conference competition (ACIC), a semi-
synthetic dataset is developed based on the data from the Collaborative Perinatal Project (CPP) [15].
It comprises of multiple datasets that are generated by distinct data generating processes (causal
graphs) and random seeds. Each dataset consists of 4802 observations with 58 covariates of which 3
are categorical, 5 are binary, 27 are count data, and the remaining 23 are continuous. The factual and
counterfactual samples are drawn from a generative model and a noise ε ∼ N (0, 0.1) is added for
each observed outcome. In the experiments, we use the dataset with index 1 provided in [15] and
drop the rows whose Y (1) or Y (0) above the 99% quantile or below the 1% quantile to avoid the
outliers. The dataset consists of 35% treated subjects and 65% untreated subjects. We randomly pick
500 samples for training and 300 samples for testing from the dataset.

F Description of Algorithms in Experiments

Robust recursive partitioning for HTE (R2P-HTE) We implement R2P-HTE based on Section
4 of the main manuscript. For the ITE estimator, we use the causal multi-task Gaussian process
(CMGP) in [8]. Using the outcome estimates from CMGP (i.e., µ̂1(x) and µ̂0(x)), we construct
the confidence interval for the ITE estimator τ̂(x). Then, we can apply Algorithm 1 in the main
manuscript. In the experiments, we set λ = 0.5 and γ = 0.05. (We use λ = 0 for the CPP dataset
to avoid the excessive effect of the confidence intervals compared with the heterogeneity effect in
the dataset.) We use α = 0.1 and 0.5 split ratio for split conformal prediction. We set the minimum
number of training samples in each leaf as 10. To avoid excessive conservativeness, we use the
confidence interval of the miscoverage rate β = 0.8 for the expected deviation, Ŝl, in the confident
split criterion. We set the hyper-parameters manually as above considering a typical value (e.g., 0.95
is a typical value for significance tests in tree-based methods), but if needed, the hyper-parameter
tuning can be done by a grid search method as in a typical recursive partitioning methods [4].

Standard regression tree for causal effects (CT-A) Because a standard regression tree in [17] is
not developed for estimating treatment effects, we implement the modified version of the standard
regression tree for causal effects estimation in [2]. In this modified version, the regression tree
recursively partitions according to a criterion based on the expectation of the mean squared error
(MSE) of the treatment effects. In the literature, this criterion called an adaptive criterion. We refer
to [2] for more details of the method. In the experiments, we set the minimum number of training
samples in each leaf as 20 since CT-A does not need to split the data samples into two subsets for
validation as in other methods. After building the tree-structure, we prune the tree according to the
statistical significance gain at 0.05.

Conformal regression tree for causal effects (CCT) We modify the conformal regression tree
[5] for our experiments of treatment effect estimation. We implemented CCT by applying the split
conformal prediction method to a standard causal tree (i.e., CT-A). The ITE confidence interval is
constructed in the same way as R2P. In the experiments, we use 0.5 split ratio for the split conformal
prediction method and set the minimum number of training samples in each leaf as 10. After building
the tree-structure, we prune the tree according to the statistical significance gain at 0.05.

Causal tree with honest criterion (CT-H) We implement a causal tree method proposed in [2].
The method modify the standard regression tree for causal effects in which an honest criterion is
used instead of the adaptive criterion. It divides tree-building and treatment effect estimation into
two steps. The samples are split into two subsets: training samples to build the tree and samples to
estimate treatment effects. This two-step procedure makes the tree-building and the treatment effect
estimation process independent, which can eliminate the bias in treatment effect estimation. We refer
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to [2] for more details of the method, In the experiments, we use 0.5 split ratio for building the tree
and estimating the effects. We set the minimum number of training samples in each leaf as 10. After
building the tree-structure, we prune the tree according to the statistical significance gain at 0.05.

Causal tree with generalization costs (CT-L) We implement a causal tree with a criterion con-
sidering generalization costs in [4]. This method is a modified version of the causal tree in [2]. It
splits the data samples into the training and validation samples, and builds the tree using the training
samples while penalizing based on generalization ability using the validation samples. For more
details of the method, we refer to [4]. In the experiments, we use 0.5 split ratio for the training and
validation. We set the minimum number of training samples in each leaf as 10. After building the
tree-structure, we prune the tree according to the statistical significance gain at 0.05.

