
Appendix A Pytorch Emulation Environment

To accurately emulate the data precision (weights, activations and their gradients) and the partial-
sum precisions in the accumulator of hardware, we revise the Pytorch[1] GEMM GPU Kernels to
quantize the data and accumulation at a single FLOP level. A typical graph with the original layers,
forward/backward quantization layers, and GradScale layers is shown in Fig.s-1, which resembles
the hardware implementation in Fig.s-2.

Fig.s- 1. the flow chart of quantization and GradScale emulated in Pytorch framework, which
resembles the hardware implementation in Fig.s-2, in which SFP , Sx, and SW are scaling factors for
gradients, activations and weights, and Q () is a quantization function.

Fig.s- 2. a designed hardware implementation of 4-bit training, in which, x, y, and W are input
activations, output activatoins and weights, dx, dy, and dW are their gradients, SFP , Sx, and SW
are scaling factors for gradients, activations and weights, and Q () is a quantization function.

We apply this quantization wrapper on each layer of the network except the first and the last layer.
Following the conventions of DNN quantization[2–7], we keep the first Conv layer and the last
fully-connected (FC) layer in a higher FP16 (1-6-9) precision to maintain the input and output
fidelity—which constitutes a small proportion (< 3%) of the total computation complexity. To
enhance the flow-back of gradients for ResNets, we also adopt the full precision shortcut (FPSC)
approach [8] by using FP16 (1-6-9) for the Conv 1x1 layers on the shortcut path, which amounts to
< 1% of the total computation.

A.1 Forward

To emulate 4-bit INT4 and FP4 convolution, we quantize the activations and weights to INT4 and
recover it to FP32 format for GPU computation, which we refer to as fakeI4 (fI4).

xfI4 = xI4.Sx (1)
WfI4 = WI4.SW (2)

1



Following [7, 8]’s promising inference results, we adopted PACT (Parameterized Clipping Activation)
to quantize the activations, and SAWB (statistics aware weight binning) to quanitze the weights
separately. Both PACT and SAWB use standard uniform (evenly spaced) quantization scheme with
nearest-rounding, where SAWB is symmetrical around zero and PACT can be symmetrical or positive
depending on whether the activations pass non-linear functions like ReLU before the GEMMs. The
scaling factors, Sx and Sw, define the largest quantization levels. For PACT, Sx is a learnable
parameter optimized during training, whereas Sw is obtained from the first and second momentum
of weight tensors factored by coefficients extracted from six standard distributions. More details on
PACT and SAWB can be found in [7, 8].

A.2 Backward Quantization

Following the backpropagation direction, the output gradient tensor dL/dy (referred to as dy herein)
is firstly scaled by the GradScale unit (the scaling-up layer in Fig.s-1) then quantized to FP4 format.
In the Pytorch emulation, it will be stored in FP32 format but with FP4 precision, following the
rounding method in Fig.2 (c) in the paper. For the two phase rounding in Section 3.3, the scaled dy
will be rounded with FP4_even and FP4_odd phases at the backward GEMM and update GEMM,
respectively.

dyFP4 = QFP4(dy.SFP ) (3)

A.3 Backward GEMM

During backward GEMM, the scaled-then-quantized output gradient dyFP4 is convoluted with the
transposed weight in fake-INT4 format in our quantized Pytorch kernel with the partial-sum and
output in FP16 (1-6-9) precision:

dxFP16 = dyFP4W
T
fI4 (4)

It should be noted that the input gradient dxFP16 needs to be scaled back by 1/SFP before leaving
the current Conv layer. In our software emulation, this is automatically done by the backward pass of
the scaling-down layer in Fig.s-1 as part of the auto-grad process of Pytorch.

A.4 Update GEMM

Unlike backward GEMM, the output of update GEMM will exit the backpropagation and enter the
optimizer to update weights, therefore it will not pass the scaling-down layer to be scaled-back by
SFP . To avoid manually scaling back the weight gradients dWFP16, we instead scale down the
activations xfI4 in the forward pass of the scaling down layer in Fig.s-1. As such, the 1/SFP in the
activation will automatically scale back the weight gradient when it is calculated, as shown by the
Eqn. below. Please note that this does not change the emulated results because the INT4 quantization
is "agnostic" to scaling. In the hardware, it is equivalent to dividing the INT4 scaling factor Sx by
SFP (Fig.s-2). It will not change the forward output either as when the activations pass the scaling-up
layer in Fig.s-1, their scaling factor will be recovered to the original Sx by being multiplied with
SFP .

dWFP16 =
xfI4dyFP4

SFP
(5)

A.5 Demonstration of a 4-bit Conv

Using a toy example of Conv 3x3, we demonstrate that the weights and activations are quantized to
INT4 precisions in Fig.s-3. We also show that, compatible with Pytorch’s auto-grad mechanisms, we
can control the precision of all the gradients in Fig.s-4.

A.6 Training models in 4-bit

The design in Fig.s-1 enables a fast transformation of FP32 DNN models for 4-bit training. We
apply the scaling-down, INT4 Quant, FP4 Quant, and scaling-up layers as a wrapper around the
original GPU Conv layers (or FC layers). As an example, Fig.s-5 shows the quantized model file with
its layers assigned to different forward and backward precisions for training ResNet50 (ImageNet)
partially in 4-bit.

2



Fig.s- 3. A toy example of Conv3x3 with weights and activations quantized by INT4 following [7, 8].
Please note that to use GPU Kernel, the INT4 values are recovered to FP32 values with 16 uniform
bins.

3




	Pytorch Emulation Environment
	Forward
	Backward Quantization
	Backward GEMM
	Update GEMM
	Demonstration of a 4-bit Conv
	Training models in 4-bit

	Quantization Error Analysis
	Hardware performance evaluation
	Model training Details
	CIFAR10
	ImageNet
	ResNets
	AlexNet
	MobileNetV2

	LSTM PTB
	Transformer
	Speech Model