G Additional Experimental Results

G.1 Average Overlap of Treatment Effects across Subgroups

Table 2: Average overlap of treatment effects across
subgroups.

Synth A Synth B IHDP CPP

R2P 0.45±.06 0.14±.03 0.32±.04 0.23±.03
CCT 1.35±.04 0.63±.15 0.81±.09 0.55±.04
CT-A 1.13±.21 0.44±.09 0.59±.08 0.47±.05
CT-H 0.60±.20 0.60±.16 0.76±.10 0.45±.05
CT-L 0.87±.18 2.27±.55 0.46±.10 0.24±.04

As one metric for evaluating false discovery, we
can use the overlap of treatment effects across
subgroups in Fig. 3 of the main manuscript.
The average overlap of treatment effects across
subgroups indicates whether the subgroups are
well-discriminated. Specifically, we define a
treatment effect interval of each subgroup l as
[al(p), bl(q)], where al(p) and bl(q) are p-th
and q-th percentiles of the treatment effects in
the subgroup l. We define the average overlap
of treatment effects across subgroups as the overlapped width of the treatment effect intervals between
all the pairs of the subgroups. We provide the average overlaps of R2P and the baselines for all datasets
with p = 20 and q = 80. The table shows that the average overlap width of R2P is significantly small
than the one of the baselines, which implies that R2P performs best for discriminating the subgroups.

G.2 Results with Maximum Depth for Partitioning

We provide the results of the maximum depth for partitioning in R2P to demonstrate the effectiveness
of the confident criterion more clearly. We set the maximum depth of each method to be 2, which
limits the maximum number of identified subgroups by 4. In most datasets, R2P has both the highest
variance across subgroups and lowest in-subgroup variance. This implies that each partitioning in
R2P is more effective to identify the subgroups than that in the other methods. In Synthetic dataset B,
CT-A has the highest variance across subgroups, but its difference from that of R2P is marginal and
the in-subgroup variance of CT-A is much higher than that of R2P.

Table 3: Results with maximum depth for partitioning.

Synthetic dataset A Synthetic dataset B

V across V in # SGs CI width Cov. (%) V across V in # SGs CI width Cov. (%)

R2P 0.27±.01 0.04±.001 4.0±.04 0.09±.002 99.06±.23 2.19±.04 0.14±.01 4.0±.00 0.98±.07 99.28±.16
CCT 0.20±.02 0.07±.01 3.4±.22 8.28±.42 100.0±.00 2.10±.08 0.43±.09 3.9±.09 6.05±.46 99.99±.01
CT-A 0.24±.02 0.06±.01 3.6±.15 4.29±.16 99.99±.02 2.23±.06 0.30±.06 3.9±.08 2.97±.20 98.68±.52
CT-H 0.14±.03 0.11±.02 2.5±.27 4.71±.18 99.99±.01 2.13±.09 0.45±.09 3.8±.12 3.45±.25 98.66±.68
CT-L 0.13±.03 0.12±.02 2.4±.25 5.49±.16 99.99±.01 0.82±.23 1.74±.25 2.8±.19 6.71±.53 99.70±.30

IHDP dataset CPP dataset

V across V in # SGs CI width Cov. (%) V across V in # SGs CI width Cov. (%)

R2P 0.52±.05 0.42±.05 3.5±.14 1.21±.13 97.24±.50 0.05±.02 0.12±.01 3.7±.13 1.22±.14 99.04±.23
CCT 0.28±.05 0.62±.06 3.5±.14 6.11±.21 99.55±.14 0.05±.03 0.13±.01 3.4±.14 3.66±.13 99.50±.21
CT-A 0.33±.04 0.58±.05 3.7±.13 3.64±.08 97.25±.43 0.02±.01 0.13±.01 3.5±.14 2.44±.05 96.17±.51
CT-H 0.30±.05 0.60±.05 3.5±.14 3.72±.12 97.17±.43 0.01±.00 0.14±.01 3.4±.14 2.59±.06 97.31±.56
CT-L 0.30±.06 0.67±.04 2.7±.18 4.72±.17 98.99±.23 0.02±.02 0.13±.01 2.7±.21 3.25±.07 99.55±.22
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G.3 Results of R2Ps with Different ITE Estimators

Here, we provide the results of R2Ps with different ITE estimators in Table 4. For this, we integrate
R2P with the ITE estimators based on dragonnet (DN) [18], random forest (RF), and CT-H [2]. To
evaluate the precision of the ITE estimation, we introduce a precision in estimation of heterogeneous
effect (PEHE) defined as follows [14]:

PEHE =
1

n

n∑
i=1

((µ̂1(Xi)− µ̂0(Xi))− E[Y (1)
i Y

(1)
i |Xi = x])2.

The lower PEHE implies a more accurate ITE estimation. In the table, we can see that the use of a
better estimator allows R2P to construct better subgroups. This clearly shows that R2P can effectively
exploit the better precision of the ITE estimation when constructing subgroups. Besides, R2P can
seamlessly integrate any ITE estimators. Consequently, we can expect that R2P constructs better
subgroups by using some improved ITE estimators in the future.

Table 4: Results of R2Ps with different ITE estimators.

Synthetic dataset A Synthetic dataset B

V across V in # SGs CI width
√

PEHE V across V in # SGs CI width
√

PEHE

R2P 0.22±.01 0.03±.001 4.9±.16 0.08±.003 0.01±.00 2.39±.04 0.12±.01 5.0±.16 0.88±.06 0.16±.01
R2P-DN 0.21±.02 0.05±.01 4.9±.27 0.71±.05 0.06±.00 2.32±.06 0.19±.03 5.1±.17 2.24±.09 0.41±.02
R2P-RF 0.18±.02 0.08±.01 4.9±.26 2.91±.12 0.33±.01 2.20±.08 0.33±.07 5.1±.15 3.10±.32 0.42±.04

R2P-CT-H 0.12±.02 0.07±.03 4.3±.49 8.87±.32 0.51±.02 1.05±.25 1.51±.25 4.6±.41 6.42±.51 0.92±.12

IHDP dataset CPP dataset

V across V in # SGs CI width
√

PEHE V across V in # SGs CI width
√

PEHE

R2P 0.46±.04 0.38±.03 4.1±.12 1.27±.22 0.22±.02 0.06±.02 0.10±.01 5.7±.30 1.11±.13 0.13±.01
R2P-DN 0.41±.03 0.44±.04 4.3±.13 1.92±.09 0.33±.01 0.06±.02 0.10±.01 6.0±.26 1.52±.07 0.19±.01
R2P-RF 0.32±.05 0.55±.05 4.0±.32 3.07±.13 0.39±.02 0.04±.02 0.12±.01 6.0±.27 1.80±.06 0.23±.01

R2P-CT-H 0.09±.04 0.75±.05 2.7±.50 6.56±.25 0.83±.03 0.00±.00 0.14±.00 1.0±.004 4.20±.10 0.41±.01

G.4 Non-Interpretability of Grouping Using Quantiles of ITE Estimation

One naive way to construct subgroups is dividing the covariate space with respect to the quantiles of
estimated ITEs. However, this approach fails to satisfy the essential requirement of subgroup analysis:
interpretability. The estimates from a black-box ITE estimator are non-interpretable. Similarly, the
subgroups defined based on the estimated quantiles give no explanation (in terms of input covariates)
regarding why the samples are assigned to a particular subgroup. To demonstrate this problem clearly,
in Fig. 1, we divide the covariate space of the IHDP dataset into four subgroups based on the intervals
of quantiles of CMGP, [0, 25), [25, 50), [50, 75) and [75, 100]. The colours indicate which subgroup
each sample belongs to. We can see that the quantile fails to provide interpretability in terms of the
input covariates. In contrast, R2P constructs easy-to-interpret subgroups based on tree-structure.
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Figure 1: Subgroups in four different intervals of quantiles.

G.5 Complete Results of Table 1 in the Manuscript

Below we provide the complete results of Table 1 in the main manuscript. We can see that R2P
satisfies the target coverage for all datasets even with the narrower confidence interval widths.

G.6 Impact of Hyper-Parameters

Here we show the impact of the hyper-parameters γ and λ of R2P to the performance. We provide
the results of varying the hyper-parameters as γ ∈ {0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.5}. and λ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We use the same experiment setup in the main manuscript,
and repeat the experiments 50 times for each hyper-parameter.
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Impact of hyper-parameter γ We show the impact of the hyper-parameter γ ∈ [0, 1) of R2P in
Fig. 2. The hyper-parameter γ controls the regularization in R2P. From the figures, we can see that as
γ increases, the number of subgroups converges to one since a group is barely partitioned with the
larger γ. This causes the degradation of performance in the following aspects: V across decreases, V in

increases, and the confidence interval width increases generally. Thus, it seems that a smaller value
is a better choice for γ. However, if γ is too small, the subgroups (i.e., the partition) constructed
by R2P becomes overfitted. This overfitting issue results in the loss of generalization ability on the
unseen data, and a large number of subgroups due to the overfitting makes the subgroup analysis
less informative. In addition, we can see that our method robustly satisfies the target coverage rate
regardless of γ. Therefore, the hyper-parameter γ should be appropriately chosen in practice.

Table 5: Complete results of Table 1 in the manuscript.

Synthetic dataset A Synthetic dataset B

V across V in # SGs CI width Cov. (%) V across V in # SGs CI width Cov. (%)

R2P 0.22±.01 0.03±.001 4.9±.16 0.08±.003 98.98±.24 2.39±.04 0.12±.01 5.0±.16 0.88±.06 98.86±.23
CCT 0.18±.02 0.05±.01 4.4±.24 7.42±.48 100.0±.00 1.97±.14 0.58±.15 5.0±.13 5.95±.59 99.86±.13
CT-A 0.19±.02 0.04±.01 4.7±.21 3.96±.16 99.99±.02 2.24±.06 0.30±.05 5.1±.15 2.77±.20 97.73±.76
CT-H 0.12±.03 0.11±.02 3.1±.39 4.39±.22 99.98±.02 2.07±.13 0.53±.13 4.5±.15 3.38±.32 98.20±.73
CT-L 0.12±.02 0.10±.02 2.9±.35 5.22±.02 99.97±.06 0.80±.26 1.77±.27 3.1±.28 6.92±.53 99.44±.47

IHDP dataset CPP dataset

V across V in # SGs CI width Cov. (%) V across V in # SGs CI width Cov. (%)

R2P 0.46±.04 0.38±.03 4.1±.12 1.27±.22 97.93±.39 0.06±.02 0.10±.01 5.7±.30 1.11±.13 98.52±.34
CCT 0.30±.04 0.53±.05 4.3±.13 5.70±.23 99.59±.12 0.03±.02 0.12±.01 6.4±.20 3.60±.12 99.54±.23
CT-A 0.31±.04 0.57±.05 4.1±.08 3.71±.08 97.41±.42 0.03±.01 0.12±.01 6.6±.18 2.45±.06 96.60±.50
CT-H 0.28±.05 0.56±.05 3.8±.14 3.76±.14 97.76±.40 0.01±.00 0.14±.01 5.2±.23 2.67±.06 98.01±.40
CT-L 0.27±.06 0.64±.05 2.8±.23 4.75±.15 98.97±.30 0.01±.01 0.14±.01 2.9±.29 3.23±.07 99.49±.23

(a) Results with Synthetic dataset A.

(b) Results with Synthetic dataset B.

(c) Results with IHDP dataset.

(d) Results with CPP dataset.

Figure 2: Results on varying γ. (the red dotted line corresponds to the target coverage rate).

Impact of hyper-parameter λ We show the impact of the hyper-parameter λ of R2P in Fig. 3.
The hyper-parameter λ ∈ [0, 1] controls the weight between the homogeneity within each subgroup
and the confidence interval discrimination in the confident criterion. With smaller λ, the homogeneity
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within each subgroup is more emphasized in the criterion. So in that case, from the figures, we can
see that R2P finds the larger number of subgroups, which results in the higher V across and the lower
V in. On the other hand, with larger λ, the confidence interval discrimination is weighted higher
in the criterion, and thus, the confidence interval width decreases generally. We can see that our
method robustly satisfies the target coverage rate regardless of λ in most cases. Overall, λ should be
appropriately chosen considering the variance over the entire population.

(a) Results with Synthetic dataset A.

(b) Results with Synthetic dataset B.

(c) Results with IHDP dataset.

Figure 3: Results on varying λ. (the red dotted line corresponds to the target coverage rate).
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